/*
Genome-wide Efficient Mixed Model Association (GEMMA)
Copyright © 2011-2017, Xiang Zhou
Copyright © 2017, Peter Carbonetto
Copyright © 2017-2022 Pjotr Prins
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "gsl/gsl_blas.h"
#include "gsl/gsl_cdf.h"
#include "gsl/gsl_integration.h"
#include "gsl/gsl_linalg.h"
#include "gsl/gsl_matrix.h"
#include "gsl/gsl_min.h"
#include "gsl/gsl_roots.h"
#include "gsl/gsl_vector.h"
#include "gzstream.h"
#include "gemma.h"
#include "gemma_io.h"
#include "fastblas.h"
#include "lapack.h"
#include "lmm.h"
#include "mathfunc.h"
#define P_YY_MIN 0.00000001
using namespace std;
void LMM::CopyFromParam(PARAM &cPar) {
a_mode = cPar.a_mode;
d_pace = cPar.d_pace;
file_bfile = cPar.file_bfile;
file_geno = cPar.file_geno;
file_out = cPar.file_out;
path_out = cPar.path_out;
file_gene = cPar.file_gene;
l_min = cPar.l_min;
l_max = cPar.l_max;
n_region = cPar.n_region;
l_mle_null = cPar.l_mle_null;
logl_mle_H0 = cPar.logl_mle_H0;
time_UtX = 0.0;
time_opt = 0.0;
ni_total = cPar.ni_total;
ns_total = cPar.ns_total;
ni_test = cPar.ni_test;
ns_test = cPar.ns_test;
n_cvt = cPar.n_cvt;
ng_total = cPar.ng_total;
ng_test = 0;
indicator_idv = cPar.indicator_idv;
indicator_snp = cPar.indicator_snp;
snpInfo = cPar.snpInfo;
setGWASnps = cPar.setGWASnps;
return;
}
void LMM::CopyToParam(PARAM &cPar) {
cPar.time_UtX = time_UtX;
cPar.time_opt = time_opt;
cPar.ng_test = ng_test;
return;
}
void LMM::WriteFiles() {
string file_str;
debug_msg("LMM::WriteFiles");
file_str = path_out + "/" + file_out;
file_str += ".assoc.txt";
ofstream outfile(file_str.c_str(), ofstream::out);
if (!outfile) {
cout << "error writing file: " << file_str.c_str() << endl;
return;
}
auto common_header = [&] () {
if (a_mode != M_LMM2) {
outfile << "beta" << "\t";
outfile << "se" << "\t";
}
if (a_mode != M_LMM3 && a_mode != M_LMM9)
outfile << "logl_H1" << "\t";
switch(a_mode) {
case M_LMM1:
outfile << "l_remle" << "\t"
<< "p_wald" << endl;
break;
case M_LMM2:
case M_LMM9:
outfile << "l_mle" << "\t"
<< "p_lrt" << endl;
break;
case M_LMM3:
outfile << "p_score" << endl;
break;
case M_LMM4:
outfile << "l_remle" << "\t"
<< "l_mle" << "\t"
<< "p_wald" << "\t"
<< "p_lrt" << "\t"
<< "p_score" << endl;
break;
}
};
auto sumstats = [&] (SUMSTAT st) {
outfile << scientific << setprecision(6);
if (a_mode != M_LMM2) {
outfile << st.beta << "\t";
outfile << st.se << "\t";
}
if (a_mode != M_LMM3 && a_mode != M_LMM9)
outfile << st.logl_H1 << "\t";
switch(a_mode) {
case M_LMM1:
outfile << st.lambda_remle << "\t"
<< st.p_wald << endl;
break;
case M_LMM2:
case M_LMM9:
outfile << st.lambda_mle << "\t"
<< st.p_lrt << endl;
break;
case M_LMM3:
outfile << st.p_score << endl;
break;
case M_LMM4:
outfile << st.lambda_remle << "\t"
<< st.lambda_mle << "\t"
<< st.p_wald << "\t"
<< st.p_lrt << "\t"
<< st.p_score << endl;
break;
}
};
if (!file_gene.empty()) {
outfile << "geneID" << "\t";
common_header();
for (vector::size_type t = 0; t < sumStat.size(); ++t) {
outfile << snpInfo[t].rs_number << "\t";
sumstats(sumStat[t]);
}
} else {
bool process_gwasnps = setGWASnps.size();
outfile << "chr" << "\t"
<< "rs" << "\t"
<< "ps" << "\t"
<< "n_miss" << "\t"
<< "allele1" << "\t"
<< "allele0" << "\t"
<< "af" << "\t";
common_header();
size_t t = 0;
for (size_t i = 0; i < snpInfo.size(); ++i) {
if (indicator_snp[i] == 0)
continue;
auto snp = snpInfo[i].rs_number;
if (process_gwasnps && setGWASnps.count(snp) == 0)
continue;
// cout << t << endl;
outfile << snpInfo[i].chr << "\t" << snpInfo[i].rs_number << "\t"
<< snpInfo[i].base_position << "\t" << snpInfo[i].n_miss << "\t"
<< snpInfo[i].a_minor << "\t" << snpInfo[i].a_major << "\t"
<< fixed << setprecision(3) << snpInfo[i].maf << "\t";
sumstats(sumStat[t]);
t++;
}
}
outfile.close();
outfile.clear();
return;
}
/*
As explained in
https://github.com/genetics-statistics/GEMMA/issues/94 CalcPab
returns the Pab matrix. As described For pab, it stores all
variables in the form of v_a P_p v_b. (Similarly, ppab stores all
v_a P_p P_p v_b, while pppab stores all v_a P_p P_p P_p v_b. These
quantities are defined according to the page 6 of this
supplementary information
http://xzlab.org/papers/2012_Zhou&Stephens_NG_SI.pdf).
In the code, p, a, b are indexes: when p=n_cvt+1, P_p is P_x as in
that supplementary information; when a=n_cvt+1, v_a=x; and when
a=n_cvt+2, v_a=y.
e_mode determines which model the algorithm is fitting: when
e_mode==1, it computes all the above quantities for the alternative
model (with the random effects term); when e_mode==0, it compute
these quantities for the null model (without the random effects
term). Note that e==0 is only used here.
These quantities were computed based on the initial GEMMA paper,
and the goal is to finally compute y P_x y, y P_x P_xy,
y P_x P_x P_x y and the few trace forms (section 3.1.4 on page 5 of
the supplementary information). Sometimes I was wondering if we
should compute all these final quantities directly, instead of
through these complicated recursions. Direct computation may only
make computation a little slower, but will make the code much
easier to follow and easier to modify
a typical call sends n_cvt a vector
Hi_eval, a vector ab and a matrix Uab.
CalcPab(n_cvt, p->e_mode, Hi_eval, p->Uab, p->ab, Pab);
(gdb) p Uab->size1
$1 = 247
(gdb) p n_cvt
$2 = 1
(gdb) p e_mode
$3 = 0
(gdb) p Uab->size2
$4 = 6
(gdb) p Hi_eval->size
$5 = 247
(gdb) p ab->size
$6 = 6
(gdb) p Pab->size1
$7 = 3
(gdb) p Pab->size2
$8 = 6
Hi_eval [0..ind] x Uab [ind, n_index] x ab [n_index]
Iterating through a dataset Hi_eval differs and Uab (last row)
*/
void CalcPab(const size_t n_cvt, const size_t e_mode, const gsl_vector *Hi_eval,
const gsl_matrix *Uab, const gsl_vector *unused, gsl_matrix *Pab) {
#if !defined NDEBUG
size_t n_index = (n_cvt + 2 + 1) * (n_cvt + 2) / 2; // result size
auto ni_test = Uab->size1; // inds
assert(Uab->size1 == Hi_eval->size);
assert(Uab->size2 == n_index);
assert(Pab->size1 == n_cvt+2);
assert(Pab->size2 == n_index);
assert(Hi_eval->size == ni_test);
// assert(ab->size == n_index);
#endif // DEBUG
// compute Hi_eval (inds) * Uab (inds x n_index) * ab (n_index) and return in Pab (cvt x n_index).
double p_ab = 0.0;
write("CalcPab");
write(Hi_eval,"Hi_eval");
write(Uab,"Uab");
// write(ab,"ab");
if (is_check_mode())
assert(!has_nan(Hi_eval));
assert(!has_nan(Uab));
// assert(!has_nan(ab));
for (size_t p = 0; p <= n_cvt + 1; ++p) { // p walks rows phenotypes + covariates
for (size_t a = p + 1; a <= n_cvt + 2; ++a) { // a walks cols in p+1..rest
for (size_t b = a; b <= n_cvt + 2; ++b) { // b in a..rest
size_t index_ab = GetabIndex(a, b, n_cvt); // index in top half matrix, see above
if (p == 0) { // fills row 0 for each a,b using dot product of Hi_eval . Uab(a)
// cout << "p is 0 " << index_ab; // walk row 0
gsl_vector_const_view Uab_col = gsl_matrix_const_column(Uab, index_ab); // get the column
gsl_blas_ddot(Hi_eval, &Uab_col.vector, &p_ab); // dot product with H_eval
if (e_mode != 0) { // if not null model (defunct right now)
if (! is_legacy_mode()) assert(false); // disabling to see when it is used; allow with legacy mode
p_ab = gsl_vector_get(unused, index_ab) - p_ab; // was ab
}
// cout << p << "r, index_ab " << index_ab << ":" << p_ab << endl;
gsl_matrix_set(Pab, 0, index_ab, p_ab);
write(Pab,"Pab int");
} else {
// walk the rest of the upper triangle of the matrix (row 1..n). Cols jump with 2 at a time
// cout << "a" << a << "b" << b << "p" << p << "n_cvt" << n_cvt << endl;
write(Pab,"Pab int");
size_t index_aw = GetabIndex(a, p, n_cvt);
size_t index_bw = GetabIndex(b, p, n_cvt);
size_t index_ww = GetabIndex(p, p, n_cvt);
// auto rows = Pab->size1; // n_cvt+2
double ps_ab = gsl_matrix_safe_get(Pab, p - 1, index_ab);
