/* Genome-wide Efficient Mixed Model Association (GEMMA) Copyright (C) 2011-2017, Xiang Zhou This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "gsl/gsl_blas.h" #include "gsl/gsl_linalg.h" #include "gsl/gsl_matrix.h" #include "gsl/gsl_vector.h" #include "gsl/gsl_cdf.h" #include "gsl/gsl_min.h" #include "gsl/gsl_multiroots.h" #include "Eigen/Dense" #include "eigenlib.h" #include "gzstream.h" #include "io.h" #include "lapack.h" #include "lmm.h" #include "mathfunc.h" #include "param.h" #include "vc.h" using namespace std; using namespace Eigen; // In this file, X, Y are already transformed (i.e. UtX and UtY). void VC::CopyFromParam(PARAM &cPar) { a_mode = cPar.a_mode; file_cat = cPar.file_cat; file_beta = cPar.file_beta; file_cor = cPar.file_cor; setSnps = cPar.setSnps; file_out = cPar.file_out; path_out = cPar.path_out; time_UtX = 0.0; time_opt = 0.0; v_traceG = cPar.v_traceG; ni_total = cPar.ni_total; ns_total = cPar.ns_total; ns_test = cPar.ns_test; crt = cPar.crt; window_cm = cPar.window_cm; window_bp = cPar.window_bp; window_ns = cPar.window_ns; n_vc = cPar.n_vc; return; } void VC::CopyToParam(PARAM &cPar) { cPar.time_UtX = time_UtX; cPar.time_opt = time_opt; cPar.v_pve = v_pve; cPar.v_se_pve = v_se_pve; cPar.v_sigma2 = v_sigma2; cPar.v_se_sigma2 = v_se_sigma2; cPar.pve_total = pve_total; cPar.se_pve_total = se_pve_total; cPar.v_traceG = v_traceG; cPar.v_beta = v_beta; cPar.v_se_beta = v_se_beta; cPar.ni_total = ni_total; cPar.ns_total = ns_total; cPar.ns_test = ns_test; cPar.n_vc = n_vc; return; } void VC::WriteFile_qs(const gsl_vector *s_vec, const gsl_vector *q_vec, const gsl_vector *qvar_vec, const gsl_matrix *S_mat, const gsl_matrix *Svar_mat) { string file_str; file_str = path_out + "/" + file_out; file_str += ".qvec.txt"; ofstream outfile_q(file_str.c_str(), ofstream::out); if (!outfile_q) { cout << "error writing file: " << file_str.c_str() << endl; return; } for (size_t i = 0; i < s_vec->size; i++) { outfile_q << gsl_vector_get(s_vec, i) << endl; } for (size_t i = 0; i < q_vec->size; i++) { outfile_q << gsl_vector_get(q_vec, i) << endl; } for (size_t i = 0; i < qvar_vec->size; i++) { outfile_q << gsl_vector_get(qvar_vec, i) << endl; } outfile_q.clear(); outfile_q.close(); file_str = path_out + "/" + file_out; file_str += ".smat.txt"; ofstream outfile_s(file_str.c_str(), ofstream::out); if (!outfile_s) { cout << "error writing file: " << file_str.c_str() << endl; return; } for (size_t i = 0; i < S_mat->size1; i++) { for (size_t j = 0; j < S_mat->size2; j++) { outfile_s << gsl_matrix_get(S_mat, i, j) << "\t"; } outfile_s << endl; } for (size_t i = 0; i < Svar_mat->size1; i++) { for (size_t j = 0; j < Svar_mat->size2; j++) { outfile_s << gsl_matrix_get(Svar_mat, i, j) << "\t"; } outfile_s << endl; } outfile_s.clear(); outfile_s.close(); return; } void UpdateParam(const gsl_vector *log_sigma2, VC_PARAM *p) { size_t n1 = (p->K)->size1, n_vc = log_sigma2->size - 1, n_cvt = (p->W)->size2; gsl_matrix *K_temp = gsl_matrix_alloc(n1, n1); gsl_matrix *HiW = gsl_matrix_alloc(n1, n_cvt); gsl_matrix *WtHiW = gsl_matrix_alloc(n_cvt, n_cvt); gsl_matrix *WtHiWi = gsl_matrix_alloc(n_cvt, n_cvt); gsl_matrix *WtHiWiWtHi = gsl_matrix_alloc(n_cvt, n1); double sigma2; // Calculate H = \sum_i^{k+1} \sigma_i^2 K_i. gsl_matrix_set_zero(p->P); for (size_t i = 0; i < n_vc + 1; i++) { if (i == n_vc) { gsl_matrix_set_identity(K_temp); } else { gsl_matrix_const_view K_sub = gsl_matrix_const_submatrix(p->K, 0, n1 * i, n1, n1); gsl_matrix_memcpy(K_temp, &K_sub.matrix); } // When unconstrained, update on sigma2 instead of log_sigma2. if (p->noconstrain) { sigma2 = gsl_vector_get(log_sigma2, i); } else { sigma2 = exp(gsl_vector_get(log_sigma2, i)); } gsl_matrix_scale(K_temp, sigma2); gsl_matrix_add(p->P, K_temp); } // Calculate H^{-1}. eigenlib_invert(p->P); eigenlib_dgemm("N", "N", 1.0, p->P, p->W, 0.0, HiW); eigenlib_dgemm("T", "N", 1.0, p->W, HiW, 0.0, WtHiW); eigenlib_invert(WtHiW); gsl_matrix_memcpy(WtHiWi, WtHiW); eigenlib_dgemm("N", "T", 1.0, WtHiWi, HiW, 0.0, WtHiWiWtHi); eigenlib_dgemm("N", "N", -1.0, HiW, WtHiWiWtHi, 1.0, p->P); // Calculate Py, KPy, PKPy. gsl_blas_dgemv(CblasNoTrans, 1.0, p->P, p->y, 0.0, p->Py); double d; for (size_t i = 0; i < n_vc + 1; i++) { gsl_vector_view KPy = gsl_matrix_column(p->KPy_mat, i); gsl_vector_view PKPy = gsl_matrix_column(p->PKPy_mat, i); if (i == n_vc) { gsl_vector_memcpy(&KPy.vector, p->Py); } else { gsl_matrix_const_view K_sub = gsl_matrix_const_submatrix(p->K, 0, n1 * i, n1, n1); // Seems to be important to use gsl dgemv here instead of // eigenlib_dgemv; otherwise. gsl_blas_dgemv(CblasNoTrans, 1.0, &K_sub.matrix, p->Py, 0.0, &KPy.vector); } gsl_blas_dgemv(CblasNoTrans, 1.0, p->P, &KPy.vector, 0.0, &PKPy.vector); // When phenotypes are not normalized well, then some values in // the following matrix maybe NaN; change that to 0; this seems to // only happen when eigenlib_dgemv was used above. for (size_t j = 0; j < p->KPy_mat->size1; j++) { d = gsl_matrix_get(p->KPy_mat, j, i); if (std::isnan(d)) { gsl_matrix_set(p->KPy_mat, j, i, 0); cout << "nan appears in " << i << " " << j << endl; } d = gsl_matrix_get(p->PKPy_mat, j, i); if (std::isnan(d)) { gsl_matrix_set(p->PKPy_mat, j, i, 0); cout << "nan appears in " << i << " " << j << endl; } } } gsl_matrix_free(K_temp); gsl_matrix_free(HiW); gsl_matrix_free(WtHiW); gsl_matrix_free(WtHiWi); gsl_matrix_free(WtHiWiWtHi); return; } // Below are functions for AI algorithm. int LogRL_dev1(const gsl_vector *log_sigma2, void *params, gsl_vector *dev1) { VC_PARAM *p = (VC_PARAM *)params; size_t n1 = (p->K)->size1, n_vc = log_sigma2->size - 1; double tr, d; // Update parameters. UpdateParam(log_sigma2, p); // Calculate dev1=-0.5*trace(PK_i)+0.5*yPKPy. for (size_t i = 0; i < n_vc + 1; i++) { if (i == n_vc) { tr = 0; for (size_t l = 0; l < n1; l++) { tr += gsl_matrix_get(p->P, l, l); } } else { tr = 0; for (size_t l = 0; l < n1; l++) { gsl_vector_view P_row = gsl_matrix_row(p->P, l); gsl_vector_const_view K_col = gsl_matrix_const_column(p->K, n1 * i + l); gsl_blas_ddot(&P_row.vector, &K_col.vector, &d); tr += d; } } gsl_vector_view KPy_i = gsl_matrix_column(p->KPy_mat, i); gsl_blas_ddot(p->Py, &KPy_i.vector, &d); if (p->noconstrain) { d = (-0.5 * tr + 0.5 * d); } else { d = (-0.5 * tr + 0.5 * d) * exp(gsl_vector_get(log_sigma2, i)); } gsl_vector_set(dev1, i, d); } return GSL_SUCCESS; } int LogRL_dev2(const gsl_vector *log_sigma2, void *params, gsl_matrix *dev2) { VC_PARAM *p = (VC_PARAM *)params; size_t n_vc = log_sigma2->size - 1; double d, sigma2_i, sigma2_j; // Update parameters. UpdateParam(log_sigma2, p); // Calculate dev2 = 0.5(yPKPKPy). for (size_t i = 0; i < n_vc + 1; i++) { gsl_vector_view KPy_i = gsl_matrix_column(p->KPy_mat, i); if (p->noconstrain) { sigma2_i = gsl_vector_get(log_sigma2, i); } else { sigma2_i = exp(gsl_vector_get(log_sigma2, i)); } for (size_t j = i; j < n_vc + 1; j++) { gsl_vector_view PKPy_j = gsl_matrix_column(p->PKPy_mat, j); gsl_blas_ddot(&KPy_i.vector, &PKPy_j.vector, &d); if (p->noconstrain) { sigma2_j = gsl_vector_get(log_sigma2, j); d *= -0.5; } else { sigma2_j = exp(gsl_vector_get(log_sigma2, j)); d *= -0.5 * sigma2_i * sigma2_j; } gsl_matrix_set(dev2, i, j, d); if (j != i) { gsl_matrix_set(dev2, j, i, d); } } } gsl_matrix_memcpy(p->Hessian, dev2); return GSL_SUCCESS; } int LogRL_dev12(const gsl_vector *log_sigma2, void *params, gsl_vector *dev1, gsl_matrix *dev2) { VC_PARAM *p = (VC_PARAM *)params; size_t n1 = (p->K)->size1, n_vc = log_sigma2->size - 1; double tr, d, sigma2_i, sigma2_j; // Update parameters. UpdateParam(log_sigma2, p); for (size_t i = 0; i < n_vc + 1; i++) { if (i == n_vc) { tr = 0; for (size_t l = 0; l < n1; l++) { tr += gsl_matrix_get(p->P, l, l); } } else { tr = 0; for (size_t l = 0; l < n1; l++) { gsl_vector_view P_row = gsl_matrix_row(p->P, l); gsl_vector_const_view K_col = gsl_matrix_const_column(p->K, n1 * i + l); gsl_blas_ddot(&P_row.vector, &K_col.vector, &d); tr += d; } } gsl_vector_view KPy_i = gsl_matrix_column(p->KPy_mat, i); gsl_blas_ddot(p->Py, &KPy_i.vector, &d); if (p->noconstrain) { sigma2_i = gsl_vector_get(log_sigma2, i); d = (-0.5 * tr + 0.5 * d); } else { sigma2_i = exp(gsl_vector_get(log_sigma2, i)); d = (-0.5 * tr + 0.5 * d) * sigma2_i; } gsl_vector_set(dev1, i, d); for (size_t j = i; j < n_vc + 1; j++) { gsl_vector_view PKPy_j = gsl_matrix_column(p->PKPy_mat, j); gsl_blas_ddot(&KPy_i.vector, &PKPy_j.vector, &d); if (p->noconstrain) { sigma2_j = gsl_vector_get(log_sigma2, j); d *= -0.5; } else { sigma2_j = exp(gsl_vector_get(log_sigma2, j)); d *= -0.5 * sigma2_i * sigma2_j; } gsl_matrix_set(dev2, i, j, d); if (j != i) { gsl_matrix_set(dev2, j, i, d); } } } gsl_matrix_memcpy(p->Hessian, dev2); return GSL_SUCCESS; } // Read header to determine which column contains which item. bool ReadHeader_vc(const