/* Genome-wide Efficient Mixed Model Association (GEMMA) Copyright (C) 2011-2017 Xiang Zhou This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "gsl/gsl_linalg.h" #include "gsl/gsl_matrix.h" #include "gsl/gsl_vector.h" #include #include #include using namespace std; extern "C" void sgemm_(char *TRANSA, char *TRANSB, int *M, int *N, int *K, float *ALPHA, float *A, int *LDA, float *B, int *LDB, float *BETA, float *C, int *LDC); extern "C" void spotrf_(char *UPLO, int *N, float *A, int *LDA, int *INFO); extern "C" void spotrs_(char *UPLO, int *N, int *NRHS, float *A, int *LDA, float *B, int *LDB, int *INFO); extern "C" void ssyev_(char *JOBZ, char *UPLO, int *N, float *A, int *LDA, float *W, float *WORK, int *LWORK, int *INFO); extern "C" void ssyevr_(char *JOBZ, char *RANGE, char *UPLO, int *N, float *A, int *LDA, float *VL, float *VU, int *IL, int *IU, float *ABSTOL, int *M, float *W, float *Z, int *LDZ, int *ISUPPZ, float *WORK, int *LWORK, int *IWORK, int *LIWORK, int *INFO); extern "C" double sdot_(int *N, float *DX, int *INCX, float *DY, int *INCY); extern "C" void dgemm_(char *TRANSA, char *TRANSB, int *M, int *N, int *K, double *ALPHA, double *A, int *LDA, double *B, int *LDB, double *BETA, double *C, int *LDC); extern "C" void dpotrf_(char *UPLO, int *N, double *A, int *LDA, int *INFO); extern "C" void dpotrs_(char *UPLO, int *N, int *NRHS, double *A, int *LDA, double *B, int *LDB, int *INFO); extern "C" void dsyev_(char *JOBZ, char *UPLO, int *N, double *A, int *LDA, double *W, double *WORK, int *LWORK, int *INFO); extern "C" void dsyevr_(char *JOBZ, char *RANGE, char *UPLO, int *N, double *A, int *LDA, double *VL, double *VU, int *IL, int *IU, double *ABSTOL, int *M, double *W, double *Z, int *LDZ, int *ISUPPZ, double *WORK, int *LWORK, int *IWORK, int *LIWORK, int *INFO); extern "C" double ddot_(int *N, double *DX, int *INCX, double *DY, int *INCY); // Cholesky decomposition, A is destroyed. void lapack_float_cholesky_decomp(gsl_matrix_float *A) { int N = A->size1, LDA = A->size1, INFO; char UPLO = 'L'; if (N != (int)A->size2) { cout << "Matrix needs to be symmetric and same dimension in " << "lapack_cholesky_decomp." << endl; return; } spotrf_(&UPLO, &N, A->data, &LDA, &INFO); if (INFO != 0) { cout << "Cholesky decomposition unsuccessful in " << "lapack_cholesky_decomp." << endl; return; } return; } // Cholesky decomposition, A is destroyed. void lapack_cholesky_decomp(gsl_matrix *A) { int N = A->size1, LDA = A->size1, INFO; char UPLO = 'L'; if (N != (int)A->size2) { cout << "Matrix needs to be symmetric and same dimension in " << "lapack_cholesky_decomp." << endl; return; } dpotrf_(&UPLO, &N, A->data, &LDA, &INFO); if (INFO != 0) { cout << "Cholesky decomposition unsuccessful in " << "lapack_cholesky_decomp." << endl; return; } return; } // Cholesky solve, A is decomposed. void lapack_float_cholesky_solve(gsl_matrix_float *A, const gsl_vector_float *b, gsl_vector_float *x) { int N = A->size1, NRHS = 1, LDA = A->size1, LDB = b->size, INFO; char UPLO = 'L'; if (N != (int)A->size2 || N != LDB) { cout << "Matrix needs to be symmetric and same dimension in " << "lapack_cholesky_solve." << endl; return; } gsl_vector_float_memcpy(x, b); spotrs_(&UPLO, &N, &NRHS, A->data, &LDA, x->data, &LDB, &INFO); if (INFO != 0) { cout << "Cholesky solve unsuccessful in lapack_cholesky_solve." << endl; return; } return; } // Cholesky solve, A is decomposed. void lapack_cholesky_solve(gsl_matrix *A, const gsl_vector *b, gsl_vector *x) { int N = A->size1, NRHS = 1, LDA = A->size1, LDB = b->size, INFO; char UPLO = 'L'; if (N != (int)A->size2 || N != LDB) { cout << "Matrix needs to be symmetric and same dimension in " << "lapack_cholesky_solve." << endl; return; } gsl_vector_memcpy(x, b); dpotrs_(&UPLO, &N, &NRHS, A->data, &LDA, x->data, &LDB, &INFO); if (INFO != 0) { cout << "Cholesky solve unsuccessful in lapack_cholesky_solve." << endl; return; } return; } void lapack_sgemm(char *TransA, char *TransB, float alpha, const gsl_matrix_float *A, const gsl_matrix_float *B, float beta, gsl_matrix_float *C) { int M, N, K1, K2, LDA = A->size1, LDB = B->size1, LDC = C->size2; if (*TransA == 'N' || *TransA == 'n') { M = A->size1; K1 = A->size2; } else if (*TransA == 'T' || *TransA == 't') { M = A->size2; K1 = A->size1; } else { cout << "need 'N' or 'T' in lapack_sgemm" << endl; return; } if (*TransB == 'N' || *TransB == 'n') { N = B->size2; K2 = B->size1; } else if (*TransB == 'T' || *TransB == 't') { N = B->size1; K2 = B->size2; } else { cout << "need 'N' or 'T' in lapack_sgemm" << endl; return; } if (K1 != K2) { cout << "A and B not compatible in lapack_sgemm" << endl; return; } if (C->size1 != (size_t)M || C->size2 != (size_t)N) { cout << "C not compatible in lapack_sgemm" << endl; return; } gsl_matrix_float *A_t = gsl_matrix_float_alloc(A->size2, A->size1); gsl_matrix_float_transpose_memcpy(A_t, A); gsl_matrix_float *B_t = gsl_matrix_float_alloc(B->size2, B->size1); gsl_matrix_float_transpose_memcpy(B_t, B); gsl_matrix_float *C_t = gsl_matrix_float_alloc(C->size2, C->size1); gsl_matrix_float_transpose_memcpy(C_t, C); sgemm_(TransA, TransB, &M, &N, &K1, &alpha, A_t->data, &LDA, B_t->data, &LDB, &beta, C_t->data, &LDC); gsl_matrix_float_transpose_memcpy(C, C_t); gsl_matrix_float_free(A_t); gsl_matrix_float_free(B_t); gsl_matrix_float_free(C_t); return; } void lapack_dgemm(char *TransA, char *TransB, double alpha, const gsl_matrix *A, const gsl_matrix *B, double beta, gsl_matrix *C) { int M, N, K1, K2, LDA = A->size1, LDB = B->size1, LDC = C->size2; if (*TransA == 'N' || *TransA == 'n') { M = A->size1; K1 = A->size2; } else if (*TransA == 'T' || *TransA == 't') { M = A->size2; K1 = A->size1; } else { cout << "need 'N' or 'T' in lapack_dgemm" << endl; return; } if (*TransB == 'N' || *TransB == 'n') { N = B->size2; K2 = B->size1; } else if (*TransB == 'T' || *TransB == 't') { N = B->size1; K2 = B->size2; } else { cout << "need 'N' or 'T' in lapack_dgemm" << endl; return; } if (K1 != K2) { cout << "A and B not compatible in lapack_dgemm" << endl; return; } if (C->size1 != (size_t)M || C->size2 != (size_t)N) { cout << "C not compatible in lapack_dgemm" << endl; return; } gsl_matrix *A_t = gsl_matrix_alloc(A->size2, A->size1); gsl_matrix_transpose_memcpy(A_t, A); gsl_matrix *B_t = gsl_matrix_alloc(B->size2, B->size1); gsl_matrix_transpose_memcpy(B_t, B); gsl_matrix *C_t = gsl_matrix_alloc(C->size2, C->size1); gsl_matrix_transpose_memcpy(C_t, C); dgemm_(TransA, TransB, &M, &N, &K1, &alpha, A_t->data, &LDA, B_t->data, &LDB, &beta, C_t->data, &LDC); gsl_matrix_transpose_memcpy(C, C_t); gsl_matrix_free(A_t); gsl_matrix_free(B_t); gsl_matrix_free(C_t); return; } // Eigen value decomposition, matrix A is destroyed, float seems to // have problem with large matrices (in mac). void lapack_float_eigen_symmv(gsl_matrix_float *A, gsl_vector_float *eval, gsl_matrix_float *evec, const size_t flag_largematrix) { if (flag_largematrix == 1) { int N = A->size1, LDA = A->size1, INFO, LWORK = -1; char JOBZ = 'V', UPLO = 'L'; if (N != (int)A->size2 || N != (int)eval->size) { cout << "Matrix needs to be symmetric and same " << "dimension in lapack_eigen_symmv." << endl; return; } LWORK = 3 * N; float *WORK = new float[LWORK]; ssyev_(&JOBZ, &UPLO, &N, A->data, &LDA, eval->data, WORK, &LWORK, &INFO); if (INFO != 0) { cout << "Eigen decomposition unsuccessful in " << "lapack_eigen_symmv." << endl; return; } gsl_matrix_float_view A_sub = gsl_matrix_float_submatrix(A, 0, 0, N, N); gsl_matrix_float_memcpy(evec, &A_sub.matrix); gsl_matrix_float_transpose(evec); delete[] WORK; } else { int N = A->size1, LDA = A->size1, LDZ = A->size1, INFO, LWORK = -1, LIWORK = -1; char JOBZ = 'V', UPLO = 'L', RANGE = 'A'; float ABSTOL = 1.0E-7; // VL, VU, IL, IU are not referenced; M equals N if RANGE='A'. float VL = 0.0, VU = 0.0; int IL = 0, IU = 0, M; if (N != (int)A->size2 || N != (int)eval->size) { cout << "Matrix needs to be symmetric and same " << "dimension in lapack_float_eigen_symmv." << endl; return; } int *ISUPPZ = new int[2 * N]; float WORK_temp[1]; int IWORK_temp[1]; ssyevr_(&JOBZ, &RANGE, &UPLO, &N, A->data, &LDA, &VL, &VU, &IL, &IU, &ABSTOL, &M, eval->data, evec->data, &LDZ, ISUPPZ, WORK_temp, &LWORK, IWORK_temp, &LIWORK, &INFO); if (INFO != 0) { cout << "Work space estimate unsuccessful in " << "lapack_float_eigen_symmv." << endl; return; } LWORK = (int)WORK_temp[0]; LIWORK = (int)IWORK_temp[0]; float *WORK = new float[LWORK]; int *IWORK = new int[LIWORK]; ssyevr_(&JOBZ, &RANGE, &UPLO, &N, A->data, &LDA, &VL, &VU, &IL, &IU, &ABSTOL, &M, eval->data, evec->data, &LDZ, ISUPPZ, WORK, &LWORK, IWORK, &LIWORK, &INFO); if (INFO != 0) { cout << "Eigen decomposition unsuccessful in " << "lapack_float_eigen_symmv." << endl; return; } gsl_matrix_float_transpose(evec); delete[] ISUPPZ; delete[] WORK; delete[] IWORK; } return; } // Eigenvalue decomposition, matrix A is destroyed. void lapack_eigen_symmv(gsl_matrix *A, gsl_vector *eval, gsl_matrix *evec, const size_t flag_largematrix) { if (flag_largematrix == 1) { int N = A->size1, LDA = A->size1, INFO, LWORK = -1; char JOBZ = 'V', UPLO = 'L'; if (N != (int)A->size2 || N != (int)eval->size) { cout << "Matrix needs to be symmetric and same " << "dimension in lapack_eigen_symmv." << endl; return; } LWORK = 3 * N; double *WORK = new double[LWORK]; dsyev_(&JOBZ, &UPLO, &N, A->data, &LDA, eval->data, WORK, &LWORK, &INFO); if (INFO != 0) { cout << "Eigen decomposition unsuccessful in " << "lapack_eigen_symmv." << endl; return; } gsl_matrix_view A_sub = gsl_matrix_submatrix(A, 0, 0, N, N); gsl_matrix_memcpy(evec, &A_sub.matrix); gsl_matrix_transpose(evec); delete[] WORK; } else { int N = A->size1, LDA = A->size1, LDZ = A->size1, INFO; int LWORK = -1, LIWORK = -1; char JOBZ = 'V', UPLO = 'L', RANGE = 'A'; double ABSTOL = 1.0E-7; // VL, VU, IL, IU are not referenced; M equals N if RANGE='A'. double VL = 0.0, VU = 0.0; int IL = 0, IU = 0, M; if (N != (int)A->size2 || N != (int)eval->size) { cout << "Matrix needs to be symmetric and same " << "dimension in lapack_eigen_symmv." << endl; return; } int *ISUPPZ = new int[2 * N]; double WORK_temp[1]; int IWORK_temp[1]; dsyevr_(&JOBZ, &RANGE, &UPLO, &N, A->data, &LDA, &VL, &VU, &IL, &IU, &ABSTOL, &M, eval->data, evec->data, &LDZ, ISUPPZ, WORK_temp, &LWORK, IWORK_temp, &LIWORK, &INFO); if (INFO != 0) { cout << "Work space estimate unsuccessful in " << "lapack_eigen_symmv." << endl; return; } LWORK = (int)WORK_temp[0]; LIWORK = (int)IWORK_temp[0]; double *WORK = new double[LWORK]; int *IWORK = new int[LIWORK]; dsyevr_(&JOBZ, &RANGE, &UPLO, &N, A->data, &LDA, &VL, &VU, &IL, &IU, &ABSTOL, &M, eval->data, evec->data, &LDZ, ISUPPZ, WORK, &LWORK, IWORK, &LIWORK, &INFO); if (INFO != 0) { cout << "Eigen decomposition unsuccessful in " << "lapack_eigen_symmv." << endl; return; } gsl_matrix_transpose(evec); delete[] ISUPPZ; delete[] WORK; delete[] IWORK; } return; } // DO NOT set eigenvalues to be positive. double EigenDecomp(gsl_matrix *G, gsl_matrix *U, gsl_vector *eval, const size_t flag_largematrix) { lapack_eigen_symmv(G, eval, U, flag_largematrix); // Calculate track_G=mean(diag(G)). double d = 0.0; for (size_t i = 0; i < eval->size; ++i) { d += gsl_vector_get(eval, i); } d /= (double)eval->size; return d; } // DO NOT set eigen values to be positive. double EigenDecomp(gsl_matrix_float *G, gsl_matrix_float *U, gsl_vector_float *eval, const size_t flag_largematrix) { lapack_float_eigen_symmv(G, eval, U, flag_largematrix); // Calculate track_G=mean(diag(G)). double d = 0.0; for (size_t i = 0; i < eval->size; ++i) { d += gsl_vector_float_get(eval, i); } d /= (double)eval->size; return d; } double CholeskySolve(gsl_matrix *Omega, gsl_vector *Xty, gsl_vector *OiXty) { double logdet_O = 0.0; lapack_cholesky_decomp(Omega); for (size_t i = 0; i < Omega->size1; ++i) { logdet_O += log(gsl_matrix_get(Omega, i, i)); } logdet_O *= 2.0; lapack_cholesky_solve(Omega, Xty, OiXty); return logdet_O; } double CholeskySolve(gsl_matrix_float *Omega, gsl_vector_float *Xty, gsl_vector_float *OiXty) { double logdet_O = 0.0; lapack_float_cholesky_decomp(Omega); for (size_t i = 0; i < Omega->size1; ++i) { logdet_O += log(gsl_matrix_float_get(Omega, i, i)); } logdet_O *= 2.0; lapack_float_cholesky_solve(Omega, Xty, OiXty); return logdet_O; } // LU decomposition. void LUDecomp(gsl_matrix *LU, gsl_permutation *p, int *signum) { gsl_linalg_LU_decomp(LU, p, signum); return; } void LUDecomp(gsl_matrix_float *LU, gsl_permutation *p, int *signum) { gsl_matrix *LU_double = gsl_matrix_alloc(LU->size1, LU->size2); // Copy float matrix to double. for (size_t i = 0; i < LU->size1; i++) { for (size_t j = 0; j < LU->size2; j++) { gsl_matrix_set(LU_double, i, j, gsl_matrix_float_get(LU, i, j)); } } // LU decomposition. gsl_linalg_LU_decomp(LU_double, p, signum); // Copy float matrix to double. for (size_t