/* Genome-wide Efficient Mixed Model Association (GEMMA) Copyright (C) 2011 Xiang Zhou This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "gsl/gsl_vector.h" #include "gsl/gsl_matrix.h" #include "gsl/gsl_linalg.h" #include "gsl/gsl_blas.h" #include "gsl/gsl_cdf.h" #ifdef FORCE_FLOAT #include "mathfunc_float.h" #else #include "mathfunc.h" #endif using namespace std; //calculate variance of a vector double VectorVar (const gsl_vector *v) { double d, m=0.0, m2=0.0; for (size_t i=0; isize; ++i) { d=gsl_vector_get (v, i); m+=d; m2+=d*d; } m/=(double)v->size; m2/=(double)v->size; return m2-m*m; } //center the matrix G void CenterMatrix (gsl_matrix *G) { double d; gsl_vector *w=gsl_vector_alloc (G->size1); gsl_vector *Gw=gsl_vector_alloc (G->size1); gsl_vector_set_all (w, 1.0); gsl_blas_dgemv (CblasNoTrans, 1.0, G, w, 0.0, Gw); gsl_blas_dsyr2 (CblasUpper, -1.0/(double)G->size1, Gw, w, G); gsl_blas_ddot (w, Gw, &d); gsl_blas_dsyr (CblasUpper, d/((double)G->size1*(double)G->size1), w, G); for (size_t i=0; isize1; ++i) { for (size_t j=0; jsize1); gsl_blas_ddot (w, w, &wtw); gsl_blas_dgemv (CblasNoTrans, 1.0, G, w, 0.0, Gw); gsl_blas_dsyr2 (CblasUpper, -1.0/wtw, Gw, w, G); gsl_blas_ddot (w, Gw, &d); gsl_blas_dsyr (CblasUpper, d/(wtw*wtw), w, G); for (size_t i=0; isize1; ++i) { for (size_t j=0; jsize1; ++i) { d+=gsl_matrix_get(G, i, i); } d/=(double)G->size1; gsl_matrix_scale (G, 1.0/d); return; } //center the vector y double CenterVector (gsl_vector *y) { double d=0.0; for (size_t i=0; isize; ++i) { d+=gsl_vector_get (y, i); } d/=(double)y->size; gsl_vector_add_constant (y, -1.0*d); return d; } //calculate UtX void CalcUtX (const gsl_matrix *U, gsl_matrix *UtX) { gsl_vector *Utx_vec=gsl_vector_alloc (UtX->size1); for (size_t i=0; isize2; ++i) { gsl_vector_view UtX_col=gsl_matrix_column (UtX, i); gsl_blas_dgemv (CblasTrans, 1.0, U, &UtX_col.vector, 0.0, Utx_vec); gsl_vector_memcpy (&UtX_col.vector, Utx_vec); } gsl_vector_free (Utx_vec); return; } void CalcUtX (const gsl_matrix *U, const gsl_matrix *X, gsl_matrix *UtX) { for (size_t i=0; isize2; ++i) { gsl_vector_const_view X_col=gsl_matrix_const_column (X, i); gsl_vector_view UtX_col=gsl_matrix_column (UtX, i); gsl_blas_dgemv (CblasTrans, 1.0, U, &X_col.vector, 0.0, &UtX_col.vector); } return; } void CalcUtX (const gsl_matrix *U, const gsl_vector *x, gsl_vector *Utx) { gsl_blas_dgemv (CblasTrans, 1.0, U, x, 0.0, Utx); return; } //Kronecker product void Kronecker(const gsl_matrix *K, const gsl_matrix *V, gsl_matrix *H) { for (size_t i=0; isize1; i++) { for (size_t j=0; jsize2; j++) { gsl_matrix_view H_sub=gsl_matrix_submatrix (H, i*V->size1, j*V->size2, V->size1, V->size2); gsl_matrix_memcpy (&H_sub.matrix, V); gsl_matrix_scale (&H_sub.matrix, gsl_matrix_get (K, i, j)); } } return; } //symmetric K matrix void KroneckerSym(const gsl_matrix *K, const gsl_matrix *V, gsl_matrix *H) { for (size_t i=0; isize1; i++) { for (size_t j=i; jsize2; j++) { gsl_matrix_view H_sub=gsl_matrix_submatrix (H, i*V->size1, j*V->size2, V->size1, V->size2); gsl_matrix_memcpy (&H_sub.matrix, V); gsl_matrix_scale (&H_sub.matrix, gsl_matrix_get (K, i, j)); if (i!=j) { gsl_matrix_view H_sub_sym=gsl_matrix_submatrix (H, j*V->size1, i*V->size2, V->size1, V->size2); gsl_matrix_memcpy (&H_sub_sym.matrix, &H_sub.matrix); } } } return; } // this function calculates HWE p value with methods described in Wigginton et al., 2005 AJHG; // it is based on the code in plink 1.07 double CalcHWE (const size_t n_hom1, const size_t n_hom2, const size_t n_ab) { if ( (n_hom1+n_hom2+n_ab)==0 ) {return 1;} //aa is the rare allele int n_aa=n_hom1 < n_hom2 ? n_hom1 : n_hom2; int n_bb=n_hom1 < n_hom2 ? n_hom2 : n_hom1; int rare_copies = 2 * n_aa + n_ab; int genotypes = n_ab + n_bb + n_aa; double * het_probs = (double *) malloc( (rare_copies + 1) * sizeof(double)); if (het_probs == NULL) cout<<"Internal error: SNP-HWE: Unable to allocate array"< 1; curr_hets -= 2) { het_probs[curr_hets - 2] = het_probs[curr_hets] * curr_hets * (curr_hets - 1.0) / (4.0 * (curr_homr + 1.0) * (curr_homc + 1.0)); sum += het_probs[curr_hets - 2]; /* 2 fewer heterozygotes for next iteration -> add one rare, one common homozygote */ curr_homr++; curr_homc++; } curr_hets = mid; curr_homr = (rare_copies - mid) / 2; curr_homc = genotypes - curr_hets - curr_homr; for (curr_hets = mid; curr_hets <= rare_copies - 2; curr_hets += 2) { het_probs[curr_hets + 2] = het_probs[curr_hets] * 4.0 * curr_homr * curr_homc /((curr_hets + 2.0) * (curr_hets + 1.0)); sum += het_probs[curr_hets + 2]; /* add 2 heterozygotes for next iteration -> subtract one rare, one common homozygote */ curr_homr--; curr_homc--; } for (i = 0; i <= rare_copies; i++) het_probs[i] /= sum; /* alternate p-value calculation for p_hi/p_lo double p_hi = het_probs[n_ab]; for (i = n_ab + 1; i <= rare_copies; i++) p_hi += het_probs[i]; double p_lo = het_probs[n_ab]; for (i = n_ab - 1; i >= 0; i--) p_lo += het_probs[i]; double p_hi_lo = p_hi < p_lo ? 2.0 * p_hi : 2.0 * p_lo; */ double p_hwe = 0.0; /* p-value calculation for p_hwe */ for (i = 0; i <= rare_copies; i++) { if (het_probs[i] > het_probs[n_ab]) continue; p_hwe += het_probs[i]; } p_hwe = p_hwe > 1.0 ? 1.0 : p_hwe; free(het_probs); return p_hwe; }