/*
Genome-wide Efficient Mixed Model Association (GEMMA)
Copyright © 2011-2017, Xiang Zhou
Copyright © 2017, Peter Carbonetto
Copyright © 2017-2018, Pjotr Prins
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#include
#include
#include
#include
#include
#include
#include
#ifdef OPENBLAS
extern "C" {
// these functions are defined in cblas.h - but if we include that we
// conflicts with other BLAS includes (GSL)
int openblas_get_num_threads(void);
int openblas_get_parallel(void);
char* openblas_get_config(void);
char* openblas_get_corename(void);
}
#else
#pragma message "Not compiling with OPENBLAS"
#endif
#include "gsl/gsl_blas.h"
#include "gsl/gsl_cdf.h"
#include "gsl/gsl_eigen.h"
#include "gsl/gsl_linalg.h"
#include "gsl/gsl_matrix.h"
#include "gsl/gsl_vector.h"
#include "gsl/gsl_version.h"
#include "bslmm.h"
#include "bslmmdap.h"
#include // for gsl_error_handler
#include "gemma.h"
#include "gemma_io.h"
#include "lapack.h"
#include "ldr.h"
#include "lm.h"
#include "lmm.h"
#include "mathfunc.h"
#include "mvlmm.h"
#include "prdt.h"
#include "varcov.h"
#include "vc.h"
#include "debug.h"
#include "version.h"
using namespace std;
GEMMA::GEMMA(void) : version(GEMMA_VERSION), date(GEMMA_DATE), year(GEMMA_YEAR) {}
void gemma_gsl_error_handler (const char * reason,
const char * file,
int line, int gsl_errno) {
cerr << "GSL ERROR: " << reason << " in " << file
<< " at line " << line << " errno " << gsl_errno <
#endif
void GEMMA::PrintHeader(void) {
cout <<
"GEMMA " << version << " (" << date << ") by Xiang Zhou and team (C) 2012-" << year << endl;
return;
}
void GEMMA::PrintLicense(void) {
cout << endl;
cout << "The Software Is Distributed Under GNU General Public "
<< "License, But May Also Require The Following Notifications." << endl;
cout << endl;
cout << "Including Lapack Routines In The Software May Require"
<< " The Following Notification:" << endl;
cout << "Copyright (c) 1992-2010 The University of Tennessee and "
<< "The University of Tennessee Research Foundation. All rights "
<< "reserved." << endl;
cout << "Copyright (c) 2000-2010 The University of California "
<< "Berkeley. All rights reserved." << endl;
cout << "Copyright (c) 2006-2010 The University of Colorado Denver. "
<< "All rights reserved." << endl;
cout << endl;
cout << "$COPYRIGHT$" << endl;
cout << "Additional copyrights may follow" << endl;
cout << "$HEADER$" << endl;
cout << "Redistribution and use in source and binary forms, with or "
<< "without modification, are permitted provided that the following "
<< " conditions are met:" << endl;
cout << "- Redistributions of source code must retain the above "
<< "copyright notice, this list of conditions and the following "
<< "disclaimer." << endl;
cout << "- Redistributions in binary form must reproduce the above "
<< "copyright notice, this list of conditions and the following "
<< "disclaimer listed in this license in the documentation and/or "
<< "other materials provided with the distribution." << endl;
cout << "- Neither the name of the copyright holders nor the names "
<< "of its contributors may be used to endorse or promote products "
<< "derived from this software without specific prior written "
<< "permission." << endl;
cout << "The copyright holders provide no reassurances that the "
<< "source code provided does not infringe any patent, copyright, "
<< "or any other "
<< "intellectual property rights of third parties. "
<< "The copyright holders disclaim any liability to any recipient "
<< "for claims brought against "
<< "recipient by any third party for infringement of that parties "
<< "intellectual property rights. " << endl;
cout << "THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND "
<< "CONTRIBUTORS \"AS IS\" AND ANY EXPRESS OR IMPLIED WARRANTIES, "
<< "INCLUDING, BUT NOT "
<< "LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND "
<< "FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT "
<< "SHALL THE COPYRIGHT "
<< "OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, "
<< "INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES "
<< "(INCLUDING, BUT NOT "
<< "LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; "
<< "LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) "
<< "HOWEVER CAUSED AND ON ANY "
<< "THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, "
<< "OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY "
<< "OUT OF THE USE "
<< "OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF "
<< "SUCH DAMAGE." << endl;
cout << endl;
return;
}
void GEMMA::PrintHelp(size_t option) {
if (option == 0) {
cout << endl;
cout << " type ./gemma -h [num] for detailed help" << endl;
cout << " options: " << endl;
cout << " 1: quick guide" << endl;
cout << " 2: file I/O related" << endl;
cout << " 3: SNP QC" << endl;
cout << " 4: calculate relatedness matrix" << endl;
cout << " 5: perform eigen decomposition" << endl;
cout << " 6: perform variance component estimation" << endl;
cout << " 7: fit a linear model" << endl;
cout << " 8: fit a linear mixed model" << endl;
cout << " 9: fit a multivariate linear mixed model" << endl;
cout << " 10: fit a Bayesian sparse linear mixed model" << endl;
cout << " 11: obtain predicted values" << endl;
cout << " 12: calculate snp variance covariance" << endl;
cout << " 13: note" << endl;
cout << " 14: debug options" << endl;
cout << endl;
}
if (option == 1) {
cout << " QUICK GUIDE" << endl;
cout << " to generate a relatedness matrix: " << endl;
cout << " ./gemma -bfile [prefix] -gk [num] -o [prefix]" << endl;
cout << " ./gemma -g [filename] -p [filename] -gk [num] -o [prefix]"
<< endl;
cout << " to generate the S matrix: " << endl;
cout << " ./gemma -bfile [prefix] -gs -o [prefix]" << endl;
cout << " ./gemma -p [filename] -g [filename] -gs -o [prefix]"
<< endl;
cout << " ./gemma -bfile [prefix] -cat [filename] -gs -o [prefix]"
<< endl;
cout << " ./gemma -p [filename] -g [filename] -cat [filename] -gs "
"-o [prefix]"
<< endl;
cout << " ./gemma -bfile [prefix] -sample [num] -gs -o [prefix]"
<< endl;
cout << " ./gemma -p [filename] -g [filename] -sample [num] -gs -o "
"[prefix]"
<< endl;
cout << " to generate the q vector: " << endl;
cout << " ./gemma -beta [filename] -gq -o [prefix]" << endl;