double ps_aw = gsl_matrix_safe_get(Pab, p - 1, index_aw);
double ps_bw = gsl_matrix_safe_get(Pab, p - 1, index_bw);
double ps_ww = gsl_matrix_safe_get(Pab, p - 1, index_ww);
// cout << "unsafe " << p-1 << "," << index_ww << ":" << gsl_matrix_get(Pab,p-1,index_ww) << endl;
// if (is_check_mode() || is_debug_mode()) assert(ps_ww != 0.0);
if (ps_ww != 0)
p_ab = ps_ab - ps_aw * ps_bw / ps_ww;
else
p_ab = ps_ab;
// cout << "set " << p << "r, index_ab " << index_ab << "c: " << p_ab << endl;
gsl_matrix_set(Pab, p, index_ab, p_ab);
}
}
}
}
write(Pab,"Pab");
// if (is_strict_mode() && (has_nan(Uab) || has_nan(Pab) || has_nan(Hi_eval)))
// exit(2);
return;
}
void CalcPPab(const size_t n_cvt, const size_t e_mode,
const gsl_vector *HiHi_eval, const gsl_matrix *Uab,
const gsl_vector *unused_ab, const gsl_matrix *Pab, gsl_matrix *PPab) {
size_t index_ab, index_aw, index_bw, index_ww;
double p2_ab;
double ps2_ab, ps_aw, ps_bw, ps_ww, ps2_aw, ps2_bw, ps2_ww;
write("CalcPPab");
write(HiHi_eval,"Hi_eval");
write(Uab,"Uab");
// write(ab,"ab");
for (size_t p = 0; p <= n_cvt + 1; ++p) {
for (size_t a = p + 1; a <= n_cvt + 2; ++a) {
for (size_t b = a; b <= n_cvt + 2; ++b) {
index_ab = GetabIndex(a, b, n_cvt);
if (p == 0) {
gsl_vector_const_view Uab_col =
gsl_matrix_const_column(Uab, index_ab);
gsl_blas_ddot(HiHi_eval, &Uab_col.vector, &p2_ab);
if (e_mode != 0) {
assert(false);
p2_ab = p2_ab - gsl_vector_get(unused_ab, index_ab) +
2.0 * gsl_matrix_safe_get(Pab, 0, index_ab);
}
gsl_matrix_set(PPab, 0, index_ab, p2_ab);
} else {
index_aw = GetabIndex(a, p, n_cvt);
index_bw = GetabIndex(b, p, n_cvt);
index_ww = GetabIndex(p, p, n_cvt);
ps2_ab = gsl_matrix_safe_get(PPab, p - 1, index_ab);
ps_aw = gsl_matrix_safe_get(Pab, p - 1, index_aw);
ps_bw = gsl_matrix_safe_get(Pab, p - 1, index_bw);
ps_ww = gsl_matrix_safe_get(Pab, p - 1, index_ww);
ps2_aw = gsl_matrix_safe_get(PPab, p - 1, index_aw);
ps2_bw = gsl_matrix_safe_get(PPab, p - 1, index_bw);
ps2_ww = gsl_matrix_safe_get(PPab, p - 1, index_ww);
// if (is_check_mode() || is_debug_mode()) assert(ps_ww != 0.0);
if (ps_ww != 0) {
p2_ab = ps2_ab + ps_aw * ps_bw * ps2_ww / (ps_ww * ps_ww);
p2_ab -= (ps_aw * ps2_bw + ps_bw * ps2_aw) / ps_ww;
}
else {
p2_ab = ps2_ab;
}
gsl_matrix_set(PPab, p, index_ab, p2_ab);
}
}
}
}
write(PPab,"PPab");
// if (is_strict_mode() && (has_nan(Uab) || has_nan(PPab) || has_nan(HiHi_eval)))
// exit(2);
return;
}
void CalcPPPab(const size_t n_cvt, const size_t e_mode,
const gsl_vector *HiHiHi_eval, const gsl_matrix *Uab,
const gsl_vector *unused_ab, const gsl_matrix *Pab,
const gsl_matrix *PPab, gsl_matrix *PPPab) {
size_t index_ab, index_aw, index_bw, index_ww;
double p3_ab;
double ps3_ab, ps_aw, ps_bw, ps_ww, ps2_aw, ps2_bw, ps2_ww, ps3_aw, ps3_bw,
ps3_ww;
write("CalcPPPab");
write(HiHiHi_eval,"HiHiHi_eval");
write(Uab,"Uab");
for (size_t p = 0; p <= n_cvt + 1; ++p) {
for (size_t a = p + 1; a <= n_cvt + 2; ++a) {
for (size_t b = a; b <= n_cvt + 2; ++b) {
index_ab = GetabIndex(a, b, n_cvt);
if (p == 0) {
gsl_vector_const_view Uab_col =
gsl_matrix_const_column(Uab, index_ab);
gsl_blas_ddot(HiHiHi_eval, &Uab_col.vector, &p3_ab);
if (e_mode != 0) {
assert(false);
p3_ab = gsl_vector_get(unused_ab, index_ab) - p3_ab +
3.0 * gsl_matrix_get(PPab, 0, index_ab) -
3.0 * gsl_matrix_get(Pab, 0, index_ab);
}
gsl_matrix_set(PPPab, 0, index_ab, p3_ab);
} else {
index_aw = GetabIndex(a, p, n_cvt);
index_bw = GetabIndex(b, p, n_cvt);
index_ww = GetabIndex(p, p, n_cvt);
ps3_ab = gsl_matrix_safe_get(PPPab, p - 1, index_ab);
ps_aw = gsl_matrix_safe_get(Pab, p - 1, index_aw);
ps_bw = gsl_matrix_safe_get(Pab, p - 1, index_bw);
ps_ww = gsl_matrix_safe_get(Pab, p - 1, index_ww);
ps2_aw = gsl_matrix_safe_get(PPab, p - 1, index_aw);
ps2_bw = gsl_matrix_safe_get(PPab, p - 1, index_bw);
ps2_ww = gsl_matrix_safe_get(PPab, p - 1, index_ww);
ps3_aw = gsl_matrix_safe_get(PPPab, p - 1, index_aw);
ps3_bw = gsl_matrix_safe_get(PPPab, p - 1, index_bw);
ps3_ww = gsl_matrix_safe_get(PPPab, p - 1, index_ww);
// if (is_check_mode() || is_debug_mode()) assert(ps_ww != 0.0);
if (ps_ww != 0) {
p3_ab = ps3_ab -
ps_aw * ps_bw * ps2_ww * ps2_ww / (ps_ww * ps_ww * ps_ww);
p3_ab -= (ps_aw * ps3_bw + ps_bw * ps3_aw + ps2_aw * ps2_bw) / ps_ww;
p3_ab += (ps_aw * ps2_bw * ps2_ww + ps_bw * ps2_aw * ps2_ww +
ps_aw * ps_bw * ps3_ww) /
(ps_ww * ps_ww);
}
else {
p3_ab = ps3_ab;
}
gsl_matrix_set(PPPab, p, index_ab, p3_ab);
}
}
}
}
write(PPPab,"PPPab");
// if (is_strict_mode() && (has_nan(Uab) || has_nan(PPPab) || has_nan(HiHiHi_eval)))
// exit(2);
return;
}
double LogL_f(double l, void *params) {
FUNC_PARAM *p = (FUNC_PARAM *)params;
size_t n_cvt = p->n_cvt;
size_t ni_test = p->ni_test;
size_t n_index = (n_cvt + 2 + 1) * (n_cvt + 2) / 2;
size_t nc_total;
if (p->calc_null == true) {
nc_total = n_cvt;
} else {
nc_total = n_cvt + 1;
}
double f = 0.0, logdet_h = 0.0, d;
size_t index_yy;
gsl_matrix *Pab = gsl_matrix_safe_alloc(n_cvt + 2, n_index);
gsl_vector *Hi_eval = gsl_vector_safe_alloc((p->eval)->size);
gsl_vector *v_temp = gsl_vector_safe_alloc((p->eval)->size);
gsl_vector_safe_memcpy(v_temp, p->eval);
gsl_vector_scale(v_temp, l);
if (p->e_mode == 0) {
gsl_vector_set_all(Hi_eval, 1.0);
} else {
gsl_vector_safe_memcpy(Hi_eval, v_temp);
}
gsl_vector_add_constant(v_temp, 1.0);
gsl_vector_div(Hi_eval, v_temp);
for (size_t i = 0; i < (p->eval)->size; ++i) {
d = gsl_vector_get(v_temp, i);
logdet_h += safe_log(fabs(d));
}
CalcPab(n_cvt, p->e_mode, Hi_eval, p->Uab, p->ab, Pab);
double c =
0.5 * (double)ni_test * (safe_log((double)ni_test) - safe_log(2 * M_PI) - 1.0);
index_yy = GetabIndex(n_cvt + 2, n_cvt + 2, n_cvt);
double P_yy = gsl_matrix_safe_get(Pab, nc_total, index_yy);
if (P_yy >= 0.0 && (P_yy < P_YY_MIN)) P_yy = P_YY_MIN; // control potential round-off
if (is_check_mode() || is_debug_mode()) {
// cerr << "P_yy is" << P_yy << endl;
assert(!is_nan(P_yy));
assert(P_yy > 0.0);
}
f = c - 0.5 * logdet_h - 0.5 * (double)ni_test * safe_log(P_yy);
if (is_check_mode() || is_debug_mode()) {
assert(!is_nan(f));
}
gsl_matrix_free(Pab); // FIXME
gsl_vector_safe_free(Hi_eval);
gsl_vector_safe_free(v_temp);
return f;
}
double LogL_dev1(double l, void *params) {
FUNC_PARAM *p = (FUNC_PARAM *)params;
size_t n_cvt = p->n_cvt;
size_t ni_test = p->ni_test;
size_t n_index = (n_cvt + 2 + 1) * (n_cvt + 2) / 2; // represents top half of covariate matrix
size_t nc_total;
if (p->calc_null == true) {
nc_total = n_cvt;
} else {
nc_total = n_cvt + 1;
}
double dev1 = 0.0, trace_Hi = 0.0;
size_t index_yy;
gsl_matrix *Pab = gsl_matrix_safe_alloc(n_cvt + 2, n_index);
gsl_matrix *PPab = gsl_matrix_safe_alloc(n_cvt + 2, n_index);
gsl_vector *Hi_eval = gsl_vector_safe_alloc((p->eval)->size);
gsl_vector *HiHi_eval = gsl_vector_safe_alloc((p->eval)->size);
gsl_vector *v_temp = gsl_vector_safe_alloc((p->eval)->size);
gsl_vector_safe_memcpy(v_temp, p->eval);
gsl_vector_scale(v_temp, l);
if (p->e_mode == 0) {
gsl_vector_set_all(Hi_eval, 1.0);
} else {
gsl_vector_safe_memcpy(Hi_eval, v_temp);
}
gsl_vector_add_constant(v_temp, 1.0);
gsl_vector_div(Hi_eval, v_temp);
gsl_vector_safe_memcpy(HiHi_eval, Hi_eval);
gsl_vector_mul(HiHi_eval, Hi_eval);
gsl_vector_set_all(v_temp, 1.0);
gsl_blas_ddot(Hi_eval, v_temp, &trace_Hi);
if (p->e_mode != 0) {
trace_Hi = (double)ni_test - trace_Hi;
}
/*
(gdb) p Uab->size1
$1 = 247
(gdb) p n_cvt
$2 = 1
(gdb) p e_mode
$3 = 0
(gdb) p Uab->size2
$4 = 6
(gdb) p Hi_eval->size
$5 = 247
(gdb) p ab->size
$6 = 6
(gdb) p Pab->size1
$7 = 3
(gdb) p Pab->size2
$8 = 6
*/
#if !defined NDEBUG
auto Uab = p->Uab;
auto ab = p->ab;
assert(n_index == (n_cvt + 2 + 1) * (n_cvt + 2) / 2);
assert(Uab->size1 == ni_test);
assert(Uab->size2 == n_index); // n_cvt == 1 -> n_index == 6?