string &line, HEADER &header) { debug_msg("entering"); string rs_ptr[] = {"rs", "RS", "snp", "SNP", "snps", "SNPS", "snpid", "SNPID", "rsid", "RSID"}; set rs_set(rs_ptr, rs_ptr + 10); string chr_ptr[] = {"chr", "CHR"}; set chr_set(chr_ptr, chr_ptr + 2); string pos_ptr[] = { "ps", "PS", "pos", "POS", "base_position", "BASE_POSITION", "bp", "BP"}; set pos_set(pos_ptr, pos_ptr + 8); string cm_ptr[] = {"cm", "CM"}; set cm_set(cm_ptr, cm_ptr + 2); string a1_ptr[] = {"a1", "A1", "allele1", "ALLELE1"}; set a1_set(a1_ptr, a1_ptr + 4); string a0_ptr[] = {"a0", "A0", "allele0", "ALLELE0"}; set a0_set(a0_ptr, a0_ptr + 4); string z_ptr[] = {"z", "Z", "z_score", "Z_SCORE", "zscore", "ZSCORE"}; set z_set(z_ptr, z_ptr + 6); string beta_ptr[] = {"beta", "BETA", "b", "B"}; set beta_set(beta_ptr, beta_ptr + 4); string sebeta_ptr[] = {"se_beta", "SE_BETA", "se", "SE"}; set sebeta_set(sebeta_ptr, sebeta_ptr + 4); string chisq_ptr[] = {"chisq", "CHISQ", "chisquare", "CHISQUARE"}; set chisq_set(chisq_ptr, chisq_ptr + 4); string p_ptr[] = {"p", "P", "pvalue", "PVALUE", "p-value", "P-VALUE"}; set p_set(p_ptr, p_ptr + 6); string n_ptr[] = {"n", "N", "ntotal", "NTOTAL", "n_total", "N_TOTAL"}; set n_set(n_ptr, n_ptr + 6); string nmis_ptr[] = {"nmis", "NMIS", "n_mis", "N_MIS", "n_miss", "N_MISS"}; set nmis_set(nmis_ptr, nmis_ptr + 6); string nobs_ptr[] = {"nobs", "NOBS", "n_obs", "N_OBS"}; set nobs_set(nobs_ptr, nobs_ptr + 4); string af_ptr[] = {"af", "AF", "maf", "MAF", "f", "F", "allele_freq", "ALLELE_FREQ", "allele_frequency", "ALLELE_FREQUENCY"}; set af_set(af_ptr, af_ptr + 10); string var_ptr[] = {"var", "VAR"}; set var_set(var_ptr, var_ptr + 2); string ws_ptr[] = {"window_size", "WINDOW_SIZE", "ws", "WS"}; set ws_set(ws_ptr, ws_ptr + 4); string cor_ptr[] = {"cor", "COR", "r", "R"}; set cor_set(cor_ptr, cor_ptr + 4); header.rs_col = 0; header.chr_col = 0; header.pos_col = 0; header.a1_col = 0; header.a0_col = 0; header.z_col = 0; header.beta_col = 0; header.sebeta_col = 0; header.chisq_col = 0; header.p_col = 0; header.n_col = 0; header.nmis_col = 0; header.nobs_col = 0; header.af_col = 0; header.var_col = 0; header.ws_col = 0; header.cor_col = 0; header.coln = 0; char *ch_ptr; string type; size_t n_error = 0; ch_ptr = strtok((char *)line.c_str(), " , \t"); while (ch_ptr != NULL) { type = ch_ptr; if (rs_set.count(type) != 0) { if (header.rs_col == 0) { header.rs_col = header.coln + 1; } else { cout << "error! more than two rs columns in the file." << endl; n_error++; } } else if (chr_set.count(type) != 0) { if (header.chr_col == 0) { header.chr_col = header.coln + 1; } else { cout << "error! more than two chr columns in the file." << endl; n_error++; } } else if (pos_set.count(type) != 0) { if (header.pos_col == 0) { header.pos_col = header.coln + 1; } else { cout << "error! more than two pos columns in the file." << endl; n_error++; } } else if (cm_set.count(type) != 0) { if (header.cm_col == 0) { header.cm_col = header.coln + 1; } else { cout << "error! more than two cm columns in the file." << endl; n_error++; } } else if (a1_set.count(type) != 0) { if (header.a1_col == 0) { header.a1_col = header.coln + 1; } else { cout << "error! more than two allele1 columns in the file." << endl; n_error++; } } else if (a0_set.count(type) != 0) { if (header.a0_col == 0) { header.a0_col = header.coln + 1; } else { cout << "error! more than two allele0 columns in the file." << endl; n_error++; } } else if (z_set.count(type) != 0) { if (header.z_col == 0) { header.z_col = header.coln + 1; } else { cout << "error! more than two z columns in the file." << endl; n_error++; } } else if (beta_set.count(type) != 0) { if (header.beta_col == 0) { header.beta_col = header.coln + 1; } else { cout << "error! more than two beta columns in the file." << endl; n_error++; } } else if (sebeta_set.count(type) != 0) { if (header.sebeta_col == 0) { header.sebeta_col = header.coln + 1; } else { cout << "error! more than two se_beta columns in the file." << endl; n_error++; } } else if (chisq_set.count(type) != 0) { if (header.chisq_col == 0) { header.chisq_col = header.coln + 1; } else { cout << "error! more than two z columns in the file." << endl; n_error++; } } else if (p_set.count(type) != 0) { if (header.p_col == 0) { header.p_col = header.coln + 1; } else { cout << "error! more than two p columns in the file." << endl; n_error++; } } else if (n_set.count(type) != 0) { if (header.n_col == 0) { header.n_col = header.coln + 1; } else { cout << "error! more than two n_total columns in the file." << endl; n_error++; } } else if (nmis_set.count(type) != 0) { if (header.nmis_col == 0) { header.nmis_col = header.coln + 1; } else { cout << "error! more than two n_mis columns in the file." << endl; n_error++; } } else if (nobs_set.count(type) != 0) { if (header.nobs_col == 0) { header.nobs_col = header.coln + 1; } else { cout << "error! more than two n_obs columns in the file." << endl; n_error++; } } else if (ws_set.count(type) != 0) { if (header.ws_col == 0) { header.ws_col = header.coln + 1; } else { cout << "error! more than two window_size columns in the file." << endl; n_error++; } } else if (af_set.count(type) != 0) { if (header.af_col == 0) { header.af_col = header.coln + 1; } else { cout << "error! more than two af columns in the file." << endl; n_error++; } } else if (cor_set.count(type) != 0) { if (header.cor_col == 0) { header.cor_col = header.coln + 1; } else { cout << "error! more than two cor columns in the file." << endl; n_error++; } } else { } ch_ptr = strtok(NULL, " , \t"); header.coln++; } if (header.cor_col != 0 && header.cor_col != header.coln) { cout << "error! the cor column should be the last column." << endl; n_error++; } if (header.rs_col == 0) { if (header.chr_col != 0 && header.pos_col != 0) { cout << "missing an rs column. rs id will be replaced by chr:pos" << endl; } else { cout << "error! missing an rs column." << endl; n_error++; } } if (n_error == 0) { return true; } else { return false; } } // Read cov file the first time, record mapRS2in, mapRS2var (in case // var is not provided in the z file), store vec_n and vec_rs. void ReadFile_cor(const string &file_cor, const set &setSnps, vector &vec_rs, vector &vec_n, vector &vec_cm, vector &vec_bp, map &mapRS2in, map &mapRS2var) { debug_msg("entering"); vec_rs.clear(); vec_n.clear(); mapRS2in.clear(); mapRS2var.clear(); igzstream infile(file_cor.c_str(), igzstream::in); if (!infile) { cout << "error! fail to open cov file: " << file_cor << endl; return; } string line; char *ch_ptr; string rs, chr, a1, a0, pos, cm; double af = 0, var_x = 0, d_pos, d_cm; size_t n_total = 0, n_mis = 0, n_obs = 0, ni_total = 0; size_t ns_test = 0, ns_total = 0; HEADER header; // Header. !safeGetline(infile, line).eof(); ReadHeader_vc(line, header); if (header.n_col == 0) { if (header.nobs_col == 0 && header.nmis_col == 0) { cout << "error! missing sample size in the cor file." << endl; } else { cout << "total sample size will be replaced by obs/mis sample size." << endl; } } while (!safeGetline(infile, line).eof()) { // do not read cor values this time; upto col_n-1. ch_ptr = strtok((char *)line.c_str(), " , \t"); n_total = 0; n_mis = 0; n_obs = 0; af = 0; var_x = 0; d_cm = 0; d_pos = 0; for (size_t i = 0; i < header.coln - 1; i++) { if (header.rs_col != 0 && header.rs_col == i + 1) { rs = ch_ptr; } if (header.chr_col != 0 && header.chr_col == i + 1) { chr = ch_ptr; } if (header.pos_col != 0 && header.pos_col == i + 1) { pos = ch_ptr; d_pos = atof(ch_ptr); } if (header.cm_col != 0 && header.cm_col == i + 1) { cm = ch_ptr; d_cm = atof(ch_ptr); } if (header.a1_col != 0 && header.a1_col == i + 1) { a1 = ch_ptr; } if (header.a0_col != 0 && header.a0_col == i + 1) { a0 = ch_ptr; } if (header.n_col != 0 && header.n_col == i + 1) { n_total = atoi(ch_ptr); } if (header.nmis_col != 0 && header.nmis_col == i + 1) { n_mis = atoi(ch_ptr); } if (header.nobs_col != 0 && header.nobs_col == i + 1) { n_obs = atoi(ch_ptr); } if (header.af_col != 0 && header.af_col == i + 1) { af = atof(ch_ptr); } if (header.var_col != 0 && header.var_col == i + 1) { var_x = atof(ch_ptr); } ch_ptr = strtok(NULL, " , \t"); } if (header.rs_col == 0) { rs = chr + ":" + pos; } if (header.n_col == 0) { n_total = n_mis + n_obs; } // Record rs, n. vec_rs.push_back(rs); vec_n.push_back(n_total); if (d_cm > 0) { vec_cm.push_back(d_cm); } else { vec_cm.push_back(d_cm); } if (d_pos > 0) { vec_bp.push_back(d_pos); } else { vec_bp.push_back(d_pos); } // Record mapRS2in and mapRS2var. if (setSnps.size() == 0 || setSnps.count(rs) != 0) { if (mapRS2in.count(rs) == 0) { mapRS2in[rs] = 1; if (header.var_col != 0) { mapRS2var[rs] = var_x; } else if (header.af_col != 0) { var_x = 2.0 * af * (1.0 - af); mapRS2var[rs] = var_x; } else { } ns_test++; } else { cout << "error! more than