i = 0; i < LU->size1; i++) { for (size_t j = 0; j < LU->size2; j++) { gsl_matrix_float_set(LU, i, j, gsl_matrix_get(LU_double, i, j)); } } // Free matrix. gsl_matrix_free(LU_double); return; } // LU invert. void LUInvert(const gsl_matrix *LU, const gsl_permutation *p, gsl_matrix *inverse) { gsl_linalg_LU_invert(LU, p, inverse); return; } void LUInvert(const gsl_matrix_float *LU, const gsl_permutation *p, gsl_matrix_float *inverse) { gsl_matrix *LU_double = gsl_matrix_alloc(LU->size1, LU->size2); gsl_matrix *inverse_double = gsl_matrix_alloc(inverse->size1, inverse->size2); // Copy float matrix to double. for (size_t i = 0; i < LU->size1; i++) { for (size_t j = 0; j < LU->size2; j++) { gsl_matrix_set(LU_double, i, j, gsl_matrix_float_get(LU, i, j)); } } // LU decomposition. gsl_linalg_LU_invert(LU_double, p, inverse_double); // Copy float matrix to double. for (size_t i = 0; i < inverse->size1; i++) { for (size_t j = 0; j < inverse->size2; j++) { gsl_matrix_float_set(inverse, i, j, gsl_matrix_get(inverse_double, i, j)); } } // Free matrix. gsl_matrix_free(LU_double); gsl_matrix_free(inverse_double); return; } // LU lndet. double LULndet(gsl_matrix *LU) { double d; d = gsl_linalg_LU_lndet(LU); return d; } double LULndet(gsl_matrix_float *LU) { gsl_matrix *LU_double = gsl_matrix_alloc(LU->size1, LU->size2); double d; // Copy float matrix to double. for (size_t i = 0; i < LU->size1; i++) { for (size_t j = 0; j < LU->size2; j++) { gsl_matrix_set(LU_double, i, j, gsl_matrix_float_get(LU, i, j)); } } // LU decomposition. d = gsl_linalg_LU_lndet(LU_double); // Free matrix gsl_matrix_free(LU_double); return d; } // LU solve. void LUSolve(const gsl_matrix *LU, const gsl_permutation *p, const gsl_vector *b, gsl_vector *x) { gsl_linalg_LU_solve(LU, p, b, x); return; } void LUSolve(const gsl_matrix_float *LU, const gsl_permutation *p, const gsl_vector_float *b, gsl_vector_float *x) { gsl_matrix *LU_double = gsl_matrix_alloc(LU->size1, LU->size2); gsl_vector *b_double = gsl_vector_alloc(b->size); gsl_vector *x_double = gsl_vector_alloc(x->size); // Copy float matrix to double. for (size_t i = 0; i < LU->size1; i++) { for (size_t j = 0; j < LU->size2; j++) { gsl_matrix_set(LU_double, i, j, gsl_matrix_float_get(LU, i, j)); } } for (size_t i = 0; i < b->size; i++) { gsl_vector_set(b_double, i, gsl_vector_float_get(b, i)); } for (size_t i = 0; i < x->size; i++) { gsl_vector_set(x_double, i, gsl_vector_float_get(x, i)); } // LU decomposition. gsl_linalg_LU_solve(LU_double, p, b_double, x_double); // Copy float matrix to double. for (size_t i = 0; i < x->size; i++) { gsl_vector_float_set(x, i, gsl_vector_get(x_double, i)); } // Free matrix. gsl_matrix_free(LU_double); gsl_vector_free(b_double); gsl_vector_free(x_double); return; } bool lapack_ddot(vector &x, vector &y, double &v) { bool flag = false; int incx = 1; int incy = 1; int n = (int)x.size(); if (x.size() == y.size()) { v = ddot_(&n, &x[0], &incx, &y[0], &incy); flag = true; } return flag; } bool lapack_sdot(vector &x, vector &y, double &v) { bool flag = false; int incx = 1; int incy = 1; int n = (int)x.size(); if (x.size() == y.size()) { v = sdot_(&n, &x[0], &incx, &y[0], &incy); flag = true; } return flag; }