/* Genome-wide Efficient Mixed Model Association (GEMMA) Copyright (C) 2011 Xiang Zhou This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include #include #include #include #include #include #include #include #include #include "gsl/gsl_vector.h" #include "gsl/gsl_matrix.h" #include "gsl/gsl_linalg.h" #include "gsl/gsl_blas.h" #include "io.h" #include "lapack.h" //for functions EigenDecomp #include "gzstream.h" #ifdef FORCE_FLOAT #include "io_float.h" #include "prdt_float.h" #include "mathfunc_float.h" #else #include "io.h" #include "prdt.h" #include "mathfunc.h" #endif using namespace std; void PRDT::CopyFromParam (PARAM &cPar) { a_mode=cPar.a_mode; d_pace=cPar.d_pace; file_bfile=cPar.file_bfile; file_geno=cPar.file_geno; file_out=cPar.file_out; path_out=cPar.path_out; indicator_pheno=cPar.indicator_pheno; indicator_cvt=cPar.indicator_cvt; indicator_idv=cPar.indicator_idv; snpInfo=cPar.snpInfo; mapRS2est=cPar.mapRS2est; time_eigen=0; n_ph=cPar.n_ph; np_obs=cPar.np_obs; np_miss=cPar.np_miss; ns_total=cPar.ns_total; ns_test=0; return; } void PRDT::CopyToParam (PARAM &cPar) { cPar.ns_test=ns_test; cPar.time_eigen=time_eigen; return; } void PRDT::WriteFiles (gsl_vector *y_prdt) { string file_str; file_str=path_out+"/"+file_out; file_str+="."; file_str+="prdt"; file_str+=".txt"; ofstream outfile (file_str.c_str(), ofstream::out); if (!outfile) {cout<<"error writing file: "<size2; j++) { outfile<size, ni_total=G->size1; gsl_matrix *Goo=gsl_matrix_alloc (ni_test, ni_test); gsl_matrix *Gfo=gsl_matrix_alloc (ni_total-ni_test, ni_test); gsl_matrix *U=gsl_matrix_alloc (ni_test, ni_test); gsl_vector *eval=gsl_vector_alloc (ni_test); gsl_vector *Utu=gsl_vector_alloc (ni_test); gsl_vector *w=gsl_vector_alloc (ni_total); gsl_permutation *pmt=gsl_permutation_alloc (ni_test); //center matrix G based on indicator_idv for (size_t i=0; isize; i++) { if (gsl_vector_get(eval,i)<1e-10) {gsl_vector_set(eval, i, 0);} } time_eigen=(clock()-time_start)/(double(CLOCKS_PER_SEC)*60.0); gsl_blas_dgemv (CblasTrans, 1.0, U, u_hat, 0.0, Utu); for (size_t i=0; isize; i++) { d=gsl_vector_get(eval, i); if (d!=0) {d=gsl_vector_get(Utu, i)/d; gsl_vector_set(Utu, i, d);} } gsl_blas_dgemv (CblasNoTrans, 1.0, U, Utu, 0.0, eval); gsl_blas_dgemv (CblasNoTrans, 1.0, Gfo, eval, 1.0, y_prdt); //free matrices gsl_matrix_free(Goo); gsl_matrix_free(Gfo); gsl_matrix_free(U); gsl_vector_free(eval); gsl_vector_free(Utu); gsl_vector_free(w); gsl_permutation_free(pmt); return; } void PRDT::AnalyzeBimbam (gsl_vector *y_prdt) { igzstream infile (file_geno.c_str(), igzstream::in); // ifstream infile (file_geno.c_str(), ifstream::in); if (!infile) {cout<<"error reading genotype file:"<size); gsl_vector *x_miss=gsl_vector_alloc (y_prdt->size); ns_test=0; //start reading genotypes and analyze for (size_t t=0; tsize==n_miss) {cout<<"snp "<size-n_miss); x_train_mean/=(double)(n_train_nomiss); for (size_t i=0; isize; ++i) { geno=gsl_vector_get(x, i); if (gsl_vector_get (x_miss, i)==0) { gsl_vector_set(x, i, x_mean-x_train_mean); } else { gsl_vector_set(x, i, geno-x_train_mean); } } gsl_vector_scale (x, effect_size); gsl_vector_add (y_prdt, x); ns_test++; } cout< b; string rs; size_t n_bit, n_miss, ci_total, ci_test, n_train_nomiss; double geno, x_mean, x_train_mean, effect_size; gsl_vector *x=gsl_vector_alloc (y_prdt->size); //calculate n_bit and c, the number of bit for each snp if (indicator_idv.size()%4==0) {n_bit=indicator_idv.size()/4;} else {n_bit=indicator_idv.size()/4+1; } //print the first three majic numbers for (size_t i=0; i<3; ++i) { infile.read(ch,1); b=ch[0]; } ns_test=0; for (vector::size_type t=0; tsize==n_miss) {cout<<"snp "<size-n_miss); x_train_mean/=(double)(n_train_nomiss); for (size_t i=0; isize; ++i) { geno=gsl_vector_get(x, i); if (geno==-9) { gsl_vector_set(x, i, x_mean-x_train_mean); } else { gsl_vector_set(x, i, geno-x_train_mean); } } gsl_vector_scale (x, effect_size); gsl_vector_add (y_prdt, x); ns_test++; } cout<::size_type i1=0; i1::size_type j1=0; j1::size_type i2=0; i2::size_type j2=0; j2::size_type i=0; i::size_type j=0; j::size_type i=0; i::size_type j=0; j::size_type i=0; i::size_type j=0; j<2; ++j) { if (indicator_pheno[i][j]==1) { gsl_vector_set (y_obs, c_obs1, gsl_matrix_get (Y_full, i, j+k*2)-gsl_matrix_get (Y_hat, i, j) ); c_obs1++; } else { gsl_vector_set (y_miss, c_miss1, gsl_matrix_get (Y_hat, i, j) ); c_miss1++; } } } LUSolve (H_oo, pmt, y_obs, Hiy); gsl_blas_dgemv (CblasNoTrans, 1.0, H_mo, Hiy, 1.0, y_miss); //put back predicted y_miss to Y_full c_miss1=0; for (vector::size_type i=0; i::size_type j=0; j<2; ++j) { if (indicator_pheno[i][j]==0) { gsl_matrix_set (Y_full, i, j+k*2, gsl_vector_get (y_miss, c_miss1) ); c_miss1++; } } } } } */ //free matrices gsl_vector_free(y_obs); gsl_vector_free(y_miss); gsl_matrix_free(H_oo); gsl_matrix_free(H_mo); gsl_vector_free(Hiy); return; }