cout << " ./gemma -beta [filename] -cat [filename] -gq -o [prefix]"
<< endl;
cout << " to generate the ldsc weigthts: " << endl;
cout << " ./gemma -beta [filename] -gw -o [prefix]" << endl;
cout << " ./gemma -beta [filename] -cat [filename] -gw -o [prefix]"
<< endl;
cout << " to perform eigen decomposition of the relatedness matrix: "
<< endl;
cout << " ./gemma -bfile [prefix] -k [filename] -eigen -o [prefix]"
<< endl;
cout << " ./gemma -g [filename] -p [filename] -k [filename] -eigen "
"-o [prefix]"
<< endl;
cout << " to estimate variance components: " << endl;
cout << " ./gemma -bfile [prefix] -k [filename] -vc [num] -o "
"[prefix]"
<< endl;
cout << " ./gemma -p [filename] -k [filename] -vc [num] -o [prefix]"
<< endl;
cout << " ./gemma -bfile [prefix] -mk [filename] -vc [num] -o "
"[prefix]"
<< endl;
cout
<< " ./gemma -p [filename] -mk [filename] -vc [num] -o [prefix]"
<< endl;
cout << " ./gemma -beta [filename] -cor [filename] -vc [num] -o "
"[prefix]"
<< endl;
cout << " ./gemma -beta [filename] -cor [filename] -cat [filename] "
"-vc [num] -o [prefix]"
<< endl;
cout << " options for the above two commands: -crt -windowbp [num]"
<< endl;
cout << " ./gemma -mq [filename] -ms [filename] -mv [filename] -vc "
"[num] -o [prefix]"
<< endl;
cout << " or with summary statistics, replace bfile with mbfile, "
"or g or mg; vc=1 for HE weights and vc=2 for LDSC weights"
<< endl;
cout << " ./gemma -beta [filename] -bfile [filename] -cat "
"[filename] -wsnp [filename] -wcat [filename] -vc [num] -o [prefix]"
<< endl;
cout << " ./gemma -beta [filename] -bfile [filename] -cat "
"[filename] -wsnp [filename] -wcat [filename] -ci [num] -o [prefix]"
<< endl;
cout << " to fit a linear mixed model: " << endl;
cout << " ./gemma -bfile [prefix] -k [filename] -lmm [num] -o "
"[prefix]"
<< endl;
cout << " ./gemma -g [filename] -p [filename] -a [filename] -k "
"[filename] -lmm [num] -o [prefix]"
<< endl;
cout << " to fit a linear mixed model to test g by e effects: " << endl;
cout << " ./gemma -bfile [prefix] -gxe [filename] -k [filename] "
"-lmm [num] -o [prefix]"
<< endl;
cout << " ./gemma -g [filename] -p [filename] -a [filename] -gxe "
"[filename] -k [filename] -lmm [num] -o [prefix]"
<< endl;
cout << " to fit a univariate linear mixed model with different residual "
"weights for different individuals: "
<< endl;
cout << " ./gemma -bfile [prefix] -weight [filename] -k [filename] "
"-lmm [num] -o [prefix]"
<< endl;
cout << " ./gemma -g [filename] -p [filename] -a [filename] "
"-weight [filename] -k [filename] -lmm [num] -o [prefix]"
<< endl;
cout << " to fit a multivariate linear mixed model: " << endl;
cout << " ./gemma -bfile [prefix] -k [filename] -lmm [num] -n "
"[pheno cols...] -o [prefix]"
<< endl;
cout << " ./gemma -g [filename] -p [filename] -a [filename] -k "
"[filename] -lmm [num] -n [pheno cols...] -o [prefix]"
<< endl;
cout << " to fit a Bayesian sparse linear mixed model: " << endl;
cout << " ./gemma -bfile [prefix] -bslmm [num] -o [prefix]" << endl;
cout << " ./gemma -g [filename] -p [filename] -a [filename] -bslmm "
"[num] -o [prefix]"
<< endl;
cout << " to obtain predicted values: " << endl;
cout << " ./gemma -bfile [prefix] -epm [filename] -emu [filename] "
"-ebv [filename] -k [filename] -predict [num] -o [prefix]"
<< endl;
cout << " ./gemma -g [filename] -p [filename] -epm [filename] -emu "
"[filename] -ebv [filename] -k [filename] -predict [num] -o "
"[prefix]"
<< endl;
cout << " to calculate correlations between SNPs: " << endl;
cout << " ./gemma -bfile [prefix] -calccor -o [prefix]" << endl;
cout << " ./gemma -g [filename] -p [filename] -calccor -o [prefix]"
<< endl;
cout << endl;
}
if (option == 2) {
cout << " FILE I/O RELATED OPTIONS" << endl;
cout << " -bfile [prefix] "
<< " specify input PLINK binary ped file prefix." << endl;
cout << " requires: *.fam, *.bim and *.bed files" << endl;
cout << " missing value: -9" << endl;
cout << " -g [filename] "
<< " specify input BIMBAM mean genotype file name" << endl;
cout << " format: rs#1, allele0, allele1, genotype for individual "
"1, genotype for individual 2, ..."
<< endl;
cout << " rs#2, allele0, allele1, genotype for individual "
"1, genotype for individual 2, ..."
<< endl;
cout << " ..." << endl;
cout << " missing value: NA" << endl;
cout << " -p [filename] "
<< " specify input BIMBAM-style phenotype file name (when used with PLINK .fam phenotypes are ignored)" << endl;
cout << " format: phenotype for individual 1" << endl;
cout << " phenotype for individual 2" << endl;
cout << " ..." << endl;
cout << " missing value: NA" << endl;
cout << " -a [filename] "
<< " specify input BIMBAM SNP annotation file name (optional)" << endl;
cout << " format: rs#1, base_position, chr_number" << endl;
cout << " rs#2, base_position, chr_number" << endl;
cout << " ..." << endl;
cout << " -gxe [filename] "
<< " specify input file that contains a column of environmental "
"factor for g by e tests"
<< endl;
cout << " format: variable for individual 1" << endl;
cout << " variable for individual 2" << endl;
cout << " ..." << endl;
cout << " missing value: NA" << endl;
cout << " -widv [filename] "
<< " weight file contains a column of positive values to be used "
<< "as weights for residuals---each weight corresponds to an "
<< "individual, in which a high weight corresponds to high "
<< "residual error variance for this individual (similar in "
<< "format to phenotype file)"
<< endl;
cout << " format: variable for individual 1" << endl;
cout << " variable for individual 2" << endl;
cout << " ..." << endl;
cout << " missing value: NA" << endl;
cout << " -k [filename] "
<< " specify input kinship/relatedness matrix file name" << endl;
cout << " -mk [filename] "
<< " specify input file which contains a list of kinship/relatedness "
"matrices"
<< endl;
cout << " -u [filename] "
<< " specify input file containing the eigen vectors of the "
"kinship/relatedness matrix"
<< endl;
cout << " -d [filename] "
<< " specify input file containing the eigen values of the "
"kinship/relatedness matrix"
<< endl;
cout << " -c [filename] "
<< " specify input covariates file name (optional)" << endl;
cout << " -cat [filename] "
<< " specify input category file name (optional), which contains rs "
"cat1 cat2 ..."