assert(Pab->size1 == n_cvt+2);
assert(Pab->size2 == n_index);
assert(ab->size == n_index);
assert(p->e_mode == 0);
assert(Hi_eval->size == ni_test);
#endif // DEBUG
CalcPab(n_cvt, p->e_mode, Hi_eval, p->Uab, p->ab, Pab);
CalcPPab(n_cvt, p->e_mode, HiHi_eval, p->Uab, p->ab, Pab, PPab);
double trace_HiK = ((double)ni_test - trace_Hi) / l;
index_yy = GetabIndex(n_cvt + 2, n_cvt + 2, n_cvt);
double P_yy = gsl_matrix_safe_get(Pab, nc_total, index_yy);
double PP_yy = gsl_matrix_safe_get(PPab, nc_total, index_yy);
double yPKPy = (P_yy - PP_yy) / l;
dev1 = -0.5 * trace_HiK + 0.5 * (double)ni_test * yPKPy / P_yy;
gsl_matrix_free(Pab); // FIXME: may contain NaN
gsl_matrix_free(PPab); // FIXME: may contain NaN
gsl_vector_safe_free(Hi_eval);
gsl_vector_safe_free(HiHi_eval);
gsl_vector_safe_free(v_temp);
return dev1;
}
double LogL_dev2(double l, void *params) {
FUNC_PARAM *p = (FUNC_PARAM *)params;
size_t n_cvt = p->n_cvt;
size_t ni_test = p->ni_test;
size_t n_index = (n_cvt + 2 + 1) * (n_cvt + 2) / 2;
size_t nc_total;
if (p->calc_null == true) {
nc_total = n_cvt;
} else {
nc_total = n_cvt + 1;
}
double dev2 = 0.0, trace_Hi = 0.0, trace_HiHi = 0.0;
size_t index_yy;
gsl_matrix *Pab = gsl_matrix_safe_alloc(n_cvt + 2, n_index);
gsl_matrix *PPab = gsl_matrix_safe_alloc(n_cvt + 2, n_index);
gsl_matrix *PPPab = gsl_matrix_safe_alloc(n_cvt + 2, n_index);
gsl_vector *Hi_eval = gsl_vector_safe_alloc((p->eval)->size);
gsl_vector *HiHi_eval = gsl_vector_safe_alloc((p->eval)->size);
gsl_vector *HiHiHi_eval = gsl_vector_safe_alloc((p->eval)->size);
gsl_vector *v_temp = gsl_vector_safe_alloc((p->eval)->size);
gsl_vector_safe_memcpy(v_temp, p->eval);
gsl_vector_scale(v_temp, l);
if (p->e_mode == 0) {
gsl_vector_set_all(Hi_eval, 1.0);
} else {
gsl_vector_safe_memcpy(Hi_eval, v_temp);
}
gsl_vector_add_constant(v_temp, 1.0);
gsl_vector_div(Hi_eval, v_temp);
gsl_vector_safe_memcpy(HiHi_eval, Hi_eval);
gsl_vector_mul(HiHi_eval, Hi_eval);
gsl_vector_safe_memcpy(HiHiHi_eval, HiHi_eval);
gsl_vector_mul(HiHiHi_eval, Hi_eval);
gsl_vector_set_all(v_temp, 1.0);
gsl_blas_ddot(Hi_eval, v_temp, &trace_Hi);
gsl_blas_ddot(HiHi_eval, v_temp, &trace_HiHi);
if (p->e_mode != 0) {
trace_Hi = (double)ni_test - trace_Hi;
trace_HiHi = 2 * trace_Hi + trace_HiHi - (double)ni_test;
}
CalcPab(n_cvt, p->e_mode, Hi_eval, p->Uab, p->ab, Pab);
CalcPPab(n_cvt, p->e_mode, HiHi_eval, p->Uab, p->ab, Pab, PPab);
CalcPPPab(n_cvt, p->e_mode, HiHiHi_eval, p->Uab, p->ab, Pab, PPab, PPPab);
double trace_HiKHiK = ((double)ni_test + trace_HiHi - 2 * trace_Hi) / (l * l);
index_yy = GetabIndex(n_cvt + 2, n_cvt + 2, n_cvt);
double P_yy = gsl_matrix_safe_get(Pab, nc_total, index_yy);
double PP_yy = gsl_matrix_safe_get(PPab, nc_total, index_yy);
double PPP_yy = gsl_matrix_safe_get(PPPab, nc_total, index_yy);
double yPKPy = (P_yy - PP_yy) / l;
double yPKPKPy = (P_yy + PPP_yy - 2.0 * PP_yy) / (l * l);
dev2 = 0.5 * trace_HiKHiK -
0.5 * (double)ni_test * (2.0 * yPKPKPy * P_yy - yPKPy * yPKPy) /
(P_yy * P_yy);
gsl_matrix_free(Pab); // FIXME
gsl_matrix_free(PPab);
gsl_matrix_free(PPPab);
gsl_vector_safe_free(Hi_eval);
gsl_vector_safe_free(HiHi_eval);
gsl_vector_safe_free(HiHiHi_eval);
gsl_vector_safe_free(v_temp);
return dev2;
}
void LogL_dev12(double l, void *params, double *dev1, double *dev2) {
FUNC_PARAM *p = (FUNC_PARAM *)params;
size_t n_cvt = p->n_cvt;
size_t ni_test = p->ni_test;
size_t n_index = (n_cvt + 2 + 1) * (n_cvt + 2) / 2;
size_t nc_total;
if (p->calc_null == true) {
nc_total = n_cvt;
} else {
nc_total = n_cvt + 1;
}
double trace_Hi = 0.0, trace_HiHi = 0.0;
size_t index_yy;
gsl_matrix *Pab = gsl_matrix_safe_alloc(n_cvt + 2, n_index);
gsl_matrix *PPab = gsl_matrix_safe_alloc(n_cvt + 2, n_index);
gsl_matrix *PPPab = gsl_matrix_safe_alloc(n_cvt + 2, n_index);
gsl_vector *Hi_eval = gsl_vector_safe_alloc((p->eval)->size);
gsl_vector *HiHi_eval = gsl_vector_safe_alloc((p->eval)->size);
gsl_vector *HiHiHi_eval = gsl_vector_safe_alloc((p->eval)->size);
gsl_vector *v_temp = gsl_vector_safe_alloc((p->eval)->size);
gsl_vector_safe_memcpy(v_temp, p->eval);
gsl_vector_scale(v_temp, l);
if (p->e_mode == 0) {
gsl_vector_set_all(Hi_eval, 1.0);
} else {
gsl_vector_safe_memcpy(Hi_eval, v_temp);
}
gsl_vector_add_constant(v_temp, 1.0);
gsl_vector_div(Hi_eval, v_temp);
gsl_vector_safe_memcpy(HiHi_eval, Hi_eval);
gsl_vector_mul(HiHi_eval, Hi_eval);
gsl_vector_safe_memcpy(HiHiHi_eval, HiHi_eval);
gsl_vector_mul(HiHiHi_eval, Hi_eval);
gsl_vector_set_all(v_temp, 1.0);
gsl_blas_ddot(Hi_eval, v_temp, &trace_Hi);
gsl_blas_ddot(HiHi_eval, v_temp, &trace_HiHi);
if (p->e_mode != 0) {
trace_Hi = (double)ni_test - trace_Hi;
trace_HiHi = 2 * trace_Hi + trace_HiHi - (double)ni_test;
}
CalcPab(n_cvt, p->e_mode, Hi_eval, p->Uab, p->ab, Pab);
CalcPPab(n_cvt, p->e_mode, HiHi_eval, p->Uab, p->ab, Pab, PPab);
CalcPPPab(n_cvt, p->e_mode, HiHiHi_eval, p->Uab, p->ab, Pab, PPab, PPPab);
double trace_HiK = ((double)ni_test - trace_Hi) / l;
double trace_HiKHiK = ((double)ni_test + trace_HiHi - 2 * trace_Hi) / (l * l);
index_yy = GetabIndex(n_cvt + 2, n_cvt + 2, n_cvt);
double P_yy = gsl_matrix_safe_get(Pab, nc_total, index_yy);
double PP_yy = gsl_matrix_safe_get(PPab, nc_total, index_yy);
double PPP_yy = gsl_matrix_safe_get(PPPab, nc_total, index_yy);
double yPKPy = (P_yy - PP_yy) / l;
double yPKPKPy = (P_yy + PPP_yy - 2.0 * PP_yy) / (l * l);
*dev1 = -0.5 * trace_HiK + 0.5 * (double)ni_test * yPKPy / P_yy;
*dev2 = 0.5 * trace_HiKHiK -
0.5 * (double)ni_test * (2.0 * yPKPKPy * P_yy - yPKPy * yPKPy) /
(P_yy * P_yy);
gsl_matrix_free(Pab); // FIXME: may contain NaN
gsl_matrix_free(PPab); // FIXME: may contain NaN
gsl_matrix_free(PPPab); // FIXME: may contain NaN
gsl_vector_safe_free(Hi_eval);
gsl_vector_safe_free(HiHi_eval);
gsl_vector_safe_free(HiHiHi_eval);
gsl_vector_safe_free(v_temp);
return;
}
double LogRL_f(double l, void *params) {
FUNC_PARAM *p = (FUNC_PARAM *)params;
size_t n_cvt = p->n_cvt;
size_t ni_test = p->ni_test;
size_t n_index = (n_cvt + 2 + 1) * (n_cvt + 2) / 2;
double df;
size_t nc_total;
if (p->calc_null == true) {
nc_total = n_cvt;
df = (double)ni_test - (double)n_cvt;
} else {
nc_total = n_cvt + 1;
df = (double)ni_test - (double)n_cvt - 1.0;
}
double f = 0.0, logdet_h = 0.0, logdet_hiw = 0.0, d;
size_t index_ww;
gsl_matrix *Pab = gsl_matrix_safe_alloc(n_cvt + 2, n_index);
gsl_matrix *Iab = gsl_matrix_safe_alloc(n_cvt + 2, n_index);
gsl_vector *Hi_eval = gsl_vector_safe_alloc((p->eval)->size);
gsl_vector *v_temp = gsl_vector_safe_alloc((p->eval)->size);
gsl_vector_safe_memcpy(v_temp, p->eval);
gsl_vector_scale(v_temp, l);
if (p->e_mode == 0) {
gsl_vector_set_all(Hi_eval, 1.0);
} else {
gsl_vector_safe_memcpy(Hi_eval, v_temp);
}
gsl_vector_add_constant(v_temp, 1.0);
gsl_vector_div(Hi_eval, v_temp);
for (size_t i = 0; i < (p->eval)->size; ++i) {
d = gsl_vector_get(v_temp, i);
logdet_h += safe_log(fabs(d));
}
CalcPab(n_cvt, p->e_mode, Hi_eval, p->Uab, p->ab, Pab);
gsl_vector_set_all(v_temp, 1.0);
CalcPab(n_cvt, p->e_mode, v_temp, p->Uab, p->ab, Iab);
// Calculate |WHiW|-|WW|.
logdet_hiw = 0.0;
for (size_t i = 0; i < nc_total; ++i) {
index_ww = GetabIndex(i + 1, i + 1, n_cvt);
d = gsl_matrix_safe_get(Pab, i, index_ww);
logdet_hiw += safe_log(d);
d = gsl_matrix_safe_get(Iab, i, index_ww);
logdet_hiw -= safe_log(d);
}
index_ww = GetabIndex(n_cvt + 2, n_cvt + 2, n_cvt);
double P_yy = gsl_matrix_safe_get(Pab, nc_total, index_ww);
// P_yy is positive and may get zeroed printf("P_yy=%f",P_yy);
if (P_yy >= 0.0 && (P_yy < P_YY_MIN)) P_yy = P_YY_MIN; // control potential round-off
double c = 0.5 * df * (safe_log(df) - safe_log(2 * M_PI) - 1.0);
f = c - 0.5 * logdet_h - 0.5 * logdet_hiw - 0.5 * df * safe_log(P_yy);
gsl_matrix_free(Pab);
gsl_matrix_free(Iab); // contains NaN
gsl_vector_safe_free(Hi_eval);
gsl_vector_safe_free(v_temp);
return f;
}
double LogRL_dev1(double l, void *params) {
FUNC_PARAM *p = (FUNC_PARAM *)params;
size_t n_cvt = p->n_cvt;
size_t ni_test = p->ni_test;
size_t n_index = (n_cvt + 2 + 1) * (n_cvt + 2) / 2;
double df;
size_t nc_total;
if (p->calc_null == true) {
nc_total = n_cvt;
df = (double)ni_test - (double)n_cvt;
} else {
nc_total = n_cvt + 1;
df = (double)ni_test - (double)n_cvt - 1.0;
}
double dev1 = 0.0, trace_Hi = 0.0;
size_t index_ww;
gsl_matrix *Pab = gsl_matrix_safe_alloc(n_cvt + 2, n_index);
gsl_matrix *PPab = gsl_matrix_safe_alloc(n_cvt + 2, n_index);
gsl_vector *Hi_eval = gsl_vector_safe_alloc((p->eval)->size);
gsl_vector *HiHi_eval = gsl_vector_safe_alloc((p->eval)->size);
gsl_vector *v_temp = gsl_vector_safe_alloc((p->eval)->size);
// write(p->eval, "p->eval");
gsl_vector_safe_memcpy(v_temp, p->eval); // initialize with eval
gsl_vector_scale(v_temp, l);
if (p->e_mode == 0) {
gsl_vector_set_all(Hi_eval, 1.0);
} else {
gsl_vector_safe_memcpy(Hi_eval, v_temp);
}
gsl_vector_add_constant(v_temp, 1.0);
gsl_vector_div(Hi_eval, v_temp);
gsl_vector_safe_memcpy(HiHi_eval, Hi_eval);
gsl_vector_mul(HiHi_eval, Hi_eval);
gsl_vector_set_all(v_temp, 1.0);
gsl_blas_ddot(Hi_eval, v_temp, &trace_Hi);
if (p->e_mode != 0) {
trace_Hi = (double)ni_test - trace_Hi;
}
write(p->eval, "p->eval2");
write(p->ab, "p->ab");
CalcPab(n_cvt, p->e_mode, Hi_eval, p->Uab, p->ab, Pab);
CalcPPab(n_cvt, p->e_mode, HiHi_eval, p->Uab, p->ab, Pab, PPab);
// Calculate tracePK and trace PKPK.
double trace_P = trace_Hi;
double ps_ww, ps2_ww;
for (size_t i = 0; i < nc_total; ++i) {
index_ww = GetabIndex(i + 1, i + 1, n_cvt);
ps_ww = gsl_matrix_safe_get(Pab, i, index_ww);
ps2_ww = gsl_matrix_safe_get(PPab, i, index_ww);
trace_P -= ps2_ww / ps_ww;
}
double trace_PK = (df - trace_P) / l;
// Calculate yPKPy, yPKPKPy.