one snp has the same id " << rs << " in cor file?" << endl; } } // Record max pos. ni_total = max(ni_total, n_total); ns_total++; } infile.close(); infile.clear(); return; } // Read beta file, store mapRS2var if var is provided here, calculate // q and var_y. void ReadFile_beta(const bool flag_priorscale, const string &file_beta, const map &mapRS2cat, map &mapRS2in, map &mapRS2var, map &mapRS2nsamp, gsl_vector *q_vec, gsl_vector *qvar_vec, gsl_vector *s_vec, size_t &ni_total, size_t &ns_total) { debug_msg("entering"); mapRS2nsamp.clear(); igzstream infile(file_beta.c_str(), igzstream::in); if (!infile) { cout << "error! fail to open beta file: " << file_beta << endl; return; } string line; char *ch_ptr; string type; string rs, chr, a1, a0, pos, cm; double z = 0, beta = 0, se_beta = 0, chisq = 0, pvalue = 0, zsquare = 0, af = 0, var_x = 0; size_t n_total = 0, n_mis = 0, n_obs = 0; size_t ns_test = 0; ns_total = 0; ni_total = 0; vector vec_q, vec_qvar, vec_s; for (size_t i = 0; i < q_vec->size; i++) { vec_q.push_back(0.0); vec_qvar.push_back(0.0); vec_s.push_back(0.0); } // Read header. HEADER header; !safeGetline(infile, line).eof(); ReadHeader_vc(line, header); if (header.n_col == 0) { if (header.nobs_col == 0 && header.nmis_col == 0) { cout << "error! missing sample size in the beta file." << endl; } else { cout << "total sample size will be replaced by obs/mis sample size." << endl; } } if (header.z_col == 0 && (header.beta_col == 0 || header.sebeta_col == 0) && header.chisq_col == 0 && header.p_col == 0) { cout << "error! missing z scores in the beta file." << endl; } if (header.af_col == 0 && header.var_col == 0 && mapRS2var.size() == 0) { cout << "error! missing allele frequency in the beta file." << endl; } while (!safeGetline(infile, line).eof()) { ch_ptr = strtok((char *)line.c_str(), " , \t"); z = 0; beta = 0; se_beta = 0; chisq = 0; pvalue = 0; n_total = 0; n_mis = 0; n_obs = 0; af = 0; var_x = 0; for (size_t i = 0; i < header.coln; i++) { if (header.rs_col != 0 && header.rs_col == i + 1) { rs = ch_ptr; } if (header.chr_col != 0 && header.chr_col == i + 1) { chr = ch_ptr; } if (header.pos_col != 0 && header.pos_col == i + 1) { pos = ch_ptr; } if (header.cm_col != 0 && header.cm_col == i + 1) { cm = ch_ptr; } if (header.a1_col != 0 && header.a1_col == i + 1) { a1 = ch_ptr; } if (header.a0_col != 0 && header.a0_col == i + 1) { a0 = ch_ptr; } if (header.z_col != 0 && header.z_col == i + 1) { z = atof(ch_ptr); } if (header.beta_col != 0 && header.beta_col == i + 1) { beta = atof(ch_ptr); } if (header.sebeta_col != 0 && header.sebeta_col == i + 1) { se_beta = atof(ch_ptr); } if (header.chisq_col != 0 && header.chisq_col == i + 1) { chisq = atof(ch_ptr); } if (header.p_col != 0 && header.p_col == i + 1) { pvalue = atof(ch_ptr); } if (header.n_col != 0 && header.n_col == i + 1) { n_total = atoi(ch_ptr); } if (header.nmis_col != 0 && header.nmis_col == i + 1) { n_mis = atoi(ch_ptr); } if (header.nobs_col != 0 && header.nobs_col == i + 1) { n_obs = atoi(ch_ptr); } if (header.af_col != 0 && header.af_col == i + 1) { af = atof(ch_ptr); } if (header.var_col != 0 && header.var_col == i + 1) { var_x = atof(ch_ptr); } ch_ptr = strtok(NULL, " , \t"); } if (header.rs_col == 0) { rs = chr + ":" + pos; } if (header.n_col == 0) { n_total = n_mis + n_obs; } // Both z values and beta/se_beta have directions, while // chisq/pvalue do not. if (header.z_col != 0) { zsquare = z * z; } else if (header.beta_col != 0 && header.sebeta_col != 0) { z = beta / se_beta; zsquare = z * z; } else if (header.chisq_col != 0) { zsquare = chisq; } else if (header.p_col != 0) { zsquare = gsl_cdf_chisq_Qinv(pvalue, 1); } else { zsquare = 0; } // If the snp is also present in cor file, then do calculations. if ((header.var_col != 0 || header.af_col != 0 || mapRS2var.count(rs) != 0) && mapRS2in.count(rs) != 0 && (mapRS2cat.size() == 0 || mapRS2cat.count(rs) != 0)) { if (mapRS2in.at(rs) > 1) { cout << "error! more than one snp has the same id " << rs << " in beta file?" << endl; break; } if (header.var_col == 0) { if (header.af_col != 0) { var_x = 2.0 * af * (1.0 - af); } else { var_x = mapRS2var.at(rs); } } if (flag_priorscale) { var_x = 1; } mapRS2in[rs]++; mapRS2var[rs] = var_x; mapRS2nsamp[rs] = n_total; if (mapRS2cat.size() != 0) { vec_q[mapRS2cat.at(rs)] += (zsquare - 1.0) * var_x / (double)n_total; vec_s[mapRS2cat.at(rs)] += var_x; vec_qvar[mapRS2cat.at(rs)] += var_x * var_x / ((double)n_total * (double)n_total); } else { vec_q[0] += (zsquare - 1.0) * var_x / (double)n_total; vec_s[0] += var_x; vec_qvar[0] += var_x * var_x / ((double)n_total * (double)n_total); } ni_total = max(ni_total, n_total); ns_test++; } ns_total++; } for (size_t i = 0; i < q_vec->size; i++) { gsl_vector_set(q_vec, i, vec_q[i]); gsl_vector_set(qvar_vec, i, 2.0 * vec_qvar[i]); gsl_vector_set(s_vec, i, vec_s[i]); } infile.clear(); infile.close(); return; } // Read covariance file the second time. // Look for rs, n_mis+n_obs, var, window_size, cov. // If window_cm/bp/ns is provided, then use these max values to // calibrate estimates. void ReadFile_cor(const string &file_cor, const vector &vec_rs, const vector &vec_n, const vector &vec_cm, const vector &vec_bp, const map &mapRS2cat, const map &mapRS2in, const map &mapRS2var, const map &mapRS2nsamp, const size_t crt, const double &window_cm, const double &window_bp, const double &window_ns, gsl_matrix *S_mat, gsl_matrix *Svar_mat, gsl_vector *qvar_vec, size_t &ni_total, size_t &ns_total, size_t &ns_test, size_t &ns_pair) { debug_msg("entering"); igzstream infile(file_cor.c_str(), igzstream::in); if (!infile) { cout << "error! fail to open cov file: " << file_cor << endl; return; } string line; char *ch_ptr; string rs1, rs2; double d1, d2, d3, cor, var1, var2; size_t n_nb, nsamp1, nsamp2, n12, bin_size = 10, bin; vector> mat_S, mat_Svar, mat_tmp; vector vec_qvar, vec_tmp; vector>> mat3d_Sbin; for (size_t i = 0; i < S_mat->size1; i++) { vec_qvar.push_back(0.0); } for (size_t i = 0; i < S_mat->size1; i++) { mat_S.push_back(vec_qvar); mat_Svar.push_back(vec_qvar); } for (size_t k = 0; k < bin_size; k++) { vec_tmp.push_back(0.0); } for (size_t i = 0; i < S_mat->size1; i++) { mat_tmp.push_back(vec_tmp); } for (size_t i = 0; i < S_mat->size1; i++) { mat3d_Sbin.push_back(mat_tmp); } string rs, chr, a1, a0, type, pos, cm; size_t n_total = 0, n_mis = 0, n_obs = 0; double d_pos1, d_pos2, d_pos, d_cm1, d_cm2, d_cm; ns_test = 0; ns_total = 0; ns_pair = 0; ni_total = 0; // Header. HEADER header; !safeGetline(infile, line).eof(); ReadHeader_vc(line, header); while (!safeGetline(infile, line).eof()) { // Do not read cor values this time; upto col_n-1. d_pos1 = 0; d_cm1 = 0; ch_ptr = strtok((char *)line.c_str(), " , \t"); for (size_t i = 0; i < header.coln - 1; i++) { if (header.rs_col != 0 && header.rs_col == i + 1) { rs = ch_ptr; } if (header.chr_col != 0 && header.chr_col == i + 1) { chr = ch_ptr; } if (header.pos_col != 0 && header.pos_col == i + 1) { pos = ch_ptr; d_pos1 = atof(ch_ptr); } if (header.cm_col != 0 && header.cm_col == i + 1) { cm = ch_ptr; d_cm1 = atof(ch_ptr); } if (header.a1_col != 0 && header.a1_col == i + 1) { a1 = ch_ptr; } if (header.a0_col != 0 && header.a0_col == i + 1) { a0 = ch_ptr; } if (header.n_col != 0 && header.n_col == i + 1) { n_total = atoi(ch_ptr); } if (header.nmis_col != 0 && header.nmis_col == i + 1) { n_mis = atoi(ch_ptr); } if (header.nobs_col != 0 && header.nobs_col == i + 1) { n_obs = atoi(ch_ptr); } ch_ptr = strtok(NULL, " , \t"); } if (header.rs_col == 0) { rs = chr + ":" + pos; } if (header.n_col == 0) { n_total = n_mis + n_obs; } rs1 = rs; if ((mapRS2cat.size() == 0 || mapRS2cat.count(rs1) != 0) && mapRS2in.count(rs1) != 0 && mapRS2in.at(rs1) == 2) { var1 = mapRS2var.at(rs1); nsamp1 = mapRS2nsamp.at(rs1); d2 = var1 * var1; if (mapRS2cat.size() != 0) { mat_S[mapRS2cat.at(rs1)][mapRS2cat.at(rs1)] += (1 - 1.0 / (double)vec_n[ns_total]) * d2; mat_Svar[mapRS2cat.at(rs1)][mapRS2cat.at(rs1)] += d2 * d2 / ((double)vec_n[ns_total] * (double)vec_n[ns_total]); if (crt == 1) { mat3d_Sbin[mapRS2cat.at(rs1)][mapRS2cat.at(rs1)][0] += (1 - 1.0 / (double)vec_n[ns_total]) * d2; } } else { mat_S[0][0] += (1 - 1.0 / (double)vec_n[ns_total]) * d2; mat_Svar[0][0] += d2 * d2 / ((double)vec_n[ns_total] * (double)vec_n[ns_total]); if (crt == 1) { mat3d_Sbin[0][0][0] += (1 - 1.0 / (double)vec_n[ns_total]) * d2; } } n_nb = 0; while (ch_ptr != NULL) { type = ch_ptr; if (type.compare("NA") != 0 && type.compare("na") != 0 && type.compare("nan") != 0 && type.compare("-nan") != 0) { cor = atof(ch_ptr); rs2 = vec_rs[ns_total + n_nb + 1]; d_pos2 = vec_bp[ns_total + n_nb + 1]; d_cm2 = vec_cm[ns_total + n_nb + 1]; d_pos = abs(d_pos2 - d_pos1); d_cm = abs(d_cm2 - d_cm1); if ((mapRS2cat.size() == 0 || mapRS2cat.count(rs2) != 0) && mapRS2in.count(rs2) != 