API Query Documentation
Fetching Dataset/Trait info/data
Fetch Species List
To get a list of species with data available in GN (and their associated names and ids):
curl http://gn2-zach.genenetwork.org/api/v_pre1/species
[ { "FullName": "Mus musculus", "Id": 1, "Name": "mouse", "TaxonomyId": 10090 }, ... { "FullName": "Populus trichocarpa", "Id": 10, "Name": "poplar", "TaxonomyId": 3689 } ]
Or to get a single species info:
curl http://gn2-zach.genenetwork.org/api/v_pre1/species/mouse
OR
curl http://gn2-zach.genenetwork.org/api/v_pre1/species/mouse.json
For all queries where the last field is a user-specified name/ID, there will be the option to append a file format type. Currently there is only JSON (and it will default to JSON if none is provided), but other formats will be added later
Fetch Groups/RISets
This query can optionally filter by species:
curl http://gn2-zach.genenetwork.org/api/v_pre1/groups (for all species)
OR
curl http://gn2-zach.genenetwork.org/api/v_pre1/mouse/groups (for just mouse groups/RISets)
[ { "DisplayName": "BXD", "FullName": "BXD RI Family", "GeneticType": "riset", "Id": 1, "MappingMethodId": "1", "Name": "BXD", "SpeciesId": 1, "public": 2 }, ... { "DisplayName": "AIL LGSM F34 and F39-43 (GBS)", "FullName": "AIL LGSM F34 and F39-43 (GBS)", "GeneticType": "intercross", "Id": 72, "MappingMethodId": "2", "Name": "AIL-LGSM-F34-F39-43-GBS", "SpeciesId": 1, "public": 2 } ]
Fetch Genotypes for Group/RISet
curl http://gn2-zach.genenetwork.org/api/v_pre1/genotypes/BXD
Returns a CSV file with metadata in the first few rows, sample/strain names as columns, and markers as rows. Currently only works for genotypes we have stored in .geno files; I'll add the option to download BIMBAM files soon.
Fetch Datasets
curl http://gn2-zach.genenetwork.org/api/v_pre1/datasets/bxd
OR
curl http://gn2-zach.genenetwork.org/api/v_pre1/datasets/mouse/bxd
[ { "AvgID": 1, "CreateTime": "Fri, 01 Aug 2003 00:00:00 GMT", "DataScale": "log2", "FullName": "UTHSC/ETHZ/EPFL BXD Liver Polar Metabolites Extraction A, CD Cohorts (Mar 2017) log2", "Id": 1, "Long_Abbreviation": "BXDMicroArray_ProbeSet_August03", "ProbeFreezeId": 3, "ShortName": "Brain U74Av2 08/03 MAS5", "Short_Abbreviation": "Br_U_0803_M", "confidentiality": 0, "public": 0 }, ... { "AvgID": 3, "CreateTime": "Tue, 14 Aug 2018 00:00:00 GMT", "DataScale": "log2", "FullName": "EPFL/LISP BXD CD Liver Affy Mouse Gene 1.0 ST (Aug18) RMA", "Id": 859, "Long_Abbreviation": "EPFLMouseLiverCDRMAApr18", "ProbeFreezeId": 181, "ShortName": "EPFL/LISP BXD CD Liver Affy Mouse Gene 1.0 ST (Aug18) RMA", "Short_Abbreviation": "EPFLMouseLiverCDRMA0818", "confidentiality": 0, "public": 1 } ]
(I added the option to specify species just in case we end up with the same group name across multiple species at some point, though it's currently unnecessary)
Fetch Sample Data for Dataset
curl http://gn2-zach.genenetwork.org/api/v_pre1/sample_data/HSNIH-PalmerPublish.csv
Returns a CSV file with sample/strain names as the columns and trait IDs as rows
Fetch Individual Dataset Info
For mRNA Assay/"ProbeSet"
curl http://gn2-zach.genenetwork.org/api/v_pre1/dataset/HC_M2_0606_P
OR
curl http://gn2-zach.genenetwork.org/api/v_pre1/dataset/bxd/HC_M2_0606_P```
{ "confidential": 0, "data_scale": "log2", "dataset_type": "mRNA expression", "full_name": "Hippocampus Consortium M430v2 (Jun06) PDNN", "id": 112, "name": "HC_M2_0606_P", "public": 2, "short_name": "Hippocampus M430v2 BXD 06/06 PDNN", "tissue": "Hippocampus mRNA", "tissue_id": 9 }
(This also has the option to specify group/riset)
For "Phenotypes" (basically non-mRNA Expression; stuff like weight, sex, etc)
For these traits, the query fetches publication info and takes the group and phenotype 'ID' as input. For example:
curl http://gn2-zach.genenetwork.org/api/v_pre1/dataset/bxd/10001
{ "dataset_type": "phenotype", "description": "Central nervous system, morphology: Cerebellum weight, whole, bilateral in adults of both sexes [mg]", "id": 10001, "name": "CBLWT2", "pubmed_id": 11438585, "title": "Genetic control of the mouse cerebellum: identification of quantitative trait loci modulating size and architecture", "year": "2001" }
Fetch Sample Data for Single Trait
curl http://gn2-zach.genenetwork.org/api/v_pre1/sample_data/HC_M2_0606_P/1436869_at