index_ww = GetabIndex(n_cvt + 2, n_cvt + 2, n_cvt);
double P_yy = gsl_matrix_safe_get(Pab, nc_total, index_ww);
double PP_yy = gsl_matrix_safe_get(PPab, nc_total, index_ww);
double yPKPy = (P_yy - PP_yy) / l;
dev1 = -0.5 * trace_PK + 0.5 * df * yPKPy / P_yy;
gsl_matrix_free(Pab); // FIXME: may contain NaN
gsl_matrix_free(PPab); // FIXME: may contain NaN
gsl_vector_safe_free(Hi_eval);
gsl_vector_safe_free(HiHi_eval);
gsl_vector_safe_free(v_temp);
return dev1;
}
double LogRL_dev2(double l, void *params) {
FUNC_PARAM *p = (FUNC_PARAM *)params;
size_t n_cvt = p->n_cvt;
size_t ni_test = p->ni_test;
size_t n_index = (n_cvt + 2 + 1) * (n_cvt + 2) / 2;
double df;
size_t nc_total;
if (p->calc_null == true) {
nc_total = n_cvt;
df = (double)ni_test - (double)n_cvt;
} else {
nc_total = n_cvt + 1;
df = (double)ni_test - (double)n_cvt - 1.0;
}
double dev2 = 0.0, trace_Hi = 0.0, trace_HiHi = 0.0;
size_t index_ww;
gsl_matrix *Pab = gsl_matrix_safe_alloc(n_cvt + 2, n_index);
gsl_matrix *PPab = gsl_matrix_safe_alloc(n_cvt + 2, n_index);
gsl_matrix *PPPab = gsl_matrix_safe_alloc(n_cvt + 2, n_index);
gsl_vector *Hi_eval = gsl_vector_safe_alloc((p->eval)->size);
gsl_vector *HiHi_eval = gsl_vector_safe_alloc((p->eval)->size);
gsl_vector *HiHiHi_eval = gsl_vector_safe_alloc((p->eval)->size);
gsl_vector *v_temp = gsl_vector_safe_alloc((p->eval)->size);
gsl_vector_safe_memcpy(v_temp, p->eval);
gsl_vector_scale(v_temp, l);
if (p->e_mode == 0) {
gsl_vector_set_all(Hi_eval, 1.0);
} else {
gsl_vector_safe_memcpy(Hi_eval, v_temp);
}
gsl_vector_add_constant(v_temp, 1.0);
gsl_vector_div(Hi_eval, v_temp);
gsl_vector_safe_memcpy(HiHi_eval, Hi_eval);
gsl_vector_mul(HiHi_eval, Hi_eval);
gsl_vector_safe_memcpy(HiHiHi_eval, HiHi_eval);
gsl_vector_mul(HiHiHi_eval, Hi_eval);
gsl_vector_set_all(v_temp, 1.0);
gsl_blas_ddot(Hi_eval, v_temp, &trace_Hi);
gsl_blas_ddot(HiHi_eval, v_temp, &trace_HiHi);
if (p->e_mode != 0) {
trace_Hi = (double)ni_test - trace_Hi;
trace_HiHi = 2 * trace_Hi + trace_HiHi - (double)ni_test;
}
CalcPab(n_cvt, p->e_mode, Hi_eval, p->Uab, p->ab, Pab);
CalcPPab(n_cvt, p->e_mode, HiHi_eval, p->Uab, p->ab, Pab, PPab);
CalcPPPab(n_cvt, p->e_mode, HiHiHi_eval, p->Uab, p->ab, Pab, PPab, PPPab);
// Calculate tracePK and trace PKPK.
double trace_P = trace_Hi, trace_PP = trace_HiHi;
double ps_ww, ps2_ww, ps3_ww;
for (size_t i = 0; i < nc_total; ++i) {
index_ww = GetabIndex(i + 1, i + 1, n_cvt);
ps_ww = gsl_matrix_safe_get(Pab, i, index_ww);
ps2_ww = gsl_matrix_safe_get(PPab, i, index_ww);
ps3_ww = gsl_matrix_safe_get(PPPab, i, index_ww);
trace_P -= ps2_ww / ps_ww;
trace_PP += ps2_ww * ps2_ww / (ps_ww * ps_ww) - 2.0 * ps3_ww / ps_ww;
}
double trace_PKPK = (df + trace_PP - 2.0 * trace_P) / (l * l);
// Calculate yPKPy, yPKPKPy.
index_ww = GetabIndex(n_cvt + 2, n_cvt + 2, n_cvt);
double P_yy = gsl_matrix_safe_get(Pab, nc_total, index_ww);
double PP_yy = gsl_matrix_safe_get(PPab, nc_total, index_ww);
double PPP_yy = gsl_matrix_safe_get(PPPab, nc_total, index_ww);
double yPKPy = (P_yy - PP_yy) / l;
double yPKPKPy = (P_yy + PPP_yy - 2.0 * PP_yy) / (l * l);
dev2 = 0.5 * trace_PKPK -
0.5 * df * (2.0 * yPKPKPy * P_yy - yPKPy * yPKPy) / (P_yy * P_yy);
gsl_matrix_free(Pab); // FIXME
gsl_matrix_free(PPab);
gsl_matrix_free(PPPab);
gsl_vector_safe_free(Hi_eval);
gsl_vector_safe_free(HiHi_eval);
gsl_vector_safe_free(HiHiHi_eval);
gsl_vector_safe_free(v_temp);
return dev2;
}
void LogRL_dev12(double l, void *params, double *dev1, double *dev2) {
FUNC_PARAM *p = (FUNC_PARAM *)params;
size_t n_cvt = p->n_cvt;
size_t ni_test = p->ni_test;
size_t n_index = (n_cvt + 2 + 1) * (n_cvt + 2) / 2;
double df;
size_t nc_total;
if (p->calc_null == true) {
nc_total = n_cvt;
df = (double)ni_test - (double)n_cvt;
} else {
nc_total = n_cvt + 1;
df = (double)ni_test - (double)n_cvt - 1.0;
}
double trace_Hi = 0.0, trace_HiHi = 0.0;
size_t index_ww;
gsl_matrix *Pab = gsl_matrix_safe_alloc(n_cvt + 2, n_index);
gsl_matrix *PPab = gsl_matrix_safe_alloc(n_cvt + 2, n_index);
gsl_matrix *PPPab = gsl_matrix_safe_alloc(n_cvt + 2, n_index);
gsl_vector *Hi_eval = gsl_vector_safe_alloc((p->eval)->size);
gsl_vector *HiHi_eval = gsl_vector_safe_alloc((p->eval)->size);
gsl_vector *HiHiHi_eval = gsl_vector_safe_alloc((p->eval)->size);
gsl_vector *v_temp = gsl_vector_safe_alloc((p->eval)->size);
gsl_vector_safe_memcpy(v_temp, p->eval);
gsl_vector_scale(v_temp, l);
if (p->e_mode == 0) {
gsl_vector_set_all(Hi_eval, 1.0);
} else {
gsl_vector_safe_memcpy(Hi_eval, v_temp);
}
gsl_vector_add_constant(v_temp, 1.0);
gsl_vector_div(Hi_eval, v_temp);
gsl_vector_safe_memcpy(HiHi_eval, Hi_eval);
gsl_vector_mul(HiHi_eval, Hi_eval);
gsl_vector_safe_memcpy(HiHiHi_eval, HiHi_eval);
gsl_vector_mul(HiHiHi_eval, Hi_eval);
gsl_vector_set_all(v_temp, 1.0);
gsl_blas_ddot(Hi_eval, v_temp, &trace_Hi);
gsl_blas_ddot(HiHi_eval, v_temp, &trace_HiHi);
if (p->e_mode != 0) {
trace_Hi = (double)ni_test - trace_Hi;
trace_HiHi = 2 * trace_Hi + trace_HiHi - (double)ni_test;
}
CalcPab(n_cvt, p->e_mode, Hi_eval, p->Uab, p->ab, Pab);
CalcPPab(n_cvt, p->e_mode, HiHi_eval, p->Uab, p->ab, Pab, PPab);
CalcPPPab(n_cvt, p->e_mode, HiHiHi_eval, p->Uab, p->ab, Pab, PPab, PPPab);
// Calculate tracePK and trace PKPK.
double trace_P = trace_Hi, trace_PP = trace_HiHi;
double ps_ww, ps2_ww, ps3_ww;
for (size_t i = 0; i < nc_total; ++i) {
index_ww = GetabIndex(i + 1, i + 1, n_cvt);
ps_ww = gsl_matrix_safe_get(Pab, i, index_ww);
ps2_ww = gsl_matrix_safe_get(PPab, i, index_ww);
ps3_ww = gsl_matrix_safe_get(PPPab, i, index_ww);
trace_P -= ps2_ww / ps_ww;
trace_PP += ps2_ww * ps2_ww / (ps_ww * ps_ww) - 2.0 * ps3_ww / ps_ww;
}
double trace_PK = (df - trace_P) / l;
double trace_PKPK = (df + trace_PP - 2.0 * trace_P) / (l * l);
// Calculate yPKPy, yPKPKPy.
index_ww = GetabIndex(n_cvt + 2, n_cvt + 2, n_cvt);
double P_yy = gsl_matrix_safe_get(Pab, nc_total, index_ww);
double PP_yy = gsl_matrix_safe_get(PPab, nc_total, index_ww);
double PPP_yy = gsl_matrix_safe_get(PPPab, nc_total, index_ww);
double yPKPy = (P_yy - PP_yy) / l;
double yPKPKPy = (P_yy + PPP_yy - 2.0 * PP_yy) / (l * l);
*dev1 = -0.5 * trace_PK + 0.5 * df * yPKPy / P_yy;
*dev2 = 0.5 * trace_PKPK -
0.5 * df * (2.0 * yPKPKPy * P_yy - yPKPy * yPKPy) / (P_yy * P_yy);
gsl_matrix_free(Pab); // FIXME
gsl_matrix_free(PPab);
gsl_matrix_free(PPPab);
gsl_vector_safe_free(Hi_eval);
gsl_vector_safe_free(HiHi_eval);
gsl_vector_safe_free(HiHiHi_eval);
gsl_vector_safe_free(v_temp);
return;
}
void LMM::CalcRLWald(const double l, const FUNC_PARAM ¶ms, double &beta,
double &se, double &p_wald) {
size_t n_cvt = params.n_cvt;
size_t n_index = (n_cvt + 2 + 1) * (n_cvt + 2) / 2;
int df = (int)ni_test - (int)n_cvt - 1;
gsl_matrix *Pab = gsl_matrix_safe_alloc(n_cvt + 2, n_index);
gsl_vector *Hi_eval = gsl_vector_safe_alloc(params.eval->size);
gsl_vector *v_temp = gsl_vector_safe_alloc(params.eval->size);
gsl_vector_safe_memcpy(v_temp, params.eval);
gsl_vector_scale(v_temp, l);
if (params.e_mode == 0) {
gsl_vector_set_all(Hi_eval, 1.0);
} else {
gsl_vector_safe_memcpy(Hi_eval, v_temp);
}
gsl_vector_add_constant(v_temp, 1.0);
gsl_vector_div(Hi_eval, v_temp);
CalcPab(n_cvt, params.e_mode, Hi_eval, params.Uab, params.ab, Pab);
size_t index_yy = GetabIndex(n_cvt + 2, n_cvt + 2, n_cvt);
size_t index_xx = GetabIndex(n_cvt + 1, n_cvt + 1, n_cvt);
size_t index_xy = GetabIndex(n_cvt + 2, n_cvt + 1, n_cvt);
double P_yy = gsl_matrix_safe_get(Pab, n_cvt, index_yy);
double P_xx = gsl_matrix_safe_get(Pab, n_cvt, index_xx);
double P_xy = gsl_matrix_safe_get(Pab, n_cvt, index_xy);
double Px_yy = gsl_matrix_safe_get(Pab, n_cvt + 1, index_yy);
beta = P_xy / P_xx;
double tau = (double)df / Px_yy;
se = safe_sqrt(1.0 / (tau * P_xx));
p_wald = gsl_cdf_fdist_Q((P_yy - Px_yy) * tau, 1.0, df);
gsl_matrix_free(Pab);
gsl_vector_safe_free(Hi_eval);
gsl_vector_safe_free(v_temp);
return;
}
void LMM::CalcRLScore(const double l, const FUNC_PARAM ¶ms, double &beta,
double &se, double &p_score) {
size_t n_cvt = params.n_cvt;
size_t n_index = (n_cvt + 2 + 1) * (n_cvt + 2) / 2;
int df = (int)ni_test - (int)n_cvt - 1;
gsl_matrix *Pab = gsl_matrix_safe_alloc(n_cvt + 2, n_index);
gsl_vector *Hi_eval = gsl_vector_safe_alloc(params.eval->size);
gsl_vector *v_temp = gsl_vector_safe_alloc(params.eval->size);
gsl_vector_safe_memcpy(v_temp, params.eval);
gsl_vector_scale(v_temp, l);
if (params.e_mode == 0) {
gsl_vector_set_all(Hi_eval, 1.0);
} else {
gsl_vector_safe_memcpy(Hi_eval, v_temp);
}
gsl_vector_add_constant(v_temp, 1.0);
gsl_vector_div(Hi_eval, v_temp);
CalcPab(n_cvt, params.e_mode, Hi_eval, params.Uab, params.ab, Pab);
size_t index_yy = GetabIndex(n_cvt + 2, n_cvt + 2, n_cvt);
size_t index_xx = GetabIndex(n_cvt + 1, n_cvt + 1, n_cvt);
size_t index_xy = GetabIndex(n_cvt + 2, n_cvt + 1, n_cvt);
double P_yy = gsl_matrix_safe_get(Pab, n_cvt, index_yy);
double P_xx = gsl_matrix_safe_get(Pab, n_cvt, index_xx);
double P_xy = gsl_matrix_safe_get(Pab, n_cvt, index_xy);
double Px_yy = gsl_matrix_safe_get(Pab, n_cvt + 1, index_yy);
beta = P_xy / P_xx;
double tau = (double)df / Px_yy;
se = safe_sqrt(1.0 / (tau * P_xx));
p_score =
gsl_cdf_fdist_Q((double)ni_test * P_xy * P_xy / (P_yy * P_xx), 1.0, df);
gsl_matrix_free(Pab);