0 && mapRS2in.at(rs2) == 2) { var2 = mapRS2var.at(rs2); nsamp2 = mapRS2nsamp.at(rs2); d1 = cor * cor - 1.0 / (double)min(vec_n[ns_total], vec_n[ns_total + n_nb + 1]); d2 = var1 * var2; d3 = cor * cor / ((double)nsamp1 * (double)nsamp2); n12 = min(vec_n[ns_total], vec_n[ns_total + n_nb + 1]); // Compute bin. if (crt == 1) { if (window_cm != 0 && d_cm1 != 0 && d_cm2 != 0) { bin = min((int)floor(d_cm / window_cm * bin_size), (int)bin_size); } else if (window_bp != 0 && d_pos1 != 0 && d_pos2 != 0) { bin = min((int)floor(d_pos / window_bp * bin_size), (int)bin_size); } else if (window_ns != 0) { bin = min((int)floor(((double)n_nb + 1) / window_ns * bin_size), (int)bin_size); } } if (mapRS2cat.size() != 0) { if (mapRS2cat.at(rs1) == mapRS2cat.at(rs2)) { vec_qvar[mapRS2cat.at(rs1)] += 2 * d3 * d2; mat_S[mapRS2cat.at(rs1)][mapRS2cat.at(rs2)] += 2 * d1 * d2; mat_Svar[mapRS2cat.at(rs1)][mapRS2cat.at(rs2)] += 2 * d2 * d2 / ((double)n12 * (double)n12); if (crt == 1) { mat3d_Sbin[mapRS2cat.at(rs1)][mapRS2cat.at(rs2)][bin] += 2 * d1 * d2; } } else { mat_S[mapRS2cat.at(rs1)][mapRS2cat.at(rs2)] += d1 * d2; mat_Svar[mapRS2cat.at(rs1)][mapRS2cat.at(rs2)] += d2 * d2 / ((double)n12 * (double)n12); if (crt == 1) { mat3d_Sbin[mapRS2cat.at(rs1)][mapRS2cat.at(rs2)][bin] += d1 * d2; } } } else { vec_qvar[0] += 2 * d3 * d2; mat_S[0][0] += 2 * d1 * d2; mat_Svar[0][0] += 2 * d2 * d2 / ((double)n12 * (double)n12); if (crt == 1) { mat3d_Sbin[0][0][bin] += 2 * d1 * d2; } } ns_pair++; } } ch_ptr = strtok(NULL, " , \t"); n_nb++; } ni_total = max(ni_total, n_total); ns_test++; } ns_total++; } // Use S_bin to fit a rational function y=1/(a+bx)^2, where // x=seq(0.5,bin_size-0.5,by=1) and then compute a correlation // factor as a percentage. double a, b, x, y, n, var_y, var_x, mean_y, mean_x, cov_xy, crt_factor; if (crt == 1) { for (size_t i = 0; i < S_mat->size1; i++) { for (size_t j = i; j < S_mat->size2; j++) { // Correct mat_S. n = 0; var_y = 0; var_x = 0; mean_y = 0; mean_x = 0; cov_xy = 0; for (size_t k = 0; k < bin_size; k++) { if (j == i) { y = mat3d_Sbin[i][j][k]; } else { y = mat3d_Sbin[i][j][k] + mat3d_Sbin[j][i][k]; } x = k + 0.5; cout << y << ", "; if (y > 0) { y = 1 / sqrt(y); mean_x += x; mean_y += y; var_x += x * x; var_y += y * y; cov_xy += x * y; n++; } } cout << endl; if (n >= 5) { mean_x /= n; mean_y /= n; var_x /= n; var_y /= n; cov_xy /= n; var_x -= mean_x * mean_x; var_y -= mean_y * mean_y; cov_xy -= mean_x * mean_y; b = cov_xy / var_x; a = mean_y - b * mean_x; crt_factor = a / (b * (bin_size + 0.5)) + 1; if (i == j) { mat_S[i][j] *= crt_factor; } else { mat_S[i][j] *= crt_factor; mat_S[j][i] *= crt_factor; } cout << crt_factor << endl; // Correct qvar. if (i == j) { vec_qvar[i] *= crt_factor; } } } } } // Save to gsl_vector and gsl_matrix: qvar_vec, S_mat, Svar_mat. for (size_t i = 0; i < S_mat->size1; i++) { d1 = gsl_vector_get(qvar_vec, i) + 2 * vec_qvar[i]; gsl_vector_set(qvar_vec, i, d1); for (size_t j = 0; j < S_mat->size2; j++) { if (i == j) { gsl_matrix_set(S_mat, i, j, mat_S[i][i]); gsl_matrix_set(Svar_mat, i, j, 2.0 * mat_Svar[i][i] * ns_test * ns_test / (2.0 * ns_pair)); } else { gsl_matrix_set(S_mat, i, j, mat_S[i][j] + mat_S[j][i]); gsl_matrix_set(Svar_mat, i, j, 2.0 * (mat_Svar[i][j] + mat_Svar[j][i]) * ns_test * ns_test / (2.0 * ns_pair)); } } } infile.clear(); infile.close(); return; } // Use the new method to calculate variance components with summary // statistics first, use a function CalcS to compute S matrix (where // the diagonal elements are part of V(q) ), and then use bootstrap to // compute the variance for S, use a set of genotypes, phenotypes, and // individual ids, and snp category label. void CalcVCss(const gsl_matrix *Vq, const gsl_matrix *S_mat, const gsl_matrix *Svar_mat, const gsl_vector *q_vec, const gsl_vector *s_vec, const double df, vector &v_pve, vector &v_se_pve, double &pve_total, double &se_pve_total, vector &v_sigma2, vector &v_se_sigma2, vector &v_enrich, vector &v_se_enrich) { size_t n_vc = S_mat->size1; gsl_matrix *Si_mat = gsl_matrix_alloc(n_vc, n_vc); gsl_matrix *Var_mat = gsl_matrix_alloc(n_vc, n_vc); gsl_matrix *tmp_mat = gsl_matrix_alloc(n_vc, n_vc); gsl_matrix *tmp_mat1 = gsl_matrix_alloc(n_vc, n_vc); gsl_matrix *VarEnrich_mat = gsl_matrix_alloc(n_vc, n_vc); gsl_matrix *qvar_mat = gsl_matrix_alloc(n_vc, n_vc); gsl_vector *pve = gsl_vector_alloc(n_vc); gsl_vector *pve_plus = gsl_vector_alloc(n_vc + 1); gsl_vector *tmp = gsl_vector_alloc(n_vc + 1); gsl_vector *sigma2persnp = gsl_vector_alloc(n_vc); gsl_vector *enrich = gsl_vector_alloc(n_vc); gsl_vector *se_pve = gsl_vector_alloc(n_vc); gsl_vector *se_sigma2persnp = gsl_vector_alloc(n_vc); gsl_vector *se_enrich = gsl_vector_alloc(n_vc); double d; // Calculate S^{-1}q. gsl_matrix_memcpy(tmp_mat, S_mat); int sig; gsl_permutation *pmt = gsl_permutation_alloc(n_vc); LUDecomp(tmp_mat, pmt, &sig); LUInvert(tmp_mat, pmt, Si_mat); // Calculate sigma2snp and pve. gsl_blas_dgemv(CblasNoTrans, 1.0, Si_mat, q_vec, 0.0, pve); gsl_vector_memcpy(sigma2persnp, pve); gsl_vector_div(sigma2persnp, s_vec); // Get qvar_mat. gsl_matrix_memcpy(qvar_mat, Vq); gsl_matrix_scale(qvar_mat, 1.0 / (df * df)); // Calculate variance for these estimates. for (size_t i = 0; i < n_vc; i++) { for (size_t j = i; j < n_vc; j++) { d = gsl_matrix_get(Svar_mat, i, j); d *= gsl_vector_get(pve, i) * gsl_vector_get(pve, j); d += gsl_matrix_get(qvar_mat, i, j); gsl_matrix_set(Var_mat, i, j, d); if (i != j) { gsl_matrix_set(Var_mat, j, i, d); } } } gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, Si_mat, Var_mat, 0.0, tmp_mat); gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, tmp_mat, Si_mat, 0.0, Var_mat); for (size_t i = 0; i < n_vc; i++) { d = sqrt(gsl_matrix_get(Var_mat, i, i)); gsl_vector_set(se_pve, i, d); d /= gsl_vector_get(s_vec, i); gsl_vector_set(se_sigma2persnp, i, d); } // Compute pve_total, se_pve_total. pve_total = 0; se_pve_total = 0; for (size_t i = 0; i < n_vc; i++) { pve_total += gsl_vector_get(pve, i); for (size_t j = 0; j < n_vc; j++) { se_pve_total += gsl_matrix_get(Var_mat, i, j); } } se_pve_total = sqrt(se_pve_total); // Compute enrichment and its variance. double s_pve = 0, s_snp = 0; for (size_t i = 0; i < n_vc; i++) { s_pve += gsl_vector_get(pve, i); s_snp += gsl_vector_get(s_vec, i); } gsl_vector_memcpy(enrich, sigma2persnp); gsl_vector_scale(enrich, s_snp / s_pve); gsl_matrix_set_identity(tmp_mat); double d1; for (size_t i = 0; i < n_vc; i++) { d = gsl_vector_get(pve, i) / s_pve; d1 = gsl_vector_get(s_vec, i); for (size_t j = 0; j < n_vc; j++) { if (i == j) { gsl_matrix_set(tmp_mat, i, j, (1 - d) / d1 * s_snp / s_pve); } else { gsl_matrix_set(tmp_mat, i, j, -1 * d / d1 * s_snp / s_pve); } } } gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, tmp_mat, Var_mat, 0.0, tmp_mat1); gsl_blas_dgemm(CblasNoTrans, CblasTrans, 1.0, tmp_mat1, tmp_mat, 0.0, VarEnrich_mat); for (size_t i = 0; i < n_vc; i++) { d = sqrt(gsl_matrix_get(VarEnrich_mat, i, i)); gsl_vector_set(se_enrich, i, d); } cout << "pve = "; for (size_t i = 0; i < n_vc; i++) { cout << gsl_vector_get(pve, i) << " "; } cout << endl; cout << "se(pve) = "; for (size_t i = 0; i < n_vc; i++) { cout << gsl_vector_get(se_pve, i) << " "; } cout << endl; cout << "sigma2 per snp = "; for (size_t i = 0; i < n_vc; i++) { cout << gsl_vector_get(sigma2persnp, i) << " "; } cout << endl; cout << "se(sigma2 per snp) = "; for (size_t i = 0; i < n_vc; i++) { cout << gsl_vector_get(se_sigma2persnp, i) << " "; } cout << endl; cout << "enrichment = "; for (size_t i = 0; i < n_vc; i++) { cout << gsl_vector_get(enrich, i) << " "; } cout << endl; cout << "se(enrichment) = "; for (size_t i = 0; i < n_vc; i++) { cout << gsl_vector_get(se_enrich, i) << " "; } cout << endl; // Save data. v_pve.clear(); v_se_pve.clear(); v_sigma2.clear(); v_se_sigma2.clear(); v_enrich.clear(); v_se_enrich.clear(); for (size_t i = 0; i < n_vc; i++) { d = gsl_vector_get(pve, i); v_pve.push_back(d); d = gsl_vector_get(se_pve, i); v_se_pve.push_back(d); d = gsl_vector_get(sigma2persnp, i); v_sigma2.push_back(d); d = gsl_vector_get(se_sigma2persnp, i); v_se_sigma2.push_back(d); d = gsl_vector_get(enrich, i); v_enrich.push_back(d); d = gsl_vector_get(se_enrich, i); v_se_enrich.push_back(d); } // Delete matrices. gsl_matrix_free(Si_mat); gsl_matrix_free(Var_mat); gsl_matrix_free(VarEnrich_mat); gsl_matrix_free(tmp_mat); gsl_matrix_free(tmp_mat1); gsl_matrix_free(qvar_mat); gsl_vector_free(pve); gsl_vector_free(pve_plus); gsl_vector_free(tmp); gsl_vector_free(sigma2persnp); gsl_vector_free(enrich); gsl_vector_free(se_pve); gsl_vector_free(se_sigma2persnp); gsl_vector_free(se_enrich); return; } // Ks are not scaled. void VC::CalcVChe(const gsl_matrix *K, const gsl_matrix *W, const gsl_vector *y) { size_t n1 = K->size1, n2 = K->size2; size_t n_vc = n2 / n1; double r = (double)n1 / (double)(n1 - W->size2); double var_y, var_y_new; double d, tr, s, v; vector traceG_new; // New matrices/vectors. gsl_matrix *K_scale = gsl_matrix_alloc(n1, n2); gsl_vector *y_scale = gsl_vector_alloc(n1); gsl_matrix *Kry = gsl_matrix_alloc(n1, n_vc); gsl_matrix *yKrKKry = gsl_matrix_alloc(n_vc, n_vc * (n_vc + 1)); gsl_vector *KKry = gsl_vector_alloc(n1); // Old matrices/vectors. gsl_vector *pve = gsl_vector_alloc(n_vc); gsl_vector *se_pve = gsl_vector_alloc(n_vc); gsl_vector *q_vec = gsl_vector_alloc(n_vc); gsl_matrix *qvar_mat = gsl_matrix_alloc(n_vc, n_vc); gsl_matrix *tmp_mat = gsl_matrix_alloc(n_vc, n_vc); gsl_matrix *S_mat = gsl_matrix_alloc(n_vc, n_vc); gsl_matrix *Si_mat = gsl_matrix_alloc(n_vc, n_vc); gsl_matrix *Var_mat = gsl_matrix_alloc(n_vc, n_vc); // Center and scale K by W. for (size_t i = 0; i < n_vc; i++) { gsl_matrix_view Kscale_sub = gsl_matrix_submatrix(K_scale, 0, n1 * i, n1, n1); gsl_matrix_const_view K_sub = gsl_matrix_const_submatrix(K, 0, n1 * i, n1, n1); gsl_matrix_memcpy(&Kscale_sub.matrix, &K_sub.matrix); CenterMatrix(&Kscale_sub.matrix, W); d = ScaleMatrix(&Kscale_sub.matrix); traceG_new.push_back(d); } // Center y by W, and standardize it to have variance 1 (t(y)%*%y/n=1). gsl_vector_memcpy(y_scale, y); CenterVector(y_scale, W); var_y = VectorVar(y); var_y_new = VectorVar(y_scale); StandardizeVector(y_scale); // Compute Kry, which is used for confidence interval; also compute // q_vec (*n^2). for (size_t i = 0; i < n_vc; i++) { gsl_matrix_const_view Kscale_sub = gsl_matrix_const_submatrix(K_scale, 0, n1 * i, n1, n1); gsl_vector_view Kry_col = gsl_matrix_column(Kry, i); gsl_vector_memcpy(&Kry_col.vector, y_scale); gsl_blas_dgemv(CblasNoTrans, 1.0, &Kscale_sub.matrix, y_scale, -1.0 * r, &Kry_col.vector); gsl_blas_ddot(&Kry_col.vector, y_scale, &d); gsl_vector_set(q_vec, i, d); } // Compute yKrKKry, which is used later for confidence interval. for (size_t i = 0; i < n_vc; i++) { gsl_vector_const_view Kry_coli = gsl_matrix_const_column(Kry, i); for (size_t j = i; j < n_vc; j++) { gsl_vector_const_view Kry_colj = gsl_matrix_const_column(Kry, j); for (size_t l = 0; l < n_vc; l++) { gsl_matrix_const_view Kscale_sub = gsl_matrix_const_submatrix(K_scale, 0, n1 * l, n1, n1); gsl_blas_dgemv(CblasNoTrans, 1.0, &Kscale_sub.matrix, &Kry_coli.vector, 0.0, KKry); gsl_blas_ddot(&Kry_colj.vector, KKry, &d); gsl_matrix_set(yKrKKry, i, l * n_vc + j, d); if (i != j) { gsl_matrix_set(yKrKKry, j, l * n_vc + i, d); } } gsl_blas_ddot(&Kry_coli.vector, &Kry_colj.vector, &d); gsl_matrix_set(yKrKKry, i, n_vc * n_vc + j, d); if (i != j) { gsl_matrix_set(yKrKKry, j, n_vc * n_vc + i, d); } } } // Compute Sij (*n^2). for (size_t i = 0; i < n_vc; i++) { for (size_t j = i; j < n_vc; j++) { tr = 0; for (size_t l = 0; l < n1; l++) { gsl_vector_const_view Ki_col = gsl_matrix_const_column(K_scale, i * n1 + l); gsl_vector_const_view Kj_col = gsl_matrix_const_column(K_scale, j * n1 + l); gsl_blas_ddot(&Ki_col.vector, &Kj_col.vector, &d); tr += d; } tr = tr - r * (double)n1; gsl_matrix_set(S_mat, i, j, tr); if (i != j) { gsl_matrix_set(S_mat, j, i, tr); } } } // Compute S^{-1}q. int sig; gsl_permutation *pmt = gsl_permutation_alloc(n_vc); LUDecomp(S_mat, pmt, &sig); LUInvert(S_mat, pmt, Si_mat); // Compute pve (on the transformed scale). gsl_blas_dgemv(CblasNoTrans, 1.0, Si_mat, q_vec, 0.0, pve); // Compute q_var (*n^4). gsl_matrix_set_zero(qvar_mat); s = 1; for (size_t i = 0; i < n_vc; i++) { d = gsl_vector_get(pve, i); gsl_matrix_view yKrKKry_sub = gsl_matrix_submatrix(yKrKKry, 0, i * n_vc, n_vc, n_vc); gsl_matrix_memcpy(tmp_mat, &yKrKKry_sub.matrix); gsl_matrix_scale(tmp_mat, d); gsl_matrix_add(qvar_mat, tmp_mat); s -= d; } gsl_matrix_view yKrKKry_sub = gsl_matrix_submatrix(yKrKKry, 0, n_vc * n_vc, n_vc, n_vc); gsl_matrix_memcpy(tmp_mat, &yKrKKry_sub.matrix); gsl_matrix_scale(tmp_mat, s); gsl_matrix_add(qvar_mat, tmp_mat); gsl_matrix_scale(qvar_mat, 2.0); // Compute S^{-1}var_qS^{-1}. gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, Si_mat, qvar_mat, 0.0, tmp_mat); gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, tmp_mat, Si_mat, 0.0, Var_mat); // Transform pve back to the original scale and save data. v_pve.clear(); v_se_pve.clear(); v_sigma2.clear(); v_se_sigma2.clear(); s = 1.0, v = 0, pve_total = 0, se_pve_total = 0; for (size_t i = 0; i < n_vc; i++) { d = gsl_vector_get(pve, i); v_sigma2.push_back(d * var_y_new / traceG_new[i]); v_pve.push_back(d * (var_y_new / traceG_new[i]) * (v_traceG[i] / var_y)); s -= d; pve_total += d * (var_y_new / traceG_new[i]) * (v_traceG[i] / var_y); d = sqrt(gsl_matrix_get(Var_mat, i, i)); v_se_sigma2.push_back(d * var_y_new / traceG_new[i]); v_se_pve.push_back(d * (var_y_new / traceG_new[i]) * (v_traceG[i] / var_y)); for (size_t j = 0; j < n_vc; j++) { v += gsl_matrix_get(Var_mat, i, j); se_pve_total += gsl_matrix_get(Var_mat, i, j) * (var_y_new / traceG_new[i]) * (v_traceG[i] / var_y) * (var_y_new / traceG_new[j]) * (v_traceG[j] / var_y); } } v_sigma2.push_back(s * r * var_y_new); v_se_sigma2.push_back(sqrt(v) * r * var_y_new); se_pve_total = sqrt(se_pve_total); cout << "sigma2 = "; for (size_t i = 0; i < n_vc + 1; i++) { cout << v_sigma2[i] << " "; } cout << endl; cout << "se(sigma2) = "; for (size_t i = 0; i < n_vc + 1; i++) { cout << v_se_sigma2[i] << " "; } cout << endl; cout << "pve = "; for (size_t i = 0; i < n_vc; i++) { cout << v_pve[i] << " "; } cout << endl; cout << "se(pve) = "; for (size_t i = 0; i < n_vc; i++) { cout << v_se_pve[i] << " "; } cout << endl; if (n_vc > 1) { cout << "total pve = " << pve_total << endl; cout << "se(total pve) = " << se_pve_total << endl; } gsl_permutation_free(pmt); gsl_matrix_free(K_scale); gsl_vector_free(y_scale); gsl_matrix_free(Kry); gsl_matrix_free(yKrKKry); gsl_vector_free(KKry); // Old matrices/vectors. gsl_vector_free(pve); gsl_vector_free(se_pve); gsl_vector_free(q_vec); gsl_matrix_free(qvar_mat); gsl_matrix_free(tmp_mat); gsl_matrix_free(S_mat); gsl_matrix_free(Si_mat); gsl_matrix_free(Var_mat); return; } // REML for log(sigma2) based on the AI algorithm. void VC::CalcVCreml(bool noconstrain, const gsl_matrix *K, const gsl_matrix *W, const gsl_vector *y) { size_t n1 = K->size1, n2 = K->size2; size_t n_vc = n2 / n1; gsl_vector *log_sigma2 = gsl_vector_alloc(n_vc + 1); double d, s; // Set up params. gsl_matrix *P = gsl_matrix_alloc(n1, n1); gsl_vector *Py = gsl_vector_alloc(n1); gsl_matrix *KPy_mat = gsl_matrix_alloc(n1, n_vc + 1); gsl_matrix *PKPy_mat = gsl_matrix_alloc(n1, n_vc + 1); gsl_vector *dev1 = gsl_vector_alloc(n_vc + 1); gsl_matrix *dev2 = gsl_matrix_alloc(n_vc + 1, n_vc + 1); gsl_matrix *Hessian = gsl_matrix_alloc(n_vc + 1, n_vc + 1); VC_PARAM params = {K, W, y, P, Py, KPy_mat, PKPy_mat, Hessian, noconstrain}; // Initialize sigma2/log_sigma2. CalcVChe(K, W, y); gsl_blas_ddot(y, y, &s); s /= (double)n1; for (size_t i = 0; i < n_vc + 1; i++) { if (noconstrain) { d = v_sigma2[i]; } else { if (v_sigma2[i] <= 0) { d = log(0.1); } else { d = log(v_sigma2[i]); } } gsl_vector_set(log_sigma2, i, d); } cout << "iteration " << 0 << endl; cout << "sigma2 = "; for (size_t i = 0; i < n_vc + 1; i++) { if (noconstrain) { cout << gsl_vector_get(log_sigma2, i) << " "; } else { cout << exp(gsl_vector_get(log_sigma2, i)) << " "; } } cout << endl; // Set up fdf. gsl_multiroot_function_fdf FDF; FDF.n = n_vc + 1; FDF.params = ¶ms; FDF.f = &LogRL_dev1; FDF.df = &LogRL_dev2; FDF.fdf = &LogRL_dev12; // Set up solver. int status; int iter = 0, max_iter = 100; const gsl_multiroot_fdfsolver_type *T_fdf; gsl_multiroot_fdfsolver *s_fdf; T_fdf = gsl_multiroot_fdfsolver_hybridsj; s_fdf = gsl_multiroot_fdfsolver_alloc(T_fdf, n_vc + 1); gsl_multiroot_fdfsolver_set(s_fdf, &FDF, log_sigma2); do { iter++; status = gsl_multiroot_fdfsolver_iterate(s_fdf); if (status) break; cout << "iteration " << iter << endl; cout << "sigma2 = "; for (size_t i = 0; i < n_vc + 1; i++) { if (noconstrain) { cout << gsl_vector_get(s_fdf->x, i) << " "; } else { cout << exp(gsl_vector_get(s_fdf->x, i)) << " "; } } cout << endl; status = gsl_multiroot_test_residual(s_fdf->f, 1e-3); } while (status == GSL_CONTINUE && iter < max_iter); // Obtain Hessian and Hessian inverse. int sig = LogRL_dev12(s_fdf->x, ¶ms, dev1, dev2); gsl_permutation *pmt = gsl_permutation_alloc(n_vc + 1); LUDecomp(dev2, pmt, &sig); LUInvert(dev2, pmt, Hessian); gsl_permutation_free(pmt); // Save sigma2 and se_sigma2. v_sigma2.clear(); v_se_sigma2.clear(); for (size_t i = 0; i < n_vc + 1; i++) { if (noconstrain) { d = gsl_vector_get(s_fdf->x, i); } else { d = exp(gsl_vector_get(s_fdf->x, i)); } v_sigma2.push_back(d); if (noconstrain) { d = -1.0 * gsl_matrix_get(Hessian, i, i); } else { d = -1.0 * d * d * gsl_matrix_get(Hessian, i, i); } v_se_sigma2.push_back(sqrt(d)); } s = 0; for (size_t