<< endl;
cout << " -beta [filename] "
<< " specify input beta file name (optional), which contains rs beta "
"se_beta n_total (or n_mis and n_obs) estimates from a lm model"
<< endl;
cout << " -cor [filename] "
<< " specify input correlation file name (optional), which contains "
"rs window_size correlations from snps"
<< endl;
cout << " missing value: NA" << endl;
cout << " note: the intercept (a column of 1s) may need to be "
"included"
<< endl;
cout << " -epm [filename] "
<< " specify input estimated parameter file name" << endl;
cout << " -en [n1] [n2] [n3] [n4] "
<< " specify values for the input estimated parameter file (with a "
"header)"
<< endl;
cout << " options: n1: rs column number" << endl;
cout << " n2: estimated alpha column number (0 to ignore)"
<< endl;
cout << " n3: estimated beta column number (0 to ignore)"
<< endl;
cout << " n4: estimated gamma column number (0 to ignore)"
<< endl;
cout << " default: 2 4 5 6 if -ebv is not specified; 2 0 5 6 if "
"-ebv is specified"
<< endl;
cout << " -ebv [filename] "
<< " specify input estimated random effect (breeding value) file name"
<< endl;
cout << " format: value for individual 1" << endl;
cout << " value for individual 2" << endl;
cout << " ..." << endl;
cout << " missing value: NA" << endl;
cout << " -emu [filename] "
<< " specify input log file name containing estimated mean" << endl;
cout << " -mu [num] "
<< " specify input estimated mean value" << endl;
cout << " -gene [filename] "
<< " specify input gene expression file name" << endl;
cout << " format: header" << endl;
cout << " gene1, count for individual 1, count for "
"individual 2, ..."
<< endl;
cout << " gene2, count for individual 1, count for "
"individual 2, ..."
<< endl;
cout << " ..." << endl;
cout << " missing value: not allowed" << endl;
cout << " -r [filename] "
<< " specify input total read count file name" << endl;
cout << " format: total read count for individual 1" << endl;
cout << " total read count for individual 2" << endl;
cout << " ..." << endl;
cout << " missing value: NA" << endl;
cout
<< " -snps [filename] "
<< " specify input snps file name to only analyze a certain set of snps"
<< endl;
cout << " format: rs#1" << endl;
cout << " rs#2" << endl;
cout << " ..." << endl;
cout << " missing value: NA" << endl;
cout << " -silence "
<< " silent terminal display" << endl;
cout << " -km [num] "
<< " specify input kinship/relatedness file type (default 1)." << endl;
cout << " options: 1: \"n by n matrix\" format" << endl;
cout << " 2: \"id id value\" format" << endl;
cout << " -n [num] "
<< " specify phenotype column in the phenotype/*.fam file (optional; "
"default 1)"
<< endl;
cout << " -pace [num] "
<< " specify terminal display update pace (default 1,000 SNPs or "
"1,000 iterations)."
<< endl;
cout << " -outdir [path] "
<< " specify output directory path (default \"./output/\")" << endl;
cout << " -o [prefix] "
<< " specify output file prefix (default \"result\")" << endl;
cout << " output: prefix.cXX.txt or prefix.sXX.txt from "
"kinship/relatedness matrix estimation"
<< endl;
cout << " output: prefix.assoc.txt and prefix.log.txt form "
"association tests"
<< endl;
cout << endl;
}
if (option == 3) {
cout << " SNP QC OPTIONS" << endl;
cout << " -miss [num] "
<< " specify missingness threshold (default 0.05)" << endl;
cout << " -maf [num] "
<< " specify minor allele frequency threshold (default 0.01)" << endl;
cout << " -hwe [num] "
<< " specify HWE test p value threshold (default 0; no test)" << endl;
cout << " -r2 [num] "
<< " specify r-squared threshold (default 0.9999)" << endl;
cout << " -notsnp "
<< " minor allele frequency cutoff is not used" << endl;
cout << endl;
}
if (option == 4) {
cout << " RELATEDNESS MATRIX (K) CALCULATION OPTIONS" << endl;
cout << " -ksnps [filename] "
<< " specify input snps file name to compute K" << endl;
cout << " -loco [chr] "
<< " leave one chromosome out (LOCO) by name (requires -a annotation "
"file)"
<< endl;
cout << " -a [filename] "
<< " specify input BIMBAM SNP annotation file name (LOCO only)"
<< endl;
cout << " -gk [num] "
<< " specify which type of kinship/relatedness matrix to generate "
"(default 1)"
<< endl;
cout << " options: 1: centered XX^T/p" << endl;
cout << " 2: standardized XX^T/p" << endl;
cout << " note: non-polymorphic SNPs are excluded " << endl;
cout << endl;
}
if (option == 5) {
cout << " EIGEN-DECOMPOSITION OPTIONS" << endl;
cout << " -eigen "
<< " specify to perform eigen decomposition of the loaded relatedness "
"matrix"
<< endl;
cout << endl;
}
if (option == 6) {
cout << " VARIANCE COMPONENT ESTIMATION OPTIONS" << endl;
cout << " -vc "
<< " specify to perform variance component estimation for the loaded "
"relatedness matrix/matrices"
<< endl;
cout
<< " options (with kinship file): 1: HE regression (default)"
<< endl;
cout << " 2: REML" << endl;
cout << " options (with beta/cor files): 1: Centered genotypes "
"(default)"
<< endl;
cout << " 2: Standardized genotypes"
<< endl;
cout << " -crt -windowbp [num]"
<< " specify the window size based on bp (default 1000000; 1Mb)"
<< endl;
cout << " -crt -windowcm [num]"
<< " specify the window size based on cm (default 0)" << endl;
cout << " -crt -windowns [num]"
<< " specify the window size based on number of snps (default 0)"
<< endl;
cout << endl;
}
if (option == 7) {
cout << " LINEAR MODEL OPTIONS" << endl;
cout << " -lm [num] "
<< " specify analysis options (default 1)." << endl;
cout << " options: 1: Wald test" << endl;
cout << " 2: Likelihood ratio test" << endl;
cout << " 3: Score test" << endl;
cout << " 4: 1-3" << endl;
cout << endl;
}
if (option == 8) {
cout << " LINEAR MIXED MODEL OPTIONS" << endl;
cout << " -lmm [num] "
<< " specify analysis options (default 1)." << endl;
cout << " options: 1: Wald test" << endl;
cout << " 2: Likelihood ratio test" << endl;
cout << " 3: Score test" << endl;
cout << " 4: 1-3" << endl;