gsl_vector_safe_free(Hi_eval);
gsl_vector_safe_free(v_temp);
}
void CalcUab(const gsl_matrix *UtW, const gsl_vector *Uty, gsl_matrix *Uab) {
size_t index_ab;
size_t n_cvt = UtW->size2;
// debug_msg("entering");
gsl_vector *u_a = gsl_vector_safe_alloc(Uty->size);
for (size_t a = 1; a <= n_cvt + 2; ++a) { // walk columns of pheno+cvt
if (a == n_cvt + 1) {
continue;
}
if (a == n_cvt + 2) {
gsl_vector_safe_memcpy(u_a, Uty); // last column is phenotype
} else {
gsl_vector_const_view UtW_col = gsl_matrix_const_column(UtW, a - 1);
gsl_vector_safe_memcpy(u_a, &UtW_col.vector);
}
for (size_t b = a; b >= 1; --b) { // back fill other columns
if (b == n_cvt + 1) {
continue;
}
index_ab = GetabIndex(a, b, n_cvt);
gsl_vector_view Uab_col = gsl_matrix_column(Uab, index_ab);
if (b == n_cvt + 2) {
gsl_vector_safe_memcpy(&Uab_col.vector, Uty);
} else {
gsl_vector_const_view UtW_col = gsl_matrix_const_column(UtW, b - 1);
gsl_vector_safe_memcpy(&Uab_col.vector, &UtW_col.vector);
}
gsl_vector_mul(&Uab_col.vector, u_a);
}
// cout << "a" << a << endl;
write(Uab,"Uab iteration");
}
gsl_vector_safe_free(u_a);
return;
}
void CalcUab(const gsl_matrix *UtW, const gsl_vector *Uty,
const gsl_vector *Utx, gsl_matrix *Uab) {
size_t index_ab;
size_t n_cvt = UtW->size2;
for (size_t b = 1; b <= n_cvt + 2; ++b) {
index_ab = GetabIndex(n_cvt + 1, b, n_cvt);
gsl_vector_view Uab_col = gsl_matrix_column(Uab, index_ab);
if (b == n_cvt + 2) {
gsl_vector_safe_memcpy(&Uab_col.vector, Uty);
} else if (b == n_cvt + 1) {
gsl_vector_safe_memcpy(&Uab_col.vector, Utx);
} else {
gsl_vector_const_view UtW_col = gsl_matrix_const_column(UtW, b - 1);
gsl_vector_safe_memcpy(&Uab_col.vector, &UtW_col.vector);
}
gsl_vector_mul(&Uab_col.vector, Utx);
}
return;
}
void Calcab(const gsl_matrix *W, const gsl_vector *y, gsl_vector *ab) {
write(W,"W");
write(y,"y");
gsl_vector_set_zero(ab); // not sure, but emulates v95 behaviour
size_t n_cvt = W->size2;
gsl_vector *v_a = gsl_vector_safe_alloc(y->size);
gsl_vector *v_b = gsl_vector_safe_alloc(y->size);
double d;
for (size_t a = 1; a <= n_cvt + 2; ++a) {
if (a == n_cvt + 1) {
continue;
}
if (a == n_cvt + 2) {
gsl_vector_safe_memcpy(v_a, y);
} else {
gsl_vector_const_view W_col = gsl_matrix_const_column(W, a - 1);
gsl_vector_safe_memcpy(v_a, &W_col.vector);
}
write(v_a,"v_a");
for (size_t b = a; b >= 1; --b) {
if (b == n_cvt + 1) {
continue;
}
auto index_ab = GetabIndex(a, b, n_cvt);
if (b == n_cvt + 2) {
gsl_vector_safe_memcpy(v_b, y);
} else {
gsl_vector_const_view W_col = gsl_matrix_const_column(W, b - 1);
gsl_vector_safe_memcpy(v_b, &W_col.vector);
}
write(v_b,"v_b");
gsl_blas_ddot(v_a, v_b, &d);
gsl_vector_set(ab, index_ab, d);
}
}
write(ab,"ab");
gsl_vector_safe_free(v_a);
gsl_vector_safe_free(v_b);
return;
}
void Calcab(const gsl_matrix *W, const gsl_vector *y, const gsl_vector *x,
gsl_vector *ab) {
size_t index_ab;
size_t n_cvt = W->size2;
gsl_vector_set_zero(ab); // not sure, but emulates v95 behaviour
double d;
gsl_vector *v_b = gsl_vector_safe_alloc(y->size);
for (size_t b = 1; b <= n_cvt + 2; ++b) {
index_ab = GetabIndex(n_cvt + 1, b, n_cvt);
if (b == n_cvt + 2) {
gsl_vector_safe_memcpy(v_b, y);
} else if (b == n_cvt + 1) {
gsl_vector_safe_memcpy(v_b, x);
} else {
gsl_vector_const_view W_col = gsl_matrix_const_column(W, b - 1);
gsl_vector_safe_memcpy(v_b, &W_col.vector);
}
gsl_blas_ddot(x, v_b, &d);
gsl_vector_set(ab, index_ab, d);
}
gsl_vector_safe_free(v_b);
return;
}
void LMM::AnalyzeGene(const gsl_matrix *U, const gsl_vector *eval,
const gsl_matrix *UtW, const gsl_vector *Utx,
const gsl_matrix *W, const gsl_vector *x) {
debug_msg(file_gene);
igzstream infile(file_gene.c_str(), igzstream::in);
if (!infile) {
cout << "error reading gene expression file:" << file_gene << endl;
return;
}
clock_t time_start = clock();
string line;
char *ch_ptr;
double lambda_mle = 0, lambda_remle = 0, beta = 0, se = 0, p_wald = 0;
double p_lrt = 0, p_score = 0;
double logl_H1 = 0.0, logl_H0 = 0.0, l_H0;
int c_phen;
string rs; // Gene id.
double d;
// Calculate basic quantities.
size_t n_index = (n_cvt + 2 + 1) * (n_cvt + 2) / 2;
gsl_vector *y = gsl_vector_safe_alloc(U->size1);
gsl_vector *Uty = gsl_vector_safe_alloc(U->size2);
gsl_matrix *Uab = gsl_matrix_safe_alloc(U->size2, n_index);
gsl_vector *ab = gsl_vector_safe_alloc(n_index);
// Header.
getline(infile, line);
for (size_t t = 0; t < ng_total; t++) {
safeGetline(infile, line).eof();
if (t % d_pace == 0 || t == ng_total - 1) {
ProgressBar("Performing Analysis", t, ng_total - 1);
}
ch_ptr = strtok_safe2((char *)line.c_str(), " , \t",file_gene.c_str());
rs = ch_ptr;
c_phen = 0;
for (size_t i = 0; i < indicator_idv.size(); ++i) {
ch_ptr = strtok_safe2(NULL, " , \t",file_gene.c_str());
if (indicator_idv[i] == 0) {
continue;
}
d = atof(ch_ptr);
gsl_vector_set(y, c_phen, d);
c_phen++;
}
time_start = clock();
gsl_blas_dgemv(CblasTrans, 1.0, U, y, 0.0, Uty);
time_UtX += (clock() - time_start) / (double(CLOCKS_PER_SEC) * 60.0);
// Calculate null.
time_start = clock();
gsl_matrix_set_zero(Uab);
CalcUab(UtW, Uty, Uab);
FUNC_PARAM param0 = {false, ni_test, n_cvt, eval, Uab, ab, 0};
if (a_mode == M_LMM2 || a_mode == M_LMM3 || a_mode == M_LMM4 || a_mode == M_LMM9) {
CalcLambda('L', param0, l_min, l_max, n_region, l_H0, logl_H0);
}
// Calculate alternative.
CalcUab(UtW, Uty, Utx, Uab);
FUNC_PARAM param1 = {false, ni_test, n_cvt, eval, Uab, ab, 0};
// 3 is before 1.
if (a_mode == M_LMM3 || a_mode == M_LMM4 || a_mode == M_LMM9) {
CalcRLScore(l_H0, param1, beta, se, p_score);
}
if (a_mode == M_LMM1 || a_mode == M_LMM4) {
CalcLambda('R', param1, l_min, l_max, n_region, lambda_remle, logl_H1);
CalcRLWald(lambda_remle, param1, beta, se, p_wald);
}
if (a_mode == M_LMM2 || a_mode == M_LMM4 || a_mode == M_LMM9) {
CalcLambda('L', param1, l_min, l_max, n_region, lambda_mle, logl_H1);
p_lrt = gsl_cdf_chisq_Q(2.0 * (logl_H1 - logl_H0), 1);
}
time_opt += (clock() - time_start) / (double(CLOCKS_PER_SEC) * 60.0);
// Store summary data.
SUMSTAT SNPs = {beta, se, lambda_remle, lambda_mle, p_wald, p_lrt, p_score, logl_H1};
sumStat.push_back(SNPs);
}
cout << endl;
gsl_vector_safe_free(y);
gsl_vector_safe_free(Uty);
gsl_matrix_safe_free(Uab);
gsl_vector_free(ab); // unused
infile.close();
infile.clear();
return;
}
void LMM::Analyze(std::function< SnpNameValues(size_t) >& fetch_snp,
const gsl_matrix *U, const gsl_vector *eval,
const gsl_matrix *UtW, const gsl_vector *Uty,
const gsl_matrix *W, const gsl_vector *y,
const set gwasnps) {
clock_t time_start = clock();
write(W, "W");
write(y, "y");
// Subset/LOCO support
bool process_gwasnps = gwasnps.size();
if (process_gwasnps)
debug_msg("Analyze subset of SNPs (LOCO)");
// Calculate basic quantities.
size_t n_index = (n_cvt + 2 + 1) * (n_cvt + 2) / 2;
const size_t inds = U->size1;
enforce(inds == ni_test);
gsl_vector *x = gsl_vector_safe_alloc(inds); // #inds
gsl_vector *x_miss = gsl_vector_safe_alloc(inds);
gsl_vector *Utx = gsl_vector_safe_alloc(U->size2);
gsl_matrix *Uab = gsl_matrix_safe_alloc(U->size2, n_index);
gsl_vector *ab = gsl_vector_safe_alloc(n_index);
// Create a large matrix with LMM_BATCH_SIZE columns for batched processing
// const size_t msize=(process_gwasnps ? 1 : LMM_BATCH_SIZE);
const size_t msize = LMM_BATCH_SIZE;
gsl_matrix *Xlarge = gsl_matrix_safe_alloc(inds, msize);
gsl_matrix *UtXlarge = gsl_matrix_safe_alloc(inds, msize);
enforce_msg(Xlarge && UtXlarge, "Xlarge memory check"); // just to be sure
enforce(Xlarge->size1 == inds);
gsl_matrix_set_zero(Xlarge);
gsl_matrix_set_zero(Uab);
CalcUab(UtW, Uty, Uab);
// start reading genotypes and analyze
size_t c = 0;
auto batch_compute = [&](size_t l) { // using a C++ closure
// Compute SNPs in batch, note the computations are independent per SNP
// debug_msg("enter batch_compute");
gsl_matrix_view Xlarge_sub = gsl_matrix_submatrix(Xlarge, 0, 0, inds, l);
gsl_matrix_view UtXlarge_sub =
gsl_matrix_submatrix(UtXlarge, 0, 0, inds, l);
time_start = clock();
fast_dgemm("T", "N", 1.0, U, &Xlarge_sub.matrix, 0.0,
&UtXlarge_sub.matrix);
time_UtX += (clock() - time_start) / (double(CLOCKS_PER_SEC) * 60.0);
gsl_matrix_set_zero(Xlarge);
for (size_t i = 0; i < l; i++) {
// for every batch...
gsl_vector_view UtXlarge_col = gsl_matrix_column(UtXlarge, i);
gsl_vector_safe_memcpy(Utx, &UtXlarge_col.vector);
CalcUab(UtW, Uty, Utx, Uab);
time_start = clock();
FUNC_PARAM param1 = {false, ni_test, n_cvt, eval, Uab, ab, 0};
double lambda_mle = 0.0, lambda_remle = 0.0, beta = 0.0, se = 0.0, p_wald = 0.0;
double p_lrt = 0.0, p_score = 0.0;
double logl_H1 = 0.0;
// 3 is before 1.
if (a_mode == M_LMM3 || a_mode == M_LMM4 || a_mode == M_LMM9 ) {
CalcRLScore(l_mle_null, param1, beta, se, p_score);
}
if (a_mode == M_LMM1 || a_mode == M_LMM4) {
// for univariate a_mode is 1
CalcLambda('R', param1, l_min, l_max, n_region, lambda_remle, logl_H1);
CalcRLWald(lambda_remle, param1, beta, se, p_wald);
}
if (a_mode == M_LMM2 || a_mode == M_LMM4 || a_mode == M_LMM9) {
CalcLambda('L', param1, l_min, l_max, n_region, lambda_mle, logl_H1);
p_lrt = gsl_cdf_chisq_Q(2.0 * (logl_H1 - logl_mle_H0), 1);
}
time_opt += (clock() - time_start) / (double(CLOCKS_PER_SEC) * 60.0);
// Store summary data.