[ { "data_id": 23415463, "sample_name": "129S1/SvImJ", "sample_name_2": "129S1/SvImJ", "se": 0.123, "value": 8.201 }, { "data_id": 23415463, "sample_name": "A/J", "sample_name_2": "A/J", "se": 0.046, "value": 8.413 }, { "data_id": 23415463, "sample_name": "AKR/J", "sample_name_2": "AKR/J", "se": 0.134, "value": 8.856 }, ... ]
Fetch Trait Info (Name, Description, Location, etc)
For mRNA Expression/"ProbeSet"
curl http://gn2-zach.genenetwork.org/api/v_pre1/trait/HC_M2_0606_P/1436869_at
{ "additive": -0.214087568058076, "alias": "HHG1; HLP3; HPE3; SMMCI; Dsh; Hhg1", "chr": "5", "description": "sonic hedgehog (hedgehog)", "id": 99602, "locus": "rs8253327", "lrs": 12.7711275309832, "mb": 28.457155, "mean": 9.27909090909091, "name": "1436869_at", "p_value": 0.306, "se": null, "symbol": "Shh" }
For "Phenotypes"
For phenotypes this just gets the max LRS, its location, and additive effect (as calculated by qtlreaper)
Since each group/riset only has one phenotype "dataset", this query takes either the group/riset name or the group/riset name + "Publish" (for example "BXDPublish", which is the dataset name in the DB) as input
curl http://gn2-zach.genenetwork.org/api/v_pre1/trait/BXD/10001
{ "additive": 2.39444435069444, "id": 4, "locus": "rs48756159", "lrs": 13.4974911471087 }
Analyses
Mapping
Currently two mapping tools can be used - GEMMA and R/qtl. qtlreaper will be added later with Christian Fischer's RUST implementation - https://github.com/chfi/rust-qtlreaper
Each method's query takes the following parameters respectively (more will be added):
GEMMA
- trait_id (required) - ID for trait being mapped
- db (required) - DB name for trait above (Short_Abbreviation listed when you query for datasets)
- use_loco - Whether to use LOCO (leave one chromosome out) method (default = false)
- maf - minor allele frequency (default = 0.01)
Example query:
curl http://gn2-zach.genenetwork.org/api/v_pre1/mapping?trait_id=10015&db=BXDPublish&method=gemma&use_loco=true
R/qtl
(See the R/qtl guide for information on some of these options - http://www.rqtl.org/manual/qtl-manual.pdf) * trait_id (required) - ID for trait being mapped * db (required) - DB name for trait above (Short_Abbreviation listed when you query for datasets) * rqtl_method - hk (default) | ehk | em | imp | mr | mr-imp | mr-argmax ; Corresponds to the "method" option for the R/qtl scanone function. * rqtl_model - normal (default) | binary | 2-part | np ; corresponds to the "model" option for the R/qtl scanone function * num_perm - number of permutations; 0 by default * control_marker - Name of marker to use as control; this relies on the user knowing the name of the marker they want to use as a covariate * interval_mapping - Whether to use interval mapping; "false" by default * pair_scan - NYI
Example query:
curl http://gn2-zach.genenetwork.org/api/v_pre1/mapping?trait_id=1418701_at&db=HC_M2_0606_P&method=rqtl&num_perm=100
Some combinations of methods/models may not make sense. The R/qtl manual should be referred to for any questions on its use (specifically the scanone function in this case)
Calculate Correlation
Currently only Sample and Tissue correlations are implemented
This query currently takes the following parameters (though more will be added): * trait_id (required) - ID for trait used for correlation * db (required) - DB name for the trait above (this is the Short_Abbreviation listed when you query for datasets) * target_db (required) - Target DB name to be correlated against * type - sample (default) | tissue * method - pearson (default) | spearman * return - Number of results to return (default = 500)
Example query:
curl http://gn2-zach.genenetwork.org/api/v_pre1/correlation?trait_id=1427571_at&db=HC_M2_0606_P&target_db=BXDPublish&type=sample&return_count=100
[ { "#_strains": 6, "p_value": 0.004804664723032055, "sample_r": -0.942857142857143, "trait": 20511 }, { "#_strains": 6, "p_value": 0.004804664723032055, "sample_r": -0.942857142857143, "trait": 20724 }, { "#_strains": 12, "p_value": 1.8288943424888848e-05, "sample_r": -0.9233615170820528, "trait": 13536 }, { "#_strains": 7, "p_value": 0.006807187408935392, "sample_r": 0.8928571428571429, "trait": 10157 }, { "#_strains": 7, "p_value": 0.006807187408935392, "sample_r": -0.8928571428571429, "trait": 20392 }, ... ]