cout << " 5: Parameter estimation in the null model only"
<< endl;
cout << " -lmin [num] "
<< " specify minimal value for lambda (default 1e-5)" << endl;
cout << " -lmax [num] "
<< " specify maximum value for lambda (default 1e+5)" << endl;
cout
<< " -region [num] "
<< " specify the number of regions used to evaluate lambda (default 10)"
<< endl;
cout << " -loco [chr] "
<< " leave one chromosome out (LOCO) by name (requires -a annotation "
"file)"
<< endl;
cout << endl;
}
if (option == 9) {
cout << " MULTIVARIATE LINEAR MIXED MODEL OPTIONS" << endl;
cout << " -n [pheno cols...] - range of phenotypes" << endl;
cout << " -pnr "
<< " specify the pvalue threshold to use the Newton-Raphson's method "
"(default 0.001)"
<< endl;
cout << " -emi "
<< " specify the maximum number of iterations for the PX-EM method in "
"the null (default 10000)"
<< endl;
cout << " -nri "
<< " specify the maximum number of iterations for the "
"Newton-Raphson's method in the null (default 100)"
<< endl;
cout << " -emp "
<< " specify the precision for the PX-EM method in the null (default "
"0.0001)"
<< endl;
cout << " -nrp "
<< " specify the precision for the Newton-Raphson's method in the "
"null (default 0.0001)"
<< endl;
cout << " -crt "
<< " specify to output corrected pvalues for these pvalues that are "
"below the -pnr threshold"
<< endl;
cout << endl;
}
if (option == 10) {
cout << " MULTI-LOCUS ANALYSIS OPTIONS" << endl;
cout << " -bslmm [num] "
<< " specify analysis options (default 1)." << endl;
cout << " options: 1: BSLMM" << endl;
cout << " 2: standard ridge regression/GBLUP (no mcmc)"
<< endl;
cout << " 3: probit BSLMM (requires 0/1 phenotypes)"
<< endl;
cout
<< " 4: BSLMM with DAP for Hyper Parameter Estimation"
<< endl;
cout << " 5: BSLMM with DAP for Fine Mapping" << endl;
cout << " -ldr [num] "
<< " specify analysis options (default 1)." << endl;
cout << " options: 1: LDR" << endl;
cout << " MCMC OPTIONS" << endl;
cout << " Prior" << endl;
cout << " -hmin [num] "
<< " specify minimum value for h (default 0)" << endl;
cout << " -hmax [num] "
<< " specify maximum value for h (default 1)" << endl;
cout << " -rmin [num] "
<< " specify minimum value for rho (default 0)" << endl;
cout << " -rmax [num] "
<< " specify maximum value for rho (default 1)" << endl;
cout << " -pmin [num] "
<< " specify minimum value for log10(pi) (default log10(1/p), where p "
"is the number of analyzed SNPs )"
<< endl;
cout << " -pmax [num] "
<< " specify maximum value for log10(pi) (default log10(1) )" << endl;
cout << " -smin [num] "
<< " specify minimum value for |gamma| (default 0)" << endl;
cout << " -smax [num] "
<< " specify maximum value for |gamma| (default 300)" << endl;
cout << " Proposal" << endl;
cout << " -gmean [num] "
<< " specify the mean for the geometric distribution (default: 2000)"
<< endl;
cout << " -hscale [num] "
<< " specify the step size scale for the proposal distribution of h "
"(value between 0 and 1, default min(10/sqrt(n),1) )"
<< endl;
cout << " -rscale [num] "
<< " specify the step size scale for the proposal distribution of rho "
"(value between 0 and 1, default min(10/sqrt(n),1) )"
<< endl;
cout << " -pscale [num] "
<< " specify the step size scale for the proposal distribution of "
"log10(pi) (value between 0 and 1, default min(5/sqrt(n),1) )"
<< endl;
cout << " Others" << endl;
cout << " -w [num] "
<< " specify burn-in steps (default 100,000)" << endl;
cout << " -s [num] "
<< " specify sampling steps (default 1,000,000)" << endl;
cout << " -rpace [num] "
<< " specify recording pace, record one state in every [num] steps "
"(default 10)"
<< endl;
cout << " -wpace [num] "
<< " specify writing pace, write values down in every [num] recorded "
"steps (default 1000)"
<< endl;
cout << " -seed [num] "
<< " specify random seed (a random seed is generated by default)"
<< endl;
cout << " -mh [num] "
<< " specify number of MH steps in each iteration (default 10)"
<< endl;
cout << " requires: 0/1 phenotypes and -bslmm 3 option" << endl;
cout << endl;
}
if (option == 11) {
cout << " PREDICTION OPTIONS" << endl;
cout << " -predict [num] "
<< " specify prediction options (default 1)." << endl;
cout << " options: 1: predict for individuals with missing "
"phenotypes"
<< endl;
cout << " 2: predict for individuals with missing "
"phenotypes, and convert the predicted values to probability "
"scale. Use only for files fitted with -bslmm 3 option"
<< endl;
cout << endl;
}
if (option == 12) {
cout << " CALC CORRELATION OPTIONS" << endl;
cout << " -calccor " << endl;
cout << " -windowbp [num] "
<< " specify the window size based on bp (default 1000000; 1Mb)"
<< endl;
cout << " -windowcm [num] "
<< " specify the window size based on cm (default 0; not used)"
<< endl;
cout << " -windowns [num] "
<< " specify the window size based on number of snps (default 0; not "
"used)"
<< endl;
cout << endl;
}
if (option == 13) {
cout << " NOTE" << endl;
cout << " 1. Only individuals with non-missing phenotoypes and covariates "
"will be analyzed."
<< endl;
cout << " 2. Missing genotoypes will be repalced with the mean genotype of "
"that SNP."
<< endl;
cout << " 3. For lmm analysis, memory should be large enough to hold the "
"relatedness matrix and to perform eigen decomposition."
<< endl;
cout << " 4. For multivariate lmm analysis, use a large -pnr for each snp "
"will increase computation time dramatically."
<< endl;
cout << " 5. For bslmm analysis, in addition to 3, memory should be large "
"enough to hold the whole genotype matrix."
<< endl;
cout << endl;
}
if (option == 14) {
cout << " DEBUG OPTIONS" << endl;
cout << " -check enable checks (slower)" << endl;
cout << " -no-fpe-check disable hardware floating point checking" << endl;
cout << " -strict strict mode will stop when there is a problem" << endl;
cout << " -silence silent terminal display" << endl;
cout << " -debug debug output" << endl;