i = 0; i < n_vc; i++) { s += v_traceG[i] * v_sigma2[i]; } s += v_sigma2[n_vc]; // Compute pve. v_pve.clear(); pve_total = 0; for (size_t i = 0; i < n_vc; i++) { d = v_traceG[i] * v_sigma2[i] / s; v_pve.push_back(d); pve_total += d; } // Compute se_pve; k=n_vc+1: total. double d1, d2; v_se_pve.clear(); se_pve_total = 0; for (size_t k = 0; k < n_vc + 1; k++) { d = 0; for (size_t i = 0; i < n_vc + 1; i++) { if (noconstrain) { d1 = gsl_vector_get(s_fdf->x, i); d1 = 1; } else { d1 = exp(gsl_vector_get(s_fdf->x, i)); } if (k < n_vc) { if (i == k) { d1 *= v_traceG[k] * (s - v_sigma2[k] * v_traceG[k]) / (s * s); } else if (i == n_vc) { d1 *= -1 * v_traceG[k] * v_sigma2[k] / (s * s); } else { d1 *= -1 * v_traceG[i] * v_traceG[k] * v_sigma2[k] / (s * s); } } else { if (i == k) { d1 *= -1 * (s - v_sigma2[n_vc]) / (s * s); } else { d1 *= v_traceG[i] * v_sigma2[n_vc] / (s * s); } } for (size_t j = 0; j < n_vc + 1; j++) { if (noconstrain) { d2 = gsl_vector_get(s_fdf->x, j); d2 = 1; } else { d2 = exp(gsl_vector_get(s_fdf->x, j)); } if (k < n_vc) { if (j == k) { d2 *= v_traceG[k] * (s - v_sigma2[k] * v_traceG[k]) / (s * s); } else if (j == n_vc) { d2 *= -1 * v_traceG[k] * v_sigma2[k] / (s * s); } else { d2 *= -1 * v_traceG[j] * v_traceG[k] * v_sigma2[k] / (s * s); } } else { if (j == k) { d2 *= -1 * (s - v_sigma2[n_vc]) / (s * s); } else { d2 *= v_traceG[j] * v_sigma2[n_vc] / (s * s); } } d += -1.0 * d1 * d2 * gsl_matrix_get(Hessian, i, j); } } if (k < n_vc) { v_se_pve.push_back(sqrt(d)); } else { se_pve_total = sqrt(d); } } gsl_multiroot_fdfsolver_free(s_fdf); gsl_vector_free(log_sigma2); gsl_matrix_free(P); gsl_vector_free(Py); gsl_matrix_free(KPy_mat); gsl_matrix_free(PKPy_mat); gsl_vector_free(dev1); gsl_matrix_free(dev2); gsl_matrix_free(Hessian); return; } // Ks are not scaled. void VC::CalcVCacl(const gsl_matrix *K, const gsl_matrix *W, const gsl_vector *y) { size_t n1 = K->size1, n2 = K->size2; size_t n_vc = n2 / n1; double d, y2_sum, tau_inv, se_tau_inv; // New matrices/vectors. gsl_matrix *K_scale = gsl_matrix_alloc(n1, n2); gsl_vector *y_scale = gsl_vector_alloc(n1); gsl_vector *y2 = gsl_vector_alloc(n1); gsl_vector *n1_vec = gsl_vector_alloc(n1); gsl_matrix *Ay = gsl_matrix_alloc(n1, n_vc); gsl_matrix *K2 = gsl_matrix_alloc(n1, n_vc * n_vc); gsl_matrix *K_tmp = gsl_matrix_alloc(n1, n1); gsl_matrix *V_mat = gsl_matrix_alloc(n1, n1); // Old matrices/vectors. gsl_vector *pve = gsl_vector_alloc(n_vc); gsl_vector *se_pve = gsl_vector_alloc(n_vc); gsl_vector *q_vec = gsl_vector_alloc(n_vc); gsl_matrix *S1 = gsl_matrix_alloc(n_vc, n_vc); gsl_matrix *S2 = gsl_matrix_alloc(n_vc, n_vc); gsl_matrix *S_mat = gsl_matrix_alloc(n_vc, n_vc); gsl_matrix *Si_mat = gsl_matrix_alloc(n_vc, n_vc); gsl_matrix *J_mat = gsl_matrix_alloc(n_vc, n_vc); gsl_matrix *Var_mat = gsl_matrix_alloc(n_vc, n_vc); int sig; gsl_permutation *pmt = gsl_permutation_alloc(n_vc); // Center and scale K by W, and standardize K further so that all // diagonal elements are 1 for (size_t i = 0; i < n_vc; i++) { gsl_matrix_view Kscale_sub = gsl_matrix_submatrix(K_scale, 0, n1 * i, n1, n1); gsl_matrix_const_view K_sub = gsl_matrix_const_submatrix(K, 0, n1 * i, n1, n1); gsl_matrix_memcpy(&Kscale_sub.matrix, &K_sub.matrix); CenterMatrix(&Kscale_sub.matrix, W); StandardizeMatrix(&Kscale_sub.matrix); } // Center y by W, and standardize it to have variance 1 (t(y)%*%y/n=1) gsl_vector_memcpy(y_scale, y); CenterVector(y_scale, W); // Compute y^2 and sum(y^2), which is also the variance of y*n1. gsl_vector_memcpy(y2, y_scale); gsl_vector_mul(y2, y_scale); y2_sum = 0; for (size_t i = 0; i < y2->size; i++) { y2_sum += gsl_vector_get(y2, i); } // Compute the n_vc size q vector. for (size_t i = 0; i < n_vc; i++) { gsl_matrix_const_view Kscale_sub = gsl_matrix_const_submatrix(K_scale, 0, n1 * i, n1, n1); gsl_blas_dgemv(CblasNoTrans, 1.0, &Kscale_sub.matrix, y_scale, 0.0, n1_vec); gsl_blas_ddot(n1_vec, y_scale, &d); gsl_vector_set(q_vec, i, d - y2_sum); } // Compute the n_vc by n_vc S1 and S2 matrix (and eventually // S=S1-\tau^{-1}S2). for (size_t i = 0; i < n_vc; i++) { gsl_matrix_const_view Kscale_sub1 = gsl_matrix_const_submatrix(K_scale, 0, n1 * i, n1, n1); for (size_t j = i; j < n_vc; j++) { gsl_matrix_const_view Kscale_sub2 = gsl_matrix_const_submatrix(K_scale, 0, n1 * j, n1, n1); gsl_matrix_memcpy(K_tmp, &Kscale_sub1.matrix); gsl_matrix_mul_elements(K_tmp, &Kscale_sub2.matrix); gsl_vector_set_zero(n1_vec); for (size_t t = 0; t < K_tmp->size1; t++) { gsl_vector_view Ktmp_col = gsl_matrix_column(K_tmp, t); gsl_vector_add(n1_vec, &Ktmp_col.vector); } gsl_vector_add_constant(n1_vec, -1.0); // Compute S1. gsl_blas_ddot(n1_vec, y2, &d); gsl_matrix_set(S1, i, j, 2 * d); if (i != j) { gsl_matrix_set(S1, j, i, 2 * d); } // Compute S2. d = 0; for (size_t t = 0; t < n1_vec->size; t++) { d += gsl_vector_get(n1_vec, t); } gsl_matrix_set(S2, i, j, d); if (i != j) { gsl_matrix_set(S2, j, i, d); } // Save information to compute J. gsl_vector_view K2col1 = gsl_matrix_column(K2, n_vc * i + j); gsl_vector_view K2col2 = gsl_matrix_column(K2, n_vc * j + i); gsl_vector_memcpy(&K2col1.vector, n1_vec); if (i != j) { gsl_vector_memcpy(&K2col2.vector, n1_vec); } } } // Iterate to solve tau and h's. size_t it = 0; double s = 1; while (abs(s) > 1e-3 && it < 100) { // Update tau_inv. gsl_blas_ddot(q_vec, pve, &d); if (it > 0) { s = y2_sum / (double)n1 - d / ((double)n1 * ((double)n1 - 1)) - tau_inv; } tau_inv = y2_sum / (double)n1 - d / ((double)n1 * ((double)n1 - 1)); if (it > 0) { s /= tau_inv; } // Update S. gsl_matrix_memcpy(S_mat, S2); gsl_matrix_scale(S_mat, -1 * tau_inv); gsl_matrix_add(S_mat, S1); // Update h=S^{-1}q. int sig; gsl_permutation *pmt = gsl_permutation_alloc(n_vc); LUDecomp(S_mat, pmt, &sig); LUInvert(S_mat, pmt, Si_mat); gsl_blas_dgemv(CblasNoTrans, 1.0, Si_mat, q_vec, 0.0, pve); it++; } // Compute V matrix and A matrix (K_scale is destroyed, so need to // compute V first). gsl_matrix_set_zero(V_mat); for (size_t i = 0; i < n_vc; i++) { gsl_matrix_view Kscale_sub = gsl_matrix_submatrix(K_scale, 0, n1 * i, n1, n1); // Compute V. gsl_matrix_memcpy(K_tmp, &Kscale_sub.matrix); gsl_matrix_scale(K_tmp, gsl_vector_get(pve, i)); gsl_matrix_add(V_mat, K_tmp); // Compute A; the corresponding Kscale is destroyed. gsl_matrix_const_view K2_sub = gsl_matrix_const_submatrix(K2, 0, n_vc * i, n1, n_vc); gsl_blas_dgemv(CblasNoTrans, 1.0, &K2_sub.matrix, pve, 0.0, n1_vec); for (size_t t = 0; t < n1; t++) { gsl_matrix_set(K_scale, t, n1 * i + t, gsl_vector_get(n1_vec, t)); } // Compute Ay. gsl_vector_view Ay_col = gsl_matrix_column(Ay, i); gsl_blas_dgemv(CblasNoTrans, 1.0, &Kscale_sub.matrix, y_scale, 0.0, &Ay_col.vector); } gsl_matrix_scale(V_mat, tau_inv); // Compute J matrix. for (size_t i = 0; i < n_vc; i++) { gsl_vector_view Ay_col1 = gsl_matrix_column(Ay, i); gsl_blas_dgemv(CblasNoTrans, 1.0, V_mat, &Ay_col1.vector, 0.0, n1_vec); for (size_t j = i; j < n_vc; j++) { gsl_vector_view Ay_col2 = gsl_matrix_column(Ay, j); gsl_blas_ddot(&Ay_col2.vector, n1_vec, &d); gsl_matrix_set(J_mat, i, j, 2.0 * d); if (i != j) { gsl_matrix_set(J_mat, j, i, 2.0 * d); } } } // Compute H^{-1}JH^{-1} as V(\hat h), where H=S2*tau_inv; this is // stored in Var_mat. gsl_matrix_memcpy(S_mat, S2); gsl_matrix_scale(S_mat, tau_inv); LUDecomp(S_mat, pmt, &sig); LUInvert(S_mat, pmt, Si_mat); gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, Si_mat, J_mat, 0.0, S_mat); gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, S_mat, Si_mat, 0.0, Var_mat); // Compute variance for tau_inv. gsl_blas_dgemv(CblasNoTrans, 1.0, V_mat, y_scale, 0.0, n1_vec); gsl_blas_ddot(y_scale, n1_vec, &d); se_tau_inv = sqrt(2 * d) / (double)n1; // Transform pve back to the original scale and save data. v_pve.clear(); v_se_pve.clear(); v_sigma2.clear(); v_se_sigma2.clear(); pve_total = 0, se_pve_total = 0; for (size_t i = 0; i < n_vc; i++) { d = gsl_vector_get(pve, i); pve_total += d; v_pve.push_back(d); v_sigma2.push_back(d * tau_inv / v_traceG[i]); d = sqrt(gsl_matrix_get(Var_mat, i, i)); v_se_pve.push_back(d); v_se_sigma2.push_back(d * tau_inv / v_traceG[i]); for (size_t j = 0; j < n_vc; j++) { se_pve_total += gsl_matrix_get(Var_mat, i, j); } } v_sigma2.push_back((1 - pve_total) * tau_inv); v_se_sigma2.push_back(sqrt(se_pve_total) * tau_inv); se_pve_total = sqrt(se_pve_total); cout << "sigma2 = "; for (size_t i = 0; i < n_vc + 1; i++) { cout << v_sigma2[i] << " "; } cout << endl; cout << "se(sigma2) = "; for (size_t i = 0; i < n_vc + 1; i++) { cout << v_se_sigma2[i] << " "; } cout << endl; cout << "pve = "; for (size_t i = 0; i < n_vc; i++) { cout << v_pve[i] << " "; } cout << endl; cout << "se(pve) = "; for (size_t i = 0; i < n_vc; i++) { cout << v_se_pve[i] << " "; } cout << endl; if (n_vc > 1) { cout << "total pve = " << pve_total << endl; cout << "se(total