SUMSTAT SNPs = {beta, se, lambda_remle, lambda_mle,
p_wald, p_lrt, p_score, logl_H1};
sumStat.push_back(SNPs);
}
// debug_msg("exit batch_compute");
};
const auto num_snps = indicator_snp.size();
enforce_msg(num_snps > 0,"Zero SNPs to process - data corrupt?");
if (num_snps < 50) {
cerr << num_snps << " SNPs" << endl;
warning_msg("very few SNPs processed");
}
const size_t progress_step = (num_snps/50>d_pace ? num_snps/50 : d_pace);
for (size_t t = 0; t < num_snps; ++t) {
if (t % progress_step == 0 || t == (num_snps - 1)) {
ProgressBar("Reading SNPs", t, num_snps - 1);
}
if (indicator_snp[t] == 0)
continue;
auto tup = fetch_snp(t);
auto snp = get<0>(tup);
auto gs = get<1>(tup);
// check whether SNP is included in gwasnps (used by LOCO)
if (process_gwasnps && gwasnps.count(snp) == 0)
continue;
// drop missing idv and plug mean values for missing geno
double x_total = 0.0; // sum genotype values to compute x_mean
uint pos = 0; // position in target vector
uint n_miss = 0;
gsl_vector_set_zero(x_miss);
for (size_t i = 0; i < ni_total; ++i) {
// get the genotypes per individual and compute stats per SNP
if (indicator_idv[i] == 0) // skip individual
continue;
double geno = gs[i];
if (isnan(geno)) {
gsl_vector_set(x_miss, pos, 1.0);
n_miss++;
} else {
gsl_vector_set(x, pos, geno);
x_total += geno;
}
pos++;
}
enforce(pos == ni_test);
const double x_mean = x_total/(double)(ni_test - n_miss);
// plug x_mean back into missing values
for (size_t i = 0; i < ni_test; ++i) {
if (gsl_vector_get(x_miss, i) == 1.0) {
gsl_vector_set(x, i, x_mean);
}
}
/* this is what below GxE does
for (size_t i = 0; i < ni_test; ++i) {
auto geno = gsl_vector_get(x, i);
if (std::isnan(geno)) {
gsl_vector_set(x, i, x_mean);
geno = x_mean;
}
if (x_mean > 1.0) {
gsl_vector_set(x, i, 2 - geno);
}
}
*/
enforce(x->size == ni_test);
// copy genotype values for SNP into Xlarge cache
gsl_vector_view Xlarge_col = gsl_matrix_column(Xlarge, c % msize);
gsl_vector_safe_memcpy(&Xlarge_col.vector, x);
c++; // count SNPs going in
if (c % msize == 0) {
batch_compute(msize);
}
}
batch_compute(c % msize);
ProgressBar("Reading SNPs", num_snps - 1, num_snps - 1);
// cout << "Counted SNPs " << c << " sumStat " << sumStat.size() << endl;
cout << endl;
gsl_vector_safe_free(x);
gsl_vector_safe_free(x_miss);
gsl_vector_safe_free(Utx);
gsl_matrix_safe_free(Uab);
gsl_vector_free(ab); // unused
gsl_matrix_safe_free(Xlarge);
gsl_matrix_safe_free(UtXlarge);
}
void LMM::AnalyzeBimbam(const gsl_matrix *U, const gsl_vector *eval,
const gsl_matrix *UtW, const gsl_vector *Uty,
const gsl_matrix *W, const gsl_vector *y,
const set gwasnps) {
debug_msg(file_geno);
auto infilen = file_geno.c_str();
igzstream infile(infilen, igzstream::in);
enforce_msg(infile, "error reading genotype file");
size_t prev_line = 0;
std::vector gs;
gs.resize(ni_total);
// fetch_snp is a callback function for every SNP row
std::function fetch_snp = [&](size_t num) {
string line;
while (prev_line <= num) {
// also read SNPs that were skipped
safeGetline(infile, line);
prev_line++;
}
char *ch_ptr = strtok_safe2((char *)line.c_str(), " , \t",infilen);
// enforce_msg(ch_ptr, "Parsing BIMBAM genofile"); // ch_ptr should not be NULL
auto snp = string(ch_ptr);
ch_ptr = strtok_safe2(NULL, " , \t",infilen); // skip column
ch_ptr = strtok_safe2(NULL, " , \t",infilen); // skip column
gs.assign (ni_total,nan("")); // wipe values
for (size_t i = 0; i < ni_total; ++i) {
ch_ptr = strtok_safe2(NULL, " , \t",infilen);
if (strcmp(ch_ptr, "NA") != 0) {
gs[i] = atof(ch_ptr);
if (is_strict_mode() && gs[i] == 0.0)
enforce_is_float(std::string(ch_ptr)); // only allow for NA and valid numbers
}
}
return std::make_tuple(snp,gs);
};
LMM::Analyze(fetch_snp,U,eval,UtW,Uty,W,y,gwasnps);
infile.close();
infile.clear();
}
#include "eigenlib.h"
void LMM::AnalyzePlink(const gsl_matrix *U, const gsl_vector *eval,
const gsl_matrix *UtW, const gsl_vector *Uty,
const gsl_matrix *W, const gsl_vector *y,
const set gwasnps) {
string file_bed = file_bfile + ".bed";
debug_msg(file_bed);
ifstream infile(file_bed.c_str(), ios::binary);
enforce_msg(infile,"error reading genotype (.bed) file");
clock_t time_start = clock();
char ch[1];
bitset<8> b;
double lambda_mle = 0, lambda_remle = 0, beta = 0, se = 0, p_wald = 0;
double p_lrt = 0, p_score = 0;
double logl_H1 = 0.0;
int n_bit, n_miss, ci_total, ci_test;
double geno, x_mean;
// Calculate basic quantities.
size_t n_index = (n_cvt + 2 + 1) * (n_cvt + 2) / 2;
gsl_vector *x = gsl_vector_alloc(U->size1);
gsl_vector *Utx = gsl_vector_alloc(U->size2);
gsl_matrix *Uab = gsl_matrix_alloc(U->size2, n_index);
gsl_vector *ab = gsl_vector_alloc(n_index);
// Create a large matrix.
size_t msize = LMM_BATCH_SIZE;
gsl_matrix *Xlarge = gsl_matrix_alloc(U->size1, msize);
gsl_matrix *UtXlarge = gsl_matrix_alloc(U->size1, msize);
gsl_matrix_set_zero(Xlarge);
gsl_matrix_set_zero(Uab);
CalcUab(UtW, Uty, Uab);
// Calculate n_bit and c, the number of bit for each SNP.
if (ni_total % 4 == 0) {
n_bit = ni_total / 4;
} else {
n_bit = ni_total / 4 + 1;
}
// Print the first three magic numbers.
for (int i = 0; i < 3; ++i) {
infile.read(ch, 1);
b = ch[0];
}
size_t c = 0, t_last = 0;
for (size_t t = 0; t < snpInfo.size(); ++t) {
if (indicator_snp[t] == 0)
continue;
t_last++;
}
for (vector::size_type t = 0; t < snpInfo.size(); ++t) {
if (t % d_pace == 0 || t == snpInfo.size() - 1) {
ProgressBar("Reading SNPs ", t, snpInfo.size() - 1);
}
if (indicator_snp[t] == 0) {
continue;
}
// n_bit, and 3 is the number of magic numbers.
infile.seekg(t * n_bit + 3);
// Read genotypes.
x_mean = 0.0;
n_miss = 0;
ci_total = 0;
ci_test = 0;
for (int i = 0; i < n_bit; ++i) {
infile.read(ch, 1);
b = ch[0];
// Minor allele homozygous: 2.0; major: 0.0.
for (size_t j = 0; j < 4; ++j) {
if ((i == (n_bit - 1)) && ci_total == (int)ni_total) {
break;
}
if (indicator_idv[ci_total] == 0) {
ci_total++;
continue;
}
if (b[2 * j] == 0) {
if (b[2 * j + 1] == 0) {
gsl_vector_set(x, ci_test, 2);
x_mean += 2.0;
} else {
gsl_vector_set(x, ci_test, 1);
x_mean += 1.0;
}
} else {
if (b[2 * j + 1] == 1) {
gsl_vector_set(x, ci_test, 0);
} else {
gsl_vector_set(x, ci_test, -9);
n_miss++;
}
}
ci_total++;
ci_test++;
}
}
x_mean /= (double)(ni_test - n_miss);
for (size_t i = 0; i < ni_test; ++i) {
geno = gsl_vector_get(x, i);
if (geno == -9) {
gsl_vector_set(x, i, x_mean);
geno = x_mean;
}
}
gsl_vector_view Xlarge_col = gsl_matrix_column(Xlarge, c % msize);
gsl_vector_memcpy(&Xlarge_col.vector, x);
c++;
if (c % msize == 0 || c == t_last) {
size_t l = 0;
if (c % msize == 0) {
l = msize;
} else {
l = c % msize;
}
gsl_matrix_view Xlarge_sub =
gsl_matrix_submatrix(Xlarge, 0, 0, Xlarge->size1, l);
gsl_matrix_view UtXlarge_sub =
gsl_matrix_submatrix(UtXlarge, 0, 0, UtXlarge->size1, l);
time_start = clock();
fast_dgemm("T", "N", 1.0, U, &Xlarge_sub.matrix, 0.0,
&UtXlarge_sub.matrix);
time_UtX += (clock() - time_start) / (double(CLOCKS_PER_SEC) * 60.0);
gsl_matrix_set_zero(Xlarge);
for (size_t i = 0; i < l; i++) {
gsl_vector_view UtXlarge_col = gsl_matrix_column(UtXlarge, i);
gsl_vector_memcpy(Utx, &UtXlarge_col.vector);
CalcUab(UtW, Uty, Utx, Uab);
time_start = clock();
FUNC_PARAM param1 = {false, ni_test, n_cvt, eval, Uab, ab, 0};
// 3 is before 1, for beta.
if (a_mode == M_LMM3 || a_mode == M_LMM4 || a_mode == M_LMM9) {
CalcRLScore(l_mle_null, param1, beta, se, p_score);
}
if (a_mode == M_LMM1 || a_mode == M_LMM4) {
CalcLambda('R', param1, l_min, l_max, n_region, lambda_remle,
logl_H1);
if (!isnan(logl_H1))
CalcRLWald(lambda_remle, param1, beta, se, p_wald);
}
if (a_mode == M_LMM2 || a_mode == M_LMM4 || a_mode == M_LMM9) {
CalcLambda('L', param1, l_min, l_max, n_region, lambda_mle, logl_H1);
p_lrt = gsl_cdf_chisq_Q(2.0 * (logl_H1 - logl_mle_H0), 1);
}
time_opt += (clock() - time_start) / (double(CLOCKS_PER_SEC) * 60.0);
// Store summary data.
if (isnan(logl_H1)) { // invalidate values
p_wald = p_lrt = logl_H1;
}
SUMSTAT SNPs = {beta, se, lambda_remle, lambda_mle,
p_wald, p_lrt, p_score, logl_H1};
sumStat.push_back(SNPs);
}
}
}
cout << endl;
gsl_vector_free(x);
gsl_vector_free(Utx);
gsl_matrix_free(Uab);
gsl_vector_free(ab);
gsl_matrix_free(Xlarge);
gsl_matrix_free(UtXlarge);
infile.close();
infile.clear();
}
void MatrixCalcLR(const gsl_matrix *U, const gsl_matrix *UtX,
const gsl_vector *Uty, const gsl_vector *K_eval,
const double l_min, const double l_max, const size_t n_region,
vector> &pos_loglr) {
double logl_H0, logl_H1, log_lr, lambda0, lambda1;
gsl_vector *w = gsl_vector_safe_alloc(Uty->size);
gsl_matrix *Utw = gsl_matrix_safe_alloc(Uty->size, 1);
gsl_matrix *Uab = gsl_matrix_safe_alloc(Uty->size, 6);
gsl_vector *ab = gsl_vector_safe_alloc(6);
gsl_vector_set_zero(ab);
gsl_vector_set_all(w, 1.0);
gsl_vector_view Utw_col = gsl_matrix_column(Utw, 0);
gsl_blas_dgemv(CblasTrans, 1.0, U, w, 0.0, &Utw_col.vector);
CalcUab(Utw, Uty, Uab);
FUNC_PARAM param0 = {true, Uty->size, 1, K_eval, Uab, ab, 0};
CalcLambda('L', param0, l_min, l_max, n_region, lambda0, logl_H0);
for (size_t i = 0; i < UtX->size2; ++i) {
gsl_vector_const_view UtX_col = gsl_matrix_const_column(UtX, i);
CalcUab(Utw, Uty, &UtX_col.vector, Uab);
FUNC_PARAM param1 = {false, UtX->size1, 1, K_eval, Uab, ab, 0};
CalcLambda('L', param1, l_min, l_max, n_region, lambda1, logl_H1);
log_lr = logl_H1 - logl_H0;
pos_loglr.push_back(make_pair(i, log_lr));
}
gsl_vector_safe_free(w);
gsl_matrix_safe_free(Utw);
gsl_matrix_safe_free(Uab);
gsl_vector_free(ab); // unused
return;
}
void CalcLambda(const char func_name, FUNC_PARAM ¶ms, const double l_min,
const double l_max, const size_t n_region, double &lambda,
double &logf) {
// wipe return values
logf = nan("NAN");
lambda = nan("NAN");
if (func_name != 'R' && func_name != 'L' && func_name != 'r' &&
func_name != 'l') {
cout << "func_name only takes 'R' or 'L': 'R' for "
<< "log-restricted likelihood, 'L' for log-likelihood." << endl;
return;
}
vector> lambda_lh;
// Evaluate first-order derivates in different intervals.