cout << " -debug-data debug data output" << endl;
cout << " -nind [num] read up to num individuals" << endl;
cout << " -issue [num] enable tests relevant to issue tracker" << endl;
cout << " -legacy run gemma in legacy mode" << endl;
cout << endl;
}
cout << "The GEMMA software is distributed under the GNU General Public v3" << endl;
cout << " -license show license information" << endl;
cout <<
" see also http://www.xzlab.org/software.html, https://github.com/genetics-statistics" << endl;
return;
}
// OPTIONS
// -------
// gk: 21-22
// gs: 25-26
// gq: 27-28
// eigen: 31-32
// lmm: 1-5
// bslmm: 11-15
// predict: 41-43
// lm: 51
// vc: 61
// ci: 66-67
// calccor: 71
// gw: 72
void GEMMA::Assign(int argc, char **argv, PARAM &cPar) {
string str;
for (int i = 1; i < argc; i++) {
if (strcmp(argv[i], "-bfile") == 0 || strcmp(argv[i], "--bfile") == 0 ||
strcmp(argv[i], "-b") == 0) {
if (argv[i + 1] == NULL || argv[i + 1][0] == '-') {
continue;
}
++i;
str.clear();
str.assign(argv[i]);
cPar.file_bfile = str;
} else if (strcmp(argv[i], "-mbfile") == 0 ||
strcmp(argv[i], "--mbfile") == 0 ||
strcmp(argv[i], "-mb") == 0) {
if (argv[i + 1] == NULL || argv[i + 1][0] == '-') {
continue;
}
++i;
str.clear();
str.assign(argv[i]);
cPar.file_mbfile = str;
} else if (strcmp(argv[i], "-silence") == 0 || strcmp(argv[i], "--quiet") == 0) {
debug_set_quiet_mode(true);
} else if (strcmp(argv[i], "-g") == 0) {
if (argv[i + 1] == NULL || argv[i + 1][0] == '-') {
continue;
}
++i;
str.clear();
str.assign(argv[i]);
cPar.file_geno = str;
} else if (strcmp(argv[i], "-mg") == 0) {
if (argv[i + 1] == NULL || argv[i + 1][0] == '-') {
continue;
}
++i;
str.clear();
str.assign(argv[i]);
cPar.file_mgeno = str;
} else if (strcmp(argv[i], "-p") == 0) {
if (argv[i + 1] == NULL || argv[i + 1][0] == '-') {
continue;
}
++i;
str.clear();
str.assign(argv[i]);
cPar.file_pheno = str;
} else if (strcmp(argv[i], "-a") == 0) {
if (argv[i + 1] == NULL || argv[i + 1][0] == '-') {
continue;
}
++i;
str.clear();
str.assign(argv[i]);
cPar.file_anno = str;
} else if (strcmp(argv[i], "-gxe") == 0) {
if (argv[i + 1] == NULL || argv[i + 1][0] == '-') {
continue;
}
++i;
str.clear();
str.assign(argv[i]);
cPar.file_gxe = str;
} else if (strcmp(argv[i], "-widv") == 0) {
if (argv[i + 1] == NULL || argv[i + 1][0] == '-') {
continue;
}
++i;
str.clear();
str.assign(argv[i]);
cPar.file_weight = str;
} else if (strcmp(argv[i], "-wsnp") == 0) {
if (argv[i + 1] == NULL || argv[i + 1][0] == '-') {
continue;
}
++i;
str.clear();
str.assign(argv[i]);
cPar.file_wsnp = str;
} else if (strcmp(argv[i], "-wcat") == 0) {
if (argv[i + 1] == NULL || argv[i + 1][0] == '-') {
continue;
}
++i;
str.clear();
str.assign(argv[i]);
cPar.file_wcat = str;
} else if (strcmp(argv[i], "-k") == 0) {
if (argv[i + 1] == NULL || argv[i + 1][0] == '-') {
continue;
}
++i;
str.clear();
str.assign(argv[i]);
cPar.file_kin = str;
} else if (strcmp(argv[i], "-mk") == 0) {
if (argv[i + 1] == NULL || argv[i + 1][0] == '-') {
continue;
}
++i;
str.clear();
str.assign(argv[i]);
cPar.file_mk = str;
} else if (strcmp(argv[i], "-u") == 0) {
if (argv[i + 1] == NULL || argv[i + 1][0] == '-') {
continue;
}
++i;
str.clear();
str.assign(argv[i]);
cPar.file_ku = str;
} else if (strcmp(argv[i], "-d") == 0) {
if (argv[i + 1] == NULL || argv[i + 1][0] == '-') {
continue;
}
++i;
str.clear();
str.assign(argv[i]);
cPar.file_kd = str;
} else if (strcmp(argv[i], "-c") == 0) {
if (argv[i + 1] == NULL || argv[i + 1][0] == '-') {
continue;
}
++i;
str.clear();
str.assign(argv[i]);
cPar.file_cvt = str;
} else if (strcmp(argv[i], "-cat") == 0) {
if (argv[i + 1] == NULL || argv[i + 1][0] == '-') {
continue;
}
++i;
str.clear();
str.assign(argv[i]);
cPar.file_cat = str;
} else if (strcmp(argv[i], "-mcat") == 0) {
if (argv[i + 1] == NULL || argv[i + 1][0] == '-') {
continue;
}
++i;
str.clear();
str.assign(argv[i]);
cPar.file_mcat = str;
} else if (strcmp(argv[i], "-catc") == 0) {
if (argv[i + 1] == NULL || argv[i + 1][0] == '-') {
continue;
}
++i;
str.clear();
str.assign(argv[i]);
cPar.file_catc = str;
} else if (strcmp(argv[i], "-mcatc") == 0) {
if (argv[i + 1] == NULL || argv[i + 1][0] == '-') {
continue;
}
++i;
str.clear();
str.assign(argv[i]);
cPar.file_mcatc = str;
} else if (strcmp(argv[i], "-beta") == 0) {
if (argv[i + 1] == NULL || argv[i + 1][0] == '-') {
continue;
}
++i;
str.clear();
str.assign(argv[i]);
cPar.file_beta = str;
} else if (strcmp(argv[i], "-bf") == 0) {
if (argv[i + 1] == NULL || argv[i + 1][0] == '-') {
continue;
}
++i;
str.clear();
str.assign(argv[i]);
cPar.file_bf = str;
} else if (strcmp(argv[i], "-hyp") == 0) {
if (argv[i + 1] == NULL || argv[i + 1][0] == '-') {
continue;
}
++i;
str.clear();
str.assign(argv[i]);
cPar.file_hyp = str;
} else if (strcmp(argv[i], "-cor") == 0) {
if (argv[i + 1] == NULL || argv[i + 1][0] == '-') {
continue;
}
++i;
str.clear();
str.assign(argv[i]);
cPar.file_cor = str;
} else if (strcmp(argv[i], "-study") == 0) {
if (argv[i + 1] == NULL || argv[i + 1][0] == '-') {
continue;
}
++i;
str.clear();
str.assign(argv[i]);
cPar.file_study = str;
} else if (strcmp(argv[i], "-ref") == 0) {
if (argv[i + 1] == NULL || argv[i + 1][0] == '-') {
continue;
}
++i;
str.clear();
str.assign(argv[i]);
cPar.file_ref = str;
} else if (strcmp(argv[i], "-mstudy") == 0) {
if (argv[i + 1] == NULL || argv[i + 1][0] == '-') {
continue;
}
++i;
str.clear();
str.assign(argv[i]);
cPar.file_mstudy = str;
} else if (strcmp(argv[i], "-mref") == 0) {
if (argv[i + 1] == NULL || argv[i + 1][0] == '-') {
continue;
}
++i;
str.clear();
str.assign(argv[i]);
cPar.file_mref = str;
} else if (strcmp(argv[i], "-epm") == 0) {
if (argv[i + 1] == NULL || argv[i + 1][0] == '-') {
continue;
}
++i;
str.clear();
str.assign(argv[i]);
cPar.file_epm = str;
} else if (strcmp(argv[i], "-en") == 0) {
while (argv[i + 1] != NULL && argv[i + 1][0] != '-') {
++i;
str.clear();
str.assign(argv[i]);