pve) = " << se_pve_total << endl; } gsl_permutation_free(pmt); gsl_matrix_free(K_scale); gsl_vector_free(y_scale); gsl_vector_free(y2); gsl_vector_free(n1_vec); gsl_matrix_free(Ay); gsl_matrix_free(K2); gsl_matrix_free(K_tmp); gsl_matrix_free(V_mat); gsl_vector_free(pve); gsl_vector_free(se_pve); gsl_vector_free(q_vec); gsl_matrix_free(S1); gsl_matrix_free(S2); gsl_matrix_free(S_mat); gsl_matrix_free(Si_mat); gsl_matrix_free(J_mat); gsl_matrix_free(Var_mat); return; } // Read bimbam mean genotype file and compute XWz. bool BimbamXwz(const string &file_geno, const int display_pace, vector &indicator_idv, vector &indicator_snp, const vector &vec_cat, const gsl_vector *w, const gsl_vector *z, size_t ns_test, gsl_matrix *XWz) { debug_msg("entering"); igzstream infile(file_geno.c_str(), igzstream::in); if (!infile) { cout << "error reading genotype file:" << file_geno << endl; return false; } string line; char *ch_ptr; size_t n_miss; double d, geno_mean, geno_var; size_t ni_test = XWz->size1; gsl_vector *geno = gsl_vector_alloc(ni_test); gsl_vector *geno_miss = gsl_vector_alloc(ni_test); gsl_vector *wz = gsl_vector_alloc(w->size); gsl_vector_memcpy(wz, z); gsl_vector_mul(wz, w); for (size_t t = 0; t < indicator_snp.size(); ++t) { !safeGetline(infile, line).eof(); if (t % display_pace == 0 || t == (indicator_snp.size() - 1)) { ProgressBar("Reading SNPs ", t, indicator_snp.size() - 1); } if (indicator_snp[t] == 0) { continue; } ch_ptr = strtok((char *)line.c_str(), " , \t"); ch_ptr = strtok(NULL, " , \t"); ch_ptr = strtok(NULL, " , \t"); geno_mean = 0.0; n_miss = 0; geno_var = 0.0; gsl_vector_set_all(geno_miss, 0); size_t j = 0; for (size_t i = 0; i < indicator_idv.size(); ++i) { if (indicator_idv[i] == 0) { continue; } ch_ptr = strtok(NULL, " , \t"); if (strcmp(ch_ptr, "NA") == 0) { gsl_vector_set(geno_miss, i, 0); n_miss++; } else { d = atof(ch_ptr); gsl_vector_set(geno, j, d); gsl_vector_set(geno_miss, j, 1); geno_mean += d; geno_var += d * d; } j++; } geno_mean /= (double)(ni_test - n_miss); geno_var += geno_mean * geno_mean * (double)n_miss; geno_var /= (double)ni_test; geno_var -= geno_mean * geno_mean; for (size_t i = 0; i < ni_test; ++i) { if (gsl_vector_get(geno_miss, i) == 0) { gsl_vector_set(geno, i, geno_mean); } } gsl_vector_add_constant(geno, -1.0 * geno_mean); gsl_vector_view XWz_col = gsl_matrix_column(XWz, vec_cat[ns_test]); d = gsl_vector_get(wz, ns_test); gsl_blas_daxpy(d / sqrt(geno_var), geno, &XWz_col.vector); ns_test++; } cout << endl; gsl_vector_free(geno); gsl_vector_free(geno_miss); gsl_vector_free(wz); infile.close(); infile.clear(); return true; } // Read PLINK bed file and compute XWz. bool PlinkXwz(const string &file_bed, const int display_pace, vector &indicator_idv, vector &indicator_snp, const vector &vec_cat, const gsl_vector *w, const gsl_vector *z, size_t ns_test, gsl_matrix *XWz) { debug_msg("entering"); ifstream infile(file_bed.c_str(), ios::binary); if (!infile) { cout << "error reading bed file:" << file_bed << endl; return false; } char ch[1]; bitset<8> b; size_t n_miss, ci_total, ci_test; double d, geno_mean, geno_var; size_t ni_test = XWz->size1; size_t ni_total = indicator_idv.size(); gsl_vector *geno = gsl_vector_alloc(ni_test); gsl_vector *wz = gsl_vector_alloc(w->size); gsl_vector_memcpy(wz, z); gsl_vector_mul(wz, w); int n_bit; // Calculate n_bit and c, the number of bit for each snp. if (ni_total % 4 == 0) { n_bit = ni_total / 4; } else { n_bit = ni_total / 4 + 1; } // Print the first three magic numbers. for (int i = 0; i < 3; ++i) { infile.read(ch, 1); b = ch[0]; } for (size_t t = 0; t < indicator_snp.size(); ++t) { if (t % display_pace == 0 || t == (indicator_snp.size() - 1)) { ProgressBar("Reading SNPs ", t, indicator_snp.size() - 1); } if (indicator_snp[t] == 0) { continue; } // n_bit, and 3 is the number of magic numbers. infile.seekg(t * n_bit + 3); // Read genotypes. geno_mean = 0.0; n_miss = 0; ci_total = 0; geno_var = 0.0; ci_test = 0; for (int i = 0; i < n_bit; ++i) { infile.read(ch, 1); b = ch[0]; // Minor allele homozygous: 2.0; major: 0.0. for (size_t j = 0; j < 4; ++j) { if ((i == (n_bit - 1)) && ci_total == ni_total) { break; } if (indicator_idv[ci_total] == 0) { ci_total++; continue; } if (b[2 * j] == 0) { if (b[2 * j + 1] == 0) { gsl_vector_set(geno, ci_test, 2.0); geno_mean += 2.0; geno_var += 4.0; } else { gsl_vector_set(geno, ci_test, 1.0); geno_mean += 1.0; geno_var += 1.0; } } else { if (b[2 * j + 1] == 1) { gsl_vector_set(geno, ci_test, 0.0); } else { gsl_vector_set(geno, ci_test, -9.0); n_miss++; } } ci_test++; ci_total++; } } geno_mean /= (double)(ni_test - n_miss); geno_var += geno_mean * geno_mean * (double)n_miss; geno_var /= (double)ni_test; geno_var -= geno_mean * geno_mean; for (size_t i = 0; i < ni_test; ++i) { d = gsl_vector_get(geno, i); if (d == -9.0) { gsl_vector_set(geno, i, geno_mean); } } gsl_vector_add_constant(geno, -1.0 * geno_mean); gsl_vector_view XWz_col = gsl_matrix_column(XWz, vec_cat[ns_test]); d = gsl_vector_get(wz, ns_test); gsl_blas_daxpy(d / sqrt(geno_var), geno, &XWz_col.vector); ns_test++; } cout << endl; gsl_vector_free(geno); gsl_vector_free(wz); infile.close(); infile.clear(); return true; } // Read multiple genotype files and compute XWz. bool MFILEXwz(const size_t mfile_mode, const string &file_mfile, const int display_pace, vector &indicator_idv, vector> &mindicator_snp, const vector &vec_cat, const gsl_vector *w, const gsl_vector *z, gsl_matrix *XWz) { debug_msg("entering"); gsl_matrix_set_zero(XWz); igzstream infile(file_mfile.c_str(), igzstream::in); if (!infile) { cout << "error! fail to open mfile file: " << file_mfile << endl; return false; } string file_name; size_t l = 0, ns_test = 0; while (!safeGetline(infile, file_name).eof()) { if (mfile_mode == 1) { file_name += ".bed"; PlinkXwz(file_name, display_pace, indicator_idv, mindicator_snp[l], vec_cat, w, z, ns_test, XWz); } else { BimbamXwz(file_name, display_pace, indicator_idv, mindicator_snp[l], vec_cat, w, z, ns_test, XWz); } l++; } infile.close(); infile.clear(); return true; } // Read bimbam mean genotype file and compute X_i^TX_jWz. bool BimbamXtXwz(const string &file_geno, const int display_pace, vector &indicator_idv, vector &indicator_snp, const gsl_matrix *XWz, size_t ns_test, gsl_matrix *XtXWz) { debug_msg("entering"); igzstream infile(file_geno.c_str(), igzstream::in); if (!infile) { cout << "error reading genotype file:" << file_geno << endl; return false; } string line; char *ch_ptr; size_t n_miss; double d, geno_mean, geno_var; size_t ni_test = XWz->size1; gsl_vector *geno = gsl_vector_alloc(ni_test); gsl_vector *geno_miss = gsl_vector_alloc(ni_test); for (size_t t = 0; t < indicator_snp.size(); ++t) { !safeGetline(infile, line).eof(); if (t % display_pace == 0 || t == (indicator_snp.size() - 1)) { ProgressBar("Reading SNPs ", t, indicator_snp.size() - 1); } if (indicator_snp[t] == 0) { continue; } ch_ptr = strtok((char *)line.c_str(), " , \t"); ch_ptr = strtok(NULL, " , \t"); ch_ptr = strtok(NULL, " , \t"); geno_mean = 0.0; n_miss = 0; geno_var = 0.0; gsl_vector_set_all(geno_miss, 0); size_t j = 0; for (size_t i = 0; i < indicator_idv.size(); ++i) { if (indicator_idv[i] == 0) { continue; } ch_ptr = strtok(NULL, " , \t"); if (strcmp(ch_ptr, "NA") == 0) { gsl_vector_set(geno_miss, i, 0); n_miss++; } else { d = atof(ch_ptr); gsl_vector_set(geno, j, d); gsl_vector_set(geno_miss, j, 1); geno_mean += d; geno_var += d * d; } j++; } geno_mean /= (double)(ni_test - n_miss); geno_var += geno_mean * geno_mean * (double)n_miss; geno_var /= (double)ni_test; geno_var -= geno_mean * geno_mean; for (size_t i = 0; i < ni_test; ++i) { if (gsl_vector_get(geno_miss, i) == 0) { gsl_vector_set(geno, i, geno_mean); } } gsl_vector_add_constant(geno, -1.0 * geno_mean); for (size_t i = 0; i < XWz->size2; i++) { gsl_vector_const_view XWz_col = gsl_matrix_const_column(XWz, i); gsl_blas_ddot(geno, &XWz_col.vector, &d); gsl_matrix_set(XtXWz, ns_test, i, d / sqrt(geno_var)); } ns_test++; } cout << endl; gsl_vector_free(geno); gsl_vector_free(geno_miss); infile.close(); infile.clear(); return true; } // Read PLINK bed file and compute XWz. bool PlinkXtXwz(const string &file_bed, const int display_pace, vector &indicator_idv, vector &indicator_snp, const gsl_matrix *XWz, size_t ns_test, gsl_matrix *XtXWz) { debug_msg("entering"); ifstream infile(file_bed.c_str(), ios::binary); if (!infile) { cout << "error reading bed file:" << file_bed << endl; return false; } char ch[1]; bitset<8> b; size_t n_miss, ci_total, ci_test; double d, geno_mean, geno_var; size_t ni_test = XWz->size1; size_t ni_total = indicator_idv.size(); gsl_vector *geno = gsl_vector_alloc(ni_test); int n_bit; // Calculate n_bit and c, the number of bit for each snp. if (ni_total % 4 == 0) { n_bit = ni_total / 4; } else { n_bit = ni_total / 4 + 1; } // Print the first three magic numbers. for (int i = 0; i < 3; ++i) { infile.read(ch, 1); b = ch[0]; } for (size_t t = 0; t < indicator_snp.size(); ++t) { if (t % display_pace == 0 || t == (indicator_snp.size() - 1)) { ProgressBar("Reading SNPs ", t, indicator_snp.size() - 1); } if (indicator_snp[t] == 0) { continue; } // n_bit, and 3 is the number of magic numbers. infile.seekg(t * n_bit + 3); // Read genotypes. geno_mean = 0.0; n_miss = 0; ci_total = 0; geno_var = 0.0; ci_test = 0; for (int i = 0; i < n_bit; ++i) { infile.read(ch, 1); b = ch[0]; // Minor allele homozygous: 2.0; major: 0.0; for (size_t j = 0; j < 4; ++j) { if ((i == (n_bit - 1)) && ci_total == ni_total) { break; } if (indicator_idv[ci_total] == 0) { ci_total++; continue; } if (b[2 * j] == 0) { if (b[2 * j + 1] == 0) { gsl_vector_set(geno, ci_test, 2.0); geno_mean += 2.0; geno_var += 4.0; } else { gsl_vector_set(geno, ci_test, 1.0); geno_mean += 1.0; geno_var += 1.0; } } else { if (b[2 * j + 1] == 1) { gsl_vector_set(geno, ci_test, 0.0); } else { gsl_vector_set(geno, ci_test, -9.0); n_miss++; } } ci_test++; ci_total++; } } geno_mean /= (double)(ni_test - n_miss); geno_var += geno_mean * geno_mean * (double)n_miss; geno_var /= (double)ni_test; geno_var -= geno_mean * geno_mean; for (size_t i = 0; i < ni_test; ++i) { d = gsl_vector_get(geno, i); if (d == -9.0) { gsl_vector_set(geno, i, geno_mean); } } gsl_vector_add_constant(geno, -1.0 * geno_mean); for (size_t i = 0; i < XWz->size2; i++) { gsl_vector_const_view XWz_col = gsl_matrix_const_column(XWz, i); gsl_blas_ddot(geno, &XWz_col.vector, &d); gsl_matrix_set(XtXWz, ns_test, i, d / sqrt(geno_var)); } ns_test++; } cout << endl; gsl_vector_free(geno); infile.close(); infile.clear(); return true; } // Read multiple genotype files and compute XWz. bool MFILEXtXwz(const size_t mfile_mode, const string &file_mfile, const int display_pace, vector &indicator_idv, vector> &mindicator_snp, const gsl_matrix *XWz, gsl_matrix *XtXWz) { debug_msg("entering"); gsl_matrix_set_zero(XtXWz); igzstream infile(file_mfile.c_str(), igzstream::in); if (!infile) { cout << "error! fail to open mfile file: " << file_mfile << endl; return false; } string file_name; size_t l = 0, ns_test = 0; while (!safeGetline(infile, file_name).eof()) { if (mfile_mode == 1) { file_name += ".bed"; PlinkXtXwz(file_name, display_pace, indicator_idv, mindicator_snp[l], XWz, ns_test, XtXWz); } else { BimbamXtXwz(file_name, display_pace, indicator_idv, mindicator_snp[l], XWz, ns_test, XtXWz); } l++; } infile.close(); infile.clear(); return true; } // Compute confidence intervals from summary statistics. void CalcCIss(const gsl_matrix *Xz, const gsl_matrix *XWz, const gsl_matrix *XtXWz, const gsl_matrix *S_mat, const gsl_matrix *Svar_mat, const gsl_vector *w, const gsl_vector *z, const gsl_vector *s_vec, const vector &vec_cat, const vector &v_pve, vector &v_se_pve, double &pve_total, double &se_pve_total, vector &v_sigma2, vector &v_se_sigma2, vector &v_enrich, vector &v_se_enrich) { size_t n_vc = XWz->size2, ns_test = w->size, ni_test = XWz->size1; // Set up matrices. gsl_vector *w_pve = gsl_vector_alloc(ns_test); gsl_vector *wz = gsl_vector_alloc(ns_test); gsl_vector *zwz = gsl_vector_alloc(n_vc); gsl_vector *zz = gsl_vector_alloc(n_vc); gsl_vector *Xz_pve = gsl_vector_alloc(ni_test); gsl_vector *WXtXWz = gsl_vector_alloc(ns_test); gsl_matrix *Si_mat = gsl_matrix_alloc(n_vc, n_vc); gsl_matrix *Var_mat = gsl_matrix_alloc(n_vc, n_vc); gsl_matrix *tmp_mat = gsl_matrix_alloc(n_vc, n_vc); gsl_matrix *tmp_mat1 = gsl_matrix_alloc(n_vc, n_vc); gsl_matrix *VarEnrich_mat = gsl_matrix_alloc(n_vc, n_vc); gsl_matrix *qvar_mat = gsl_matrix_alloc(n_vc, n_vc); double d, s0, s1, s, s_pve, s_snp; // Compute wz and zwz. gsl_vector_memcpy(wz, z); gsl_vector_mul(wz, w); gsl_vector_set_zero(zwz); gsl_vector_set_zero(zz); for (size_t i = 0; i < w->size; i++) { d = gsl_vector_get(wz, i) * gsl_vector_get(z, i); d += gsl_vector_get(zwz, vec_cat[i]); gsl_vector_set(zwz, vec_cat[i], d); d = gsl_vector_get(z, i) * gsl_vector_get(z, i); d += gsl_vector_get(zz, vec_cat[i]); gsl_vector_set(zz, vec_cat[i], d); } // Compute wz, ve and Xz_pve. gsl_vector_set_zero(Xz_pve); s_pve = 0; s_snp = 0; for (size_t i = 0; i < n_vc; i++) { s_pve += v_pve[i]; s_snp += gsl_vector_get(s_vec, i); gsl_vector_const_view Xz_col = gsl_matrix_const_column(Xz, i); gsl_blas_daxpy(v_pve[i] / gsl_vector_get(s_vec, i), &Xz_col.vector, Xz_pve); } // Set up wpve vector. for (size_t i = 0; i < w->size; i++) { d = v_pve[vec_cat[i]] / gsl_vector_get(s_vec, vec_cat[i]); gsl_vector_set(w_pve, i, d); } // Compute Vq (in qvar_mat). s0 = 1 - s_pve; for (size_t i = 0; i < n_vc; i++) { s0 += gsl_vector_get(zz, i) * v_pve[i] / gsl_vector_get(s_vec, i); } for (size_t i = 0; i < n_vc; i++) { s1 = s0; s1 -= gsl_vector_get(zwz, i) * (1 - s_pve) / gsl_vector_get(s_vec, i); gsl_vector_const_view XWz_col1 = gsl_matrix_const_column(XWz, i); gsl_vector_const_view XtXWz_col1 = gsl_matrix_const_column(XtXWz, i); gsl_vector_memcpy(WXtXWz, &XtXWz_col1.vector); gsl_vector_mul(WXtXWz, w_pve); gsl_blas_ddot(Xz_pve, &XWz_col1.vector, &d); s1 -= d / gsl_vector_get(s_vec, i); for (size_t j = 0; j < n_vc; j++) { s = s1; s -= gsl_vector_get(zwz, j) * (1 - s_pve) / gsl_vector_get(s_vec, j); gsl_vector_const_view XWz_col2 = gsl_matrix_const_column(XWz, j); gsl_vector_const_view XtXWz_col2 = gsl_matrix_const_column(XtXWz, j); gsl_blas_ddot(WXtXWz, &XtXWz_col2.vector, &d); s += d / (gsl_vector_get(s_vec, i) * gsl_vector_get(s_vec, j)); gsl_blas_ddot(&XWz_col1.vector, &XWz_col2.vector, &d); s += d / (gsl_vector_get(s_vec, i) * gsl_vector_get(s_vec, j)) * (1 - s_pve); gsl_blas_ddot(Xz_pve, &XWz_col2.vector, &d); s -= d / gsl_vector_get(s_vec, j); gsl_matrix_set(qvar_mat, i, j, s); } } d = (double)(ni_test - 1); gsl_matrix_scale(qvar_mat, 2.0 / (d * d * d)); // Calculate S^{-1}. gsl_matrix_memcpy(tmp_mat, S_mat); int sig; gsl_permutation *pmt = gsl_permutation_alloc(n_vc); LUDecomp(tmp_mat, pmt, &sig); LUInvert(tmp_mat, pmt, Si_mat); // Calculate variance for the estimates. for (size_t i = 0; i < n_vc; i++) { for (size_t j = i; j < n_vc; j++) { d = gsl_matrix_get(Svar_mat, i, j); d *= v_pve[i] * v_pve[j]; d += gsl_matrix_get(qvar_mat, i, j); gsl_matrix_set(Var_mat, i, j, d); if (i != j) { gsl_matrix_set(Var_mat, j, i, d); } } } gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, Si_mat, Var_mat, 0.0, tmp_mat); gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, tmp_mat, Si_mat, 0.0, Var_mat); // Compute sigma2 per snp, enrich. v_sigma2.clear(); v_enrich.clear(); for (size_t i = 0; i < n_vc; i++) { v_sigma2.push_back(v_pve[i] / gsl_vector_get(s_vec, i)); v_enrich.push_back(v_pve[i] / gsl_vector_get(s_vec, i) * s_snp / s_pve); } // Compute se_pve, se_sigma2. for (size_t i = 0; i < n_vc; i++) { d = sqrt(gsl_matrix_get(Var_mat, i, i)); v_se_pve.push_back(d); v_se_sigma2.push_back(d / gsl_vector_get(s_vec, i)); } // Compute pve_total, se_pve_total. pve_total = 0; for (size_t i = 0; i < n_vc; i++) { pve_total += v_pve[i]; } se_pve_total = 0; for (size_t i = 0; i < n_vc; i++) { for (size_t j = 0; j < n_vc; j++) { se_pve_total += gsl_matrix_get(Var_mat, i, j); } } se_pve_total = sqrt(se_pve_total); // Compute se_enrich. gsl_matrix_set_identity(tmp_mat); double d1; for (size_t i = 0; i < n_vc; i++) { d = v_pve[i] / s_pve; d1 = gsl_vector_get(s_vec, i); for (size_t j = 0; j < n_vc; j++) { if (i == j) { gsl_matrix_set(tmp_mat, i, j, (1 - d) / d1 * s_snp / s_pve); } else { gsl_matrix_set(tmp_mat, i, j, -1 * d / d1 * s_snp / s_pve); } } } gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, tmp_mat, Var_mat, 0.0, tmp_mat1); gsl_blas_dgemm(CblasNoTrans, CblasTrans, 1.0, tmp_mat1, tmp_mat, 0.0, VarEnrich_mat); for (size_t i = 0; i < n_vc; i++) { d = sqrt(gsl_matrix_get(VarEnrich_mat, i, i)); v_se_enrich.push_back(d); } cout << "pve = "; for (size_t i = 0; i < n_vc; i++) { cout << v_pve[i] << " "; } cout << endl; cout << "se(pve) = "; for (size_t i = 0; i < n_vc; i++) { cout << v_se_pve[i] << " "; } cout << endl; cout << "sigma2 per snp = "; for (size_t i = 0; i < n_vc; i++) { cout << v_sigma2[i] << " "; } cout << endl; cout << "se(sigma2 per snp) = "; for (size_t i = 0; i < n_vc; i++) { cout << v_se_sigma2[i] << " "; } cout << endl; cout << "enrichment = "; for (size_t i = 0; i < n_vc; i++) { cout << v_enrich[i] << " "; } cout << endl; cout << "se(enrichment) = "; for (size_t i = 0; i < n_vc; i++) { cout << v_se_enrich[i] << " "; } cout << endl; // Delete matrices. gsl_matrix_free(Si_mat); gsl_matrix_free(Var_mat); gsl_matrix_free(VarEnrich_mat); gsl_matrix_free(tmp_mat); gsl_matrix_free(tmp_mat1); gsl_matrix_free(qvar_mat); gsl_vector_free(w_pve); gsl_vector_free(wz); gsl_vector_free(zwz); gsl_vector_free(WXtXWz); gsl_vector_free(Xz_pve); return; }