assert(l_max > l_min);
double lambda_l, lambda_h,
lambda_interval = safe_log(l_max / l_min) / (double)n_region;
double dev1_l, dev1_h, logf_l, logf_h;
for (size_t i = 0; i < n_region; ++i) {
lambda_l = l_min * exp(lambda_interval * i);
lambda_h = l_min * exp(lambda_interval * (i + 1.0));
if (func_name == 'R' || func_name == 'r') { // log-restricted likelihood
dev1_l = LogRL_dev1(lambda_l, ¶ms);
dev1_h = LogRL_dev1(lambda_h, ¶ms);
} else {
dev1_l = LogL_dev1(lambda_l, ¶ms);
dev1_h = LogL_dev1(lambda_h, ¶ms);
}
if (dev1_l * dev1_h <= 0) {
lambda_lh.push_back(make_pair(lambda_l, lambda_h));
}
}
// If derivates do not change signs in any interval.
if (lambda_lh.empty()) {
if (func_name == 'R' || func_name == 'r') {
logf_l = LogRL_f(l_min, ¶ms);
logf_h = LogRL_f(l_max, ¶ms);
} else {
logf_l = LogL_f(l_min, ¶ms);
logf_h = LogL_f(l_max, ¶ms);
}
if (logf_l >= logf_h) {
lambda = l_min;
logf = logf_l;
} else {
lambda = l_max;
logf = logf_h;
}
} else {
// If derivates change signs.
double l=0.0, l_temp = 0.0;
gsl_function F;
gsl_function_fdf FDF;
F.params = ¶ms;
FDF.params = ¶ms;
if (func_name == 'R' || func_name == 'r') {
F.function = &LogRL_dev1;
FDF.f = &LogRL_dev1;
FDF.df = &LogRL_dev2;
FDF.fdf = &LogRL_dev12;
} else {
F.function = &LogL_dev1;
FDF.f = &LogL_dev1;
FDF.df = &LogL_dev2;
FDF.fdf = &LogL_dev12;
}
const gsl_root_fsolver_type *T_f = gsl_root_fsolver_brent;
const gsl_root_fsolver *s_f = gsl_root_fsolver_alloc(T_f);
const gsl_root_fdfsolver_type *T_fdf = gsl_root_fdfsolver_newton;
const gsl_root_fdfsolver *s_fdf = gsl_root_fdfsolver_alloc(T_fdf);
for (vector::size_type i = 0; i < lambda_lh.size(); ++i) {
lambda_l = lambda_lh[i].first;
lambda_h = lambda_lh[i].second;
// printf("%f,%f\n",lambda_l,lambda_h);
auto handler = gsl_set_error_handler_off();
gsl_root_fsolver_set((gsl_root_fsolver*)s_f, &F, lambda_l, lambda_h);
int status = GSL_FAILURE;
uint iter = 0;
const auto max_iter = 100;
do {
iter++;
status = gsl_root_fsolver_iterate((gsl_root_fsolver*)s_f);
if (status != GSL_SUCCESS && status != GSL_CONTINUE) {
warning_msg("Brent did not converge");
break;
}
l = gsl_root_fsolver_root(s_f);
lambda_l = gsl_root_fsolver_x_lower(s_f);
lambda_h = gsl_root_fsolver_x_upper(s_f);
status = gsl_root_test_interval(lambda_l, lambda_h, 0, 1e-1);
if (status != GSL_SUCCESS && status != GSL_CONTINUE) {
debug_msg("Brent did not converge");
break;
}
} while (status == GSL_CONTINUE && iter < max_iter);
if (status == GSL_CONTINUE) {
debug_msg("Brent root did not converge: too many iterations");
break;
}
uint iter2 = 0;
gsl_root_fdfsolver_set((gsl_root_fdfsolver*)s_fdf, &FDF, l);
do {
iter2++;
status = gsl_root_fdfsolver_iterate((gsl_root_fdfsolver*)s_fdf);
if (status != GSL_SUCCESS && status != GSL_CONTINUE) {
debug_msg("Newton did not converge");
break;
}
l_temp = l;
l = gsl_root_fdfsolver_root((gsl_root_fdfsolver*)s_fdf);
status = gsl_root_test_delta(l, l_temp, 0, 1e-5);
if (status != GSL_SUCCESS && status != GSL_CONTINUE) {
debug_msg("Newton did not converge");
break;
}
} while (status == GSL_CONTINUE && iter2 < max_iter && l > l_min && l < l_max);
// cleanup
gsl_set_error_handler(handler);
if (status == GSL_CONTINUE) {
debug_msg("Newton root did not converge: too many iterations");
}
if (status == GSL_CONTINUE || status != GSL_SUCCESS) {
// make sure results are invalid
logf = nan("NAN");
lambda = nan("NAN");
gsl_root_fsolver_free((gsl_root_fsolver*)s_f);
gsl_root_fdfsolver_free((gsl_root_fdfsolver*)s_fdf);
return;
}
l = l_temp;
if (l < l_min) {
l = l_min;
}
if (l > l_max) {
l = l_max;
}
if (func_name == 'R' || func_name == 'r') {
logf_l = LogRL_f(l, ¶ms);
} else {
logf_l = LogL_f(l, ¶ms);
}
if (i == 0) {
logf = logf_l;
lambda = l;
} else if (logf < logf_l) {
logf = logf_l;
lambda = l;
} else {
}
}
gsl_root_fsolver_free((gsl_root_fsolver*)s_f);
gsl_root_fdfsolver_free((gsl_root_fdfsolver*)s_fdf);
if (func_name == 'R' || func_name == 'r') {
logf_l = LogRL_f(l_min, ¶ms);
logf_h = LogRL_f(l_max, ¶ms);
} else {
logf_l = LogL_f(l_min, ¶ms);
logf_h = LogL_f(l_max, ¶ms);
}
if (logf_l > logf) {
lambda = l_min;
logf = logf_l;
}
if (logf_h > logf) {
lambda = l_max;
logf = logf_h;
}
}
return;
}
// Calculate lambda in the null model.
void CalcLambda(const char func_name, const gsl_vector *eval,
const gsl_matrix *UtW, const gsl_vector *Uty,
const double l_min, const double l_max, const size_t n_region,
double &lambda, double &logl_H0) {
write(eval,"eval6");
if (func_name != 'R' && func_name != 'L' && func_name != 'r' &&
func_name != 'l') {
cout << "func_name only takes 'R' or 'L': 'R' for "
<< "log-restricted likelihood, 'L' for log-likelihood." << endl;
return;
}
size_t n_cvt = UtW->size2, ni_test = UtW->size1;
size_t n_index = (n_cvt + 2 + 1) * (n_cvt + 2) / 2;
// cout << "n_cvt " << n_cvt << ", ni_test " << ni_test << ", n_index " << n_index << endl;
gsl_matrix *Uab = gsl_matrix_safe_alloc(ni_test, n_index);
gsl_vector *ab = gsl_vector_safe_alloc(n_index);
gsl_matrix_set_zero(Uab);
write(UtW,"UtW");
write(Uty,"Uty");
CalcUab(UtW, Uty, Uab);
write(Uab,"Uab");
Calcab(UtW, Uty, ab);
FUNC_PARAM param0 = {true, ni_test, n_cvt, eval, Uab, ab, 0};
CalcLambda(func_name, param0, l_min, l_max, n_region, lambda, logl_H0);
gsl_matrix_safe_free(Uab);
gsl_vector_free(ab); // unused
return;
}
// Obtain REMLE estimate for PVE using lambda_remle.
void CalcPve(const gsl_vector *eval, const gsl_matrix *UtW,
const gsl_vector *Uty, const double lambda, const double trace_G,
double &pve, double &pve_se) {
size_t n_cvt = UtW->size2, ni_test = UtW->size1;
size_t n_index = (n_cvt + 2 + 1) * (n_cvt + 2) / 2;
gsl_matrix *Uab = gsl_matrix_safe_alloc(ni_test, n_index);
gsl_vector *ab = gsl_vector_safe_alloc(n_index);
gsl_matrix_set_zero(Uab);
CalcUab(UtW, Uty, Uab);
FUNC_PARAM param0 = {true, ni_test, n_cvt, eval, Uab, ab, 0};
double se = safe_sqrt(-1.0 / LogRL_dev2(lambda, ¶m0));
pve = trace_G * lambda / (trace_G * lambda + 1.0);
pve_se = trace_G / ((trace_G * lambda + 1.0) * (trace_G * lambda + 1.0)) * se;
gsl_matrix_safe_free(Uab);
gsl_vector_free(ab); // unused
return;
}
// Obtain REML estimate for Vg and Ve using lambda_remle.
// Obtain beta and se(beta) for coefficients.
// ab is not used when e_mode==0.
void CalcLmmVgVeBeta(const gsl_vector *eval, const gsl_matrix *UtW,
const gsl_vector *Uty, const double lambda, double &vg,
double &ve, gsl_vector *beta, gsl_vector *se_beta) {
size_t n_cvt = UtW->size2, ni_test = UtW->size1;
size_t n_index = (n_cvt + 2 + 1) * (n_cvt + 2) / 2;
write(Uty, "VgVe Uty");
gsl_matrix *Uab = gsl_matrix_safe_alloc(ni_test, n_index);
gsl_vector *ab = gsl_vector_safe_alloc(n_index);
gsl_matrix *Pab = gsl_matrix_safe_alloc(n_cvt + 2, n_index);
gsl_vector *Hi_eval = gsl_vector_safe_alloc(eval->size);
gsl_vector *v_temp = gsl_vector_safe_alloc(eval->size);
gsl_matrix *HiW = gsl_matrix_safe_alloc(eval->size, UtW->size2);
gsl_matrix *WHiW = gsl_matrix_safe_alloc(UtW->size2, UtW->size2);
gsl_vector *WHiy = gsl_vector_safe_alloc(UtW->size2);
gsl_matrix *Vbeta = gsl_matrix_safe_alloc(UtW->size2, UtW->size2);
gsl_matrix_set_zero(Uab);
CalcUab(UtW, Uty, Uab);
gsl_vector_safe_memcpy(v_temp, eval);
gsl_vector_scale(v_temp, lambda);
gsl_vector_set_all(Hi_eval, 1.0);
gsl_vector_add_constant(v_temp, 1.0);
gsl_vector_div(Hi_eval, v_temp);
// Calculate beta.
gsl_matrix_safe_memcpy(HiW, UtW);
for (size_t i = 0; i < UtW->size2; i++) {
gsl_vector_view HiW_col = gsl_matrix_column(HiW, i);
gsl_vector_mul(&HiW_col.vector, Hi_eval);
}
fast_dgemm("T", "N", 1.0, HiW, UtW, 0.0, WHiW);
gsl_blas_dgemv(CblasTrans, 1.0, HiW, Uty, 0.0, WHiy);
write(WHiW, "VgVe WHiW");
write(WHiy, "VgVe WHiy");
int sig;
gsl_permutation *pmt = gsl_permutation_alloc(UtW->size2);
LUDecomp(WHiW, pmt, &sig);
LUSolve(WHiW, pmt, WHiy, beta);
LUInvert(WHiW, pmt, Vbeta);
// Calculate vg and ve.