cPar.est_column.push_back(atoi(str.c_str()));
}
} else if (strcmp(argv[i], "-ebv") == 0) {
if (argv[i + 1] == NULL || argv[i + 1][0] == '-') {
continue;
}
++i;
str.clear();
str.assign(argv[i]);
cPar.file_ebv = str;
} else if (strcmp(argv[i], "-emu") == 0) {
if (argv[i + 1] == NULL || argv[i + 1][0] == '-') {
continue;
}
++i;
str.clear();
str.assign(argv[i]);
cPar.file_log = str;
} else if (strcmp(argv[i], "-mu") == 0) {
if (argv[i + 1] == NULL) {
continue;
}
++i;
str.clear();
str.assign(argv[i]);
cPar.pheno_mean = atof(str.c_str());
} else if (strcmp(argv[i], "-gene") == 0) {
if (argv[i + 1] == NULL || argv[i + 1][0] == '-') {
continue;
}
++i;
str.clear();
str.assign(argv[i]);
cPar.file_gene = str;
} else if (strcmp(argv[i], "-r") == 0) {
if (argv[i + 1] == NULL || argv[i + 1][0] == '-') {
continue;
}
++i;
str.clear();
str.assign(argv[i]);
cPar.file_read = str;
} else if (strcmp(argv[i], "-snps") == 0) {
if (argv[i + 1] == NULL || argv[i + 1][0] == '-') {
continue;
}
++i;
str.clear();
str.assign(argv[i]);
cPar.file_snps = str;
} else if (strcmp(argv[i], "-km") == 0) {
if (argv[i + 1] == NULL || argv[i + 1][0] == '-') {
continue;
}
++i;
str.clear();
str.assign(argv[i]);
cPar.k_mode = atoi(str.c_str());
} else if (strcmp(argv[i], "-n") == 0) { // set pheno column (list/range)
(cPar.p_column).clear();
while (argv[i + 1] != NULL && argv[i + 1][0] != '-') {
++i;
str.clear();
str.assign(argv[i]);
(cPar.p_column).push_back(atoi(str.c_str()));
}
} else if (strcmp(argv[i], "-pace") == 0) {
if (argv[i + 1] == NULL || argv[i + 1][0] == '-') {
continue;
}
++i;
str.clear();
str.assign(argv[i]);
cPar.d_pace = atoi(str.c_str());
} else if (strcmp(argv[i], "-outdir") == 0) {
if (argv[i + 1] == NULL || argv[i + 1][0] == '-') {
continue;
}
++i;
str.clear();
str.assign(argv[i]);
cPar.path_out = str;
} else if (strcmp(argv[i], "-o") == 0) {
if (argv[i + 1] == NULL || argv[i + 1][0] == '-') {
continue;
}
++i;
str.clear();
str.assign(argv[i]);
cPar.file_out = str;
} else if (strcmp(argv[i], "-miss") == 0) {
if (argv[i + 1] == NULL || argv[i + 1][0] == '-') {
continue;
}
++i;
str.clear();
str.assign(argv[i]);
cPar.miss_level = atof(str.c_str());
} else if (strcmp(argv[i], "-maf") == 0) {
if (argv[i + 1] == NULL || argv[i + 1][0] == '-') {
continue;
}
++i;
str.clear();
str.assign(argv[i]);
if (cPar.maf_level != -1) {
cPar.maf_level = atof(str.c_str());
}
} else if (strcmp(argv[i], "-hwe") == 0) {
if (argv[i + 1] == NULL || argv[i + 1][0] == '-') {
continue;
}
++i;
str.clear();
str.assign(argv[i]);
cPar.hwe_level = atof(str.c_str());
} else if (strcmp(argv[i], "-r2") == 0) {
if (argv[i + 1] == NULL || argv[i + 1][0] == '-') {
continue;
}
++i;
str.clear();
str.assign(argv[i]);
cPar.r2_level = atof(str.c_str());
} else if (strcmp(argv[i], "-notsnp") == 0) {
cPar.maf_level = -1;
} else if (strcmp(argv[i], "-loco") == 0) {
assert(argv[i + 1]);
++i;
str.clear();
str.assign(argv[i]);
cPar.loco = str;
} else if (strcmp(argv[i], "-gk") == 0) {
if (cPar.a_mode != 0) {
cPar.error = true;
cout << "error! only one of -gk -gs -eigen -vc -lm -lmm -bslmm "
"-predict -calccor options is allowed."
<< endl;
break;
}
if (argv[i + 1] == NULL || argv[i + 1][0] == '-') {
cPar.a_mode = M_KIN;
continue;
}
++i;
str.clear();
str.assign(argv[i]);
cPar.a_mode = 20 + atoi(str.c_str());
} else if (strcmp(argv[i], "-gs") == 0) {
if (cPar.a_mode != 0) {
cPar.error = true;
cout << "error! only one of -gk -gs -eigen -vc -lm -lmm -bslmm "
"-predict -calccor options is allowed."
<< endl;
break;
}
if (argv[i + 1] == NULL || argv[i + 1][0] == '-') {
cPar.a_mode = 25;
continue;
}
++i;
str.clear();
str.assign(argv[i]);
cPar.a_mode = 24 + atoi(str.c_str());
} else if (strcmp(argv[i], "-gq") == 0) {
if (cPar.a_mode != 0) {
cPar.error = true;
cout << "error! only one of -gk -gs -eigen -vc -lm -lmm -bslmm "
"-predict -calccor options is allowed."
<< endl;
break;
}
if (argv[i + 1] == NULL || argv[i + 1][0] == '-') {
cPar.a_mode = 27;
continue;
}
++i;
str.clear();
str.assign(argv[i]);
cPar.a_mode = 26 + atoi(str.c_str());
} else if (strcmp(argv[i], "-gw") == 0) {
if (cPar.a_mode != 0) {
cPar.error = true;
cout << "error! only one of -gk -gs -eigen -vc -lm -lmm -bslmm "
"-predict -calccor options is allowed."
<< endl;
break;
}
if (argv[i + 1] == NULL || argv[i + 1][0] == '-') {
cPar.a_mode = 72;
continue;
}
++i;
str.clear();
str.assign(argv[i]);
cPar.a_mode = 71 + atoi(str.c_str());
} else if (strcmp(argv[i], "-sample") == 0) {
if (argv[i + 1] == NULL || argv[i + 1][0] == '-') {
continue;
}
++i;
str.clear();
str.assign(argv[i]);
cPar.ni_subsample = atoi(str.c_str());
} else if (strcmp(argv[i], "-eigen") == 0) {
if (cPar.a_mode != 0) {
cPar.error = true;
cout << "error! only one of -gk -gs -eigen -vc -lm -lmm -bslmm "
"-predict -calccor options is allowed."
<< endl;
break;
}
if (argv[i + 1] == NULL || argv[i + 1][0] == '-') {
cPar.a_mode = 31;
continue;
}
++i;
str.clear();
str.assign(argv[i]);
cPar.a_mode = 30 + atoi(str.c_str());
} else if (strcmp(argv[i], "-calccor") == 0) {
if (cPar.a_mode != 0) {
cPar.error = true;
cout << "error! only one of -gk -gs -eigen -vc -lm -lmm -bslmm "
"-predict -calccor options is allowed."
<< endl;
break;
}
if (argv[i + 1] == NULL || argv[i + 1][0] == '-') {
cPar.a_mode = 71;
continue;
}
++i;
str.clear();
str.assign(argv[i]);
cPar.a_mode = 70 + atoi(str.c_str());
} else if (strcmp(argv[i], "-vc") == 0) {
if (cPar.a_mode != 0) {
cPar.error = true;
cout << "error! only one of -gk -gs -eigen -vc -lm -lmm -bslmm "
"-predict -calccor options is allowed."
<< endl;
break;
}
if (argv[i + 1] == NULL || argv[i + 1][0] == '-') {
cPar.a_mode = 61;
continue;
}
++i;
str.clear();
str.assign(argv[i]);
cPar.a_mode = 60 + atoi(str.c_str());
} else if (strcmp(argv[i], "-ci") == 0) {
if (cPar.a_mode != 0) {
cPar.error = true;
cout << "error! only one of -gk -gs -eigen -vc -lm -lmm -bslmm "
"-predict -calccor options is allowed."