CalcPab(n_cvt, 0, Hi_eval, Uab, ab, Pab);
size_t index_yy = GetabIndex(n_cvt + 2, n_cvt + 2, n_cvt);
double P_yy = gsl_matrix_safe_get(Pab, n_cvt, index_yy);
ve = P_yy / (double)(ni_test - n_cvt);
vg = ve * lambda;
// With ve, calculate se(beta).
gsl_matrix_scale(Vbeta, ve);
// Obtain se_beta.
for (size_t i = 0; i < Vbeta->size1; i++) {
gsl_vector_set(se_beta, i, safe_sqrt(gsl_matrix_get(Vbeta, i, i)));
}
gsl_matrix_safe_free(Uab);
gsl_matrix_free(Pab);
gsl_vector_free(ab); // ab is unused
gsl_vector_safe_free(Hi_eval);
gsl_vector_safe_free(v_temp);
gsl_matrix_safe_free(HiW);
gsl_matrix_safe_free(WHiW);
gsl_vector_safe_free(WHiy);
gsl_matrix_safe_free(Vbeta);
gsl_permutation_free(pmt);
return;
}
void LMM::AnalyzeBimbamGXE(const gsl_matrix *U, const gsl_vector *eval,
const gsl_matrix *UtW, const gsl_vector *Uty,
const gsl_matrix *W, const gsl_vector *y,
const gsl_vector *env) {
debug_msg("entering");
auto infilen = file_gene.c_str();
igzstream infile(infilen, igzstream::in);
if (!infile) {
cout << "error reading genotype file:" << file_geno << endl;
return;
}
clock_t time_start = clock();
string line;
char *ch_ptr;
double lambda_mle = 0, lambda_remle = 0, beta = 0, se = 0, p_wald = 0;
double p_lrt = 0, p_score = 0;
double logl_H1 = 0.0, logl_H0 = 0.0;
int n_miss, c_phen;
double geno, x_mean;
// Calculate basic quantities.
size_t n_index = (n_cvt + 2 + 2 + 1) * (n_cvt + 2 + 2) / 2;
gsl_vector *x = gsl_vector_safe_alloc(U->size1);
gsl_vector *x_miss = gsl_vector_safe_alloc(U->size1);
gsl_vector *Utx = gsl_vector_safe_alloc(U->size2);
gsl_matrix *Uab = gsl_matrix_safe_alloc(U->size2, n_index);
gsl_vector *ab = gsl_vector_safe_alloc(n_index);
gsl_matrix *UtW_expand = gsl_matrix_safe_alloc(U->size1, UtW->size2 + 2);
gsl_matrix_view UtW_expand_mat =
gsl_matrix_submatrix(UtW_expand, 0, 0, U->size1, UtW->size2);
gsl_matrix_safe_memcpy(&UtW_expand_mat.matrix, UtW);
gsl_vector_view UtW_expand_env = gsl_matrix_column(UtW_expand, UtW->size2);
gsl_blas_dgemv(CblasTrans, 1.0, U, env, 0.0, &UtW_expand_env.vector);
gsl_vector_view UtW_expand_x = gsl_matrix_column(UtW_expand, UtW->size2 + 1);
// Start reading genotypes and analyze.
for (size_t t = 0; t < indicator_snp.size(); ++t) {
safeGetline(infile, line).eof();
if (t % d_pace == 0 || t == (ns_total - 1)) {
ProgressBar("Reading SNPs", t, ns_total - 1);
}
if (indicator_snp[t] == 0) {
continue;
}
ch_ptr = strtok_safe2((char *)line.c_str(), " , \t",infilen);
ch_ptr = strtok_safe2(NULL, " , \t",infilen);
ch_ptr = strtok_safe2(NULL, " , \t",infilen);
x_mean = 0.0;
c_phen = 0;
n_miss = 0;
gsl_vector_set_zero(x_miss);
for (size_t i = 0; i < ni_total; ++i) {
ch_ptr = strtok_safe2(NULL, " , \t",infilen);
if (indicator_idv[i] == 0) {
continue;
}
if (strcmp(ch_ptr, "NA") == 0) {
gsl_vector_set(x_miss, c_phen, 0.0);
n_miss++;
} else {
geno = atof(ch_ptr);
gsl_vector_set(x, c_phen, geno);
gsl_vector_set(x_miss, c_phen, 1.0);
x_mean += geno;
}
c_phen++;
}
x_mean /= (double)(ni_test - n_miss);
for (size_t i = 0; i < ni_test; ++i) {
if (gsl_vector_get(x_miss, i) == 0) {
gsl_vector_set(x, i, x_mean);
}
geno = gsl_vector_get(x, i);
if (x_mean > 1) {
gsl_vector_set(x, i, 2 - geno);
}
}
// Calculate statistics.
time_start = clock();
gsl_blas_dgemv(CblasTrans, 1.0, U, x, 0.0, &UtW_expand_x.vector);
gsl_vector_mul(x, env);
gsl_blas_dgemv(CblasTrans, 1.0, U, x, 0.0, Utx);
time_UtX += (clock() - time_start) / (double(CLOCKS_PER_SEC) * 60.0);
gsl_matrix_set_zero(Uab);
CalcUab(UtW_expand, Uty, Uab);
if (a_mode == 2 || a_mode == 4) {
FUNC_PARAM param0 = {true, ni_test, n_cvt + 2, eval, Uab, ab, 0};
CalcLambda('L', param0, l_min, l_max, n_region, lambda_mle, logl_H0);
}
CalcUab(UtW_expand, Uty, Utx, Uab);
time_start = clock();
FUNC_PARAM param1 = {false, ni_test, n_cvt + 2, eval, Uab, ab, 0};
// 3 is before 1.
if (a_mode == 3 || a_mode == 4 || a_mode == 9) {
CalcRLScore(l_mle_null, param1, beta, se, p_score);
}
if (a_mode == 1 || a_mode == 4) {
CalcLambda('R', param1, l_min, l_max, n_region, lambda_remle, logl_H1);
CalcRLWald(lambda_remle, param1, beta, se, p_wald);
}
if (a_mode == 2 || a_mode == 4 || a_mode == 9) {
CalcLambda('L', param1, l_min, l_max, n_region, lambda_mle, logl_H1);
p_lrt = gsl_cdf_chisq_Q(2.0 * (logl_H1 - logl_H0), 1);
}
if (x_mean > 1) {
beta *= -1;
}
time_opt += (clock() - time_start) / (double(CLOCKS_PER_SEC) * 60.0);
// Store summary data.
SUMSTAT SNPs = {beta, se, lambda_remle, lambda_mle, p_wald, p_lrt, p_score, logl_H1};
sumStat.push_back(SNPs);
}
cout << endl;
gsl_vector_safe_free(x);
gsl_vector_safe_free(x_miss);
gsl_vector_safe_free(Utx);
gsl_matrix_safe_free(Uab);
gsl_vector_free(ab); // unused
gsl_matrix_safe_free(UtW_expand);
infile.close();
infile.clear();
return;
}
void LMM::AnalyzePlinkGXE(const gsl_matrix *U, const gsl_vector *eval,
const gsl_matrix *UtW, const gsl_vector *Uty,
const gsl_matrix *W, const gsl_vector *y,
const gsl_vector *env) {
string file_bed = file_bfile + ".bed";
debug_msg(file_bed);
ifstream infile(file_bed.c_str(), ios::binary);
if (!infile) {
cout << "error reading bed file:" << file_bed << endl;
return;
}
clock_t time_start = clock();
char ch[1];
bitset<8> b;
double lambda_mle = 0, lambda_remle = 0, beta = 0, se = 0, p_wald = 0;
double p_lrt = 0, p_score = 0;
double logl_H1 = 0.0, logl_H0 = 0.0;
int n_bit, n_miss, ci_total, ci_test;
double geno, x_mean;
// Calculate basic quantities.
size_t n_index = (n_cvt + 2 + 2 + 1) * (n_cvt + 2 + 2) / 2;
gsl_vector *x = gsl_vector_safe_alloc(U->size1);
gsl_vector *Utx = gsl_vector_safe_alloc(U->size2);
gsl_matrix *Uab = gsl_matrix_safe_alloc(U->size2, n_index);
gsl_vector *ab = gsl_vector_safe_alloc(n_index);
gsl_matrix *UtW_expand = gsl_matrix_safe_alloc(U->size1, UtW->size2 + 2);
gsl_matrix_view UtW_expand_mat =
gsl_matrix_submatrix(UtW_expand, 0, 0, U->size1, UtW->size2);
gsl_matrix_safe_memcpy(&UtW_expand_mat.matrix, UtW);
gsl_vector_view UtW_expand_env = gsl_matrix_column(UtW_expand, UtW->size2);
gsl_blas_dgemv(CblasTrans, 1.0, U, env, 0.0, &UtW_expand_env.vector);
gsl_vector_view UtW_expand_x = gsl_matrix_column(UtW_expand, UtW->size2 + 1);
// Calculate n_bit and c, the number of bit for each SNP.
if (ni_total % 4 == 0) {
n_bit = ni_total / 4;
} else {
n_bit = ni_total / 4 + 1;
}
// Print the first three magic numbers.
for (int i = 0; i < 3; ++i) {
infile.read(ch, 1);
b = ch[0];
}
for (vector::size_type t = 0; t < snpInfo.size(); ++t) {
if (t % d_pace == 0 || t == snpInfo.size() - 1) {
ProgressBar("Reading SNPs", t, snpInfo.size() - 1);
}
if (indicator_snp[t] == 0) {
continue;
}
// n_bit, and 3 is the number of magic numbers
infile.seekg(t * n_bit + 3);
// Read genotypes.
x_mean = 0.0;
n_miss = 0;
ci_total = 0;
ci_test = 0;
for (int i = 0; i < n_bit; ++i) {
infile.read(ch, 1);
b = ch[0];
// Minor allele homozygous: 2.0; major: 0.0.
for (size_t j = 0; j < 4; ++j) {
if ((i == (n_bit - 1)) && ci_total == (int)ni_total) {
break;
}
if (indicator_idv[ci_total] == 0) {
ci_total++;
continue;
}
if (b[2 * j] == 0) {
if (b[2 * j + 1] == 0) {
gsl_vector_set(x, ci_test, 2);
x_mean += 2.0;
} else {
gsl_vector_set(x, ci_test, 1);
x_mean += 1.0;
}
} else {
if (b[2 * j + 1] == 1) {
gsl_vector_set(x, ci_test, 0);
} else {
gsl_vector_set(x, ci_test, -9);
n_miss++;
}
}
ci_total++;
ci_test++;
}
}
x_mean /= (double)(ni_test - n_miss);
for (size_t i = 0; i < ni_test; ++i) {
geno = gsl_vector_get(x, i);
if (geno == -9) {
gsl_vector_set(x, i, x_mean);
geno = x_mean;
}
if (x_mean > 1) {
gsl_vector_set(x, i, 2 - geno);
}
}
// Calculate statistics.
time_start = clock();
gsl_blas_dgemv(CblasTrans, 1.0, U, x, 0.0, &UtW_expand_x.vector);
gsl_vector_mul(x, env);
gsl_blas_dgemv(CblasTrans, 1.0, U, x, 0.0, Utx);
time_UtX += (clock() - time_start) / (double(CLOCKS_PER_SEC) * 60.0);
gsl_matrix_set_zero(Uab);
CalcUab(UtW_expand, Uty, Uab);
if (a_mode == 2 || a_mode == 4) {
FUNC_PARAM param0 = {true, ni_test, n_cvt + 2, eval, Uab, ab, 0};
CalcLambda('L', param0, l_min, l_max, n_region, lambda_mle, logl_H0);
}
CalcUab(UtW_expand, Uty, Utx, Uab);
time_start = clock();
FUNC_PARAM param1 = {false, ni_test, n_cvt + 2, eval, Uab, ab, 0};
// 3 is before 1, for beta.
if (a_mode == 3 || a_mode == 4 || a_mode == 9) {
CalcRLScore(l_mle_null, param1, beta, se, p_score);
}
if (a_mode == 1 || a_mode == 4) {
CalcLambda('R', param1, l_min, l_max, n_region, lambda_remle, logl_H1);
CalcRLWald(lambda_remle, param1, beta, se, p_wald);
}
if (a_mode == 2 || a_mode == 4 || a_mode == 9) {
CalcLambda('L', param1, l_min, l_max, n_region, lambda_mle, logl_H1);
p_lrt = gsl_cdf_chisq_Q(2.0 * (logl_H1 - logl_H0), 1);
}
if (x_mean > 1) {
beta *= -1;
}
time_opt += (clock() - time_start) / (double(CLOCKS_PER_SEC) * 60.0);
// Store summary data.
SUMSTAT SNPs = {beta, se, lambda_remle, lambda_mle, p_wald, p_lrt, p_score, logl_H1};
sumStat.push_back(SNPs);
}
cout << endl;
gsl_vector_safe_free(x);
gsl_vector_safe_free(Utx);
gsl_matrix_safe_free(Uab);
gsl_vector_free(ab); // unused
gsl_matrix_safe_free(UtW_expand);
infile.close();
infile.clear();
return;
}