<< endl;
break;
}
if (argv[i + 1] == NULL || argv[i + 1][0] == '-') {
cPar.a_mode = 66;
continue;
}
++i;
str.clear();
str.assign(argv[i]);
cPar.a_mode = 65 + atoi(str.c_str());
} else if (strcmp(argv[i], "-pve") == 0) {
double s = 0;
while (argv[i + 1] != NULL &&
(argv[i + 1][0] != '-' || !isalpha(argv[i + 1][1]))) {
++i;
str.clear();
str.assign(argv[i]);
cPar.v_pve.push_back(atof(str.c_str()));
s += atof(str.c_str());
}
if (s == 1) {
cout << "summation of pve equals one." << endl;
}
} else if (strcmp(argv[i], "-blocks") == 0) {
if (argv[i + 1] == NULL || argv[i + 1][0] == '-') {
continue;
}
++i;
str.clear();
str.assign(argv[i]);
cPar.n_block = atoi(str.c_str());
} else if (strcmp(argv[i], "-noconstrain") == 0) {
cPar.noconstrain = true;
} else if (strcmp(argv[i], "-lm") == 0) {
if (cPar.a_mode != 0) {
cPar.error = true;
cout << "error! only one of -gk -gs -eigen -vc -lm -lmm -bslmm "
"-predict -calccor options is allowed."
<< endl;
break;
}
if (argv[i + 1] == NULL || argv[i + 1][0] == '-') {
cPar.a_mode = 51;
continue;
}
++i;
str.clear();
str.assign(argv[i]);
cPar.a_mode = 50 + atoi(str.c_str());
} else if (strcmp(argv[i], "-fa") == 0 || strcmp(argv[i], "-lmm") == 0) {
if (cPar.a_mode != 0) {
cPar.error = true;
cout << "error! only one of -gk -gs -eigen -vc -lm -lmm -bslmm "
"-predict -calccor options is allowed."
<< endl;
break;
}
if (argv[i + 1] == NULL || argv[i + 1][0] == '-') {
cPar.a_mode = 1;
continue;
}
++i;
str.clear();
str.assign(argv[i]);
cPar.a_mode = atoi(str.c_str());
} else if (strcmp(argv[i], "-lmin") == 0) {
if (argv[i + 1] == NULL || argv[i + 1][0] == '-') {
continue;
}
++i;
str.clear();
str.assign(argv[i]);
cPar.l_min = atof(str.c_str());
} else if (strcmp(argv[i], "-lmax") == 0) {
if (argv[i + 1] == NULL || argv[i + 1][0] == '-') {
continue;
}
++i;
str.clear();
str.assign(argv[i]);
cPar.l_max = atof(str.c_str());
} else if (strcmp(argv[i], "-region") == 0) {
if (argv[i + 1] == NULL || argv[i + 1][0] == '-') {
continue;
}
++i;
str.clear();
str.assign(argv[i]);
cPar.n_region = atoi(str.c_str());
} else if (strcmp(argv[i], "-pnr") == 0) {
if (argv[i + 1] == NULL || argv[i + 1][0] == '-') {
continue;
}
++i;
str.clear();
str.assign(argv[i]);
cPar.p_nr = atof(str.c_str());
} else if (strcmp(argv[i], "-emi") == 0) {
if (argv[i + 1] == NULL || argv[i + 1][0] == '-') {
continue;
}
++i;
str.clear();
str.assign(argv[i]);
cPar.em_iter = atoi(str.c_str());
} else if (strcmp(argv[i], "-nri") == 0) {
if (argv[i + 1] == NULL || argv[i + 1][0] == '-') {
continue;
}
++i;
str.clear();
str.assign(argv[i]);
cPar.nr_iter = atoi(str.c_str());
} else if (strcmp(argv[i], "-nind") == 0) {
if (argv[i + 1] == NULL || argv[i + 1][0] == '-') {
continue;
}
++i;
str.clear();
str.assign(argv[i]);
cPar.ni_max = atoi(str.c_str()); // for testing purposes
enforce(cPar.ni_max > 0);
} else if (strcmp(argv[i], "-issue") == 0) {
if (argv[i + 1] == NULL || argv[i + 1][0] == '-') {
continue;
}
++i;
str.clear();
str.assign(argv[i]);
auto issue = atoi(str.c_str()); // for testing purposes
enforce(issue > 0);
debug_set_issue(issue);
} else if (strcmp(argv[i], "-emp") == 0) {
if (argv[i + 1] == NULL || argv[i + 1][0] == '-') {
continue;
}
++i;
str.clear();
str.assign(argv[i]);
cPar.em_prec = atof(str.c_str());
} else if (strcmp(argv[i], "-nrp") == 0) {
if (argv[i + 1] == NULL || argv[i + 1][0] == '-') {
continue;
}
++i;
str.clear();
str.assign(argv[i]);
cPar.nr_prec = atof(str.c_str());
} else if (strcmp(argv[i], "-crt") == 0) {
cPar.crt = 1;
} else if (strcmp(argv[i], "-bslmm") == 0) {
if (cPar.a_mode != 0) {
cPar.error = true;
cout << "error! only one of -gk -gs -eigen -vc -lm -lmm -bslmm "
"-predict -calccor options is allowed."
<< endl;
break;
}
if (argv[i + 1] == NULL || argv[i + 1][0] == '-') {
cPar.a_mode = 11;
continue;
}
++i;
str.clear();
str.assign(argv[i]);
cPar.a_mode = 10 + atoi(str.c_str());
} else if (strcmp(argv[i], "-hmin") == 0) {
if (argv[i + 1] == NULL || argv[i + 1][0] == '-') {
continue;
}
++i;
str.clear();
str.assign(argv[i]);
cPar.h_min = atof(str.c_str());
} else if (strcmp(argv[i], "-hmax") == 0) {
if (argv[i + 1] == NULL || argv[i + 1][0] == '-') {
continue;
}
++i;
str.clear();
str.assign(argv[i]);
cPar.h_max = atof(str.c_str());
} else if (strcmp(argv[i], "-rmin") == 0) {
if (argv[i + 1] == NULL || argv[i + 1][0] == '-') {
continue;
}
++i;
str.clear();
str.assign(argv[i]);
cPar.rho_min = atof(str.c_str());
} else if (strcmp(argv[i], "-rmax") == 0) {
if (argv[i + 1] == NULL || argv[i + 1][0] == '-') {
continue;
}
++i;
str.clear();
str.assign(argv[i]);
cPar.rho_max = atof(str.c_str());
} else if (strcmp(argv[i], "-pmin") == 0) {
if (argv[i + 1] == NULL) {
continue;
}
++i;
str.clear();
str.assign(argv[i]);
cPar.logp_min = atof(str.c_str()) * log(10.0);
} else if (strcmp(argv[i], "-pmax") == 0) {
if (argv[i + 1] == NULL) {
continue;
}
++i;
str.clear();
str.assign(argv[i]);
cPar.logp_max = atof(str.c_str()) * log(10.0);
} else if (strcmp(argv[i], "-smin") == 0) {
if (argv[i + 1] == NULL || argv[i + 1][0] == '-') {
continue;
}
++i;
str.clear();
str.assign(argv[i]);
cPar.s_min = atoi(str.c_str());
} else if (strcmp(argv[i], "-smax") == 0) {
if (argv[i + 1] == NULL || argv[i + 1][0] == '-') {
continue;
}
++i;
str.clear();
str.assign(argv[i]);
cPar.s_max = atoi(str.c_str());
} else if (strcmp(argv[i], "-gmean") == 0) {
if (argv[i + 1] == NULL || argv[i + 1][0] == '-') {
continue;
}
++i;
str.clear();
str.assign(argv[i]);
cPar.geo_mean = atof(str.c_str());
} else if (strcmp(argv[i], "-hscale") == 0) {
if (argv[i + 1] == NULL || argv[i + 1][0] == '-') {
continue;
}
++i;
str.clear();
str.assign(argv[i]);
cPar.h_scale = atof(str.c_str());
} else if (strcmp(argv[i], "-rscale") == 0) {
if (argv[i + 1] == NULL || argv[i + 1][0] == '-') {
continue;
}
++i;
str.clear();
str.assign(argv[i]);
cPar.rho_scale = atof(str.c_str());
} else if (strcmp(argv[i], "-pscale") == 0) {
if (argv[i + 1] == NULL || argv[i + 1][0] == '-') {
continue;
}
++i;
str.clear();
str.assign(argv[i]);
cPar.logp_scale = atof(str.c_str()) * log(10.0);
} else if (strcmp(argv[i], "-w") == 0) {
if (argv[i + 1] == NULL || argv[i + 1][0] == '-') {
continue;
}
++i;
str.clear();
str.assign(argv[i]);
cPar.w_step = atoi(str.c_str());
} else if (strcmp(argv[i], "-s") == 0) {
if (argv[i + 1] == NULL || argv[i + 1][0] == '-') {
continue;
}
++i;
str.clear();
str.assign(argv[i]);
cPar.s_step = atoi(str.c_str());
} else if (strcmp(argv[i], "-rpace") == 0) {
if (argv[i + 1] == NULL || argv[i + 1][0] == '-') {
continue;
}
++i;
str.clear();
str.assign(argv[i]);
cPar.r_pace = atoi(str.c_str());
} else if (strcmp(argv[i], "-wpace") == 0) {
if (argv[i + 1] == NULL || argv[i + 1][0] == '-') {
continue;
}
++i;
str.clear();
str.assign(argv[i]);
cPar.w_pace = atoi(str.c_str());
} else if (strcmp(argv[i], "-seed") == 0) {
if (argv[i + 1] == NULL || argv[i + 1][0] == '-') {
continue;
}
++i;
str.clear();
str.assign(argv[i]);
cPar.randseed = atol(str.c_str());
} else if (strcmp(argv[i], "-mh") == 0) {
if (argv[i + 1] == NULL || argv[i + 1][0] == '-') {
continue;
}
++i;
str.clear();
str.assign(argv[i]);
cPar.n_mh = atoi(str.c_str());
} else if (strcmp(argv[i], "-predict") == 0) {
if (cPar.a_mode != 0) {
cPar.error = true;
cout << "error! only one of -gk -gs -eigen -vc -lm -lmm -bslmm "
"-predict -calccor options is allowed."
<< endl;
break;
}
if (argv[i + 1] == NULL || argv[i + 1][0] == '-') {
cPar.a_mode = 41;
continue;
}
++i;
str.clear();
str.assign(argv[i]);
cPar.a_mode = 40 + atoi(str.c_str());
} else if (strcmp(argv[i], "-windowcm") == 0) {
if (argv[i + 1] == NULL || argv[i + 1][0] == '-') {
continue;
}
++i;
str.clear();
str.assign(argv[i]);
cPar.window_cm = atof(str.c_str());
} else if (strcmp(argv[i], "-windowbp") == 0) {
if (argv[i + 1] == NULL || argv[i + 1][0] == '-') {
continue;
}
++i;
str.clear();
str.assign(argv[i]);
cPar.window_bp = atoi(str.c_str());
} else if (strcmp(argv[i], "-windowns") == 0) {
if (argv[i + 1] == NULL || argv[i + 1][0] == '-') {
continue;
}
++i;
str.clear();
str.assign(argv[i]);
cPar.window_ns = atoi(str.c_str());
} else if (strcmp(argv[i], "-debug-data") == 0) {
// cPar.mode_debug = true;
debug_set_debug_data_mode(true);
debug_set_debug_mode(true);
} else if (strcmp(argv[i], "-debug") == 0) {
// cPar.mode_debug = true;
debug_set_debug_mode(true);
} else if (strcmp(argv[i], "-check") == 0) {
// cPar.mode_check = false;
debug_set_check_mode(true);
} else if (strcmp(argv[i], "-no-check") == 0) {
// cPar.mode_check = false;
debug_set_no_check_mode(true);
} else if (strcmp(argv[i], "-no-fpe-check") == 0) {
// cPar.mode_check = false;
debug_set_no_fpe_check_mode(true);
} else if (strcmp(argv[i], "-strict") == 0) {
// cPar.mode_strict = true;
debug_set_strict_mode(true);
debug_set_debug_mode(true);
} else if (strcmp(argv[i], "-legacy") == 0) {
debug_set_legacy_mode(true);
warning_msg("you are running in legacy mode - support may drop in future versions of gemma");
} else {
cout << "error! unrecognized option: " << argv[i] << endl;
cPar.error = true;
continue;
}
}
// Change prediction mode to 43 if the epm file is not provided.
if (cPar.a_mode == 41 && cPar.file_epm.empty()) {
cPar.a_mode = 43;
}
return;
}
void GEMMA::BatchRun(PARAM &cPar) {
clock_t time_begin, time_start;
time_begin = clock();
if (is_check_mode()) enable_segfpe(); // fast NaN checking by default
// Read Files.
cout << "Reading Files ... " << endl;
cPar.ReadFiles();
if (cPar.error == true) {
cout << "error! fail to read files. " << endl;
return;
}
cPar.CheckData();
if (cPar.error == true) {
cout << "error! fail to check data. " << endl;
return;
}
// Prediction for bslmm
if (cPar.a_mode == 41 || cPar.a_mode == 42) {
gsl_vector *y_prdt;
y_prdt = gsl_vector_safe_alloc(cPar.ni_total - cPar.ni_test);
// set to zero
gsl_vector_set_zero(y_prdt);
PRDT cPRDT;
cPRDT.CopyFromParam(cPar);
// add breeding value if needed
if (!cPar.file_kin.empty() && !cPar.file_ebv.empty()) {
cout << "Adding Breeding Values ... " << endl;
gsl_matrix *G = gsl_matrix_safe_alloc(cPar.ni_total, cPar.ni_total);
gsl_vector *u_hat = gsl_vector_safe_alloc(cPar.ni_test);
// read kinship matrix and set u_hat
vector indicator_all;
size_t c_bv = 0;
for (size_t i = 0; i < cPar.indicator_idv.size(); i++) {
indicator_all.push_back(1);
if (cPar.indicator_bv[i] == 1) {
gsl_vector_set(u_hat, c_bv, cPar.vec_bv[i]);
c_bv++;
}
}
ReadFile_kin(cPar.file_kin, indicator_all, cPar.mapID2num, cPar.k_mode,
cPar.error, G);
if (cPar.error == true) {
cout << "error! fail to read kinship/relatedness file. " << endl;
return;
}
// read u
cPRDT.AddBV(G, u_hat, y_prdt);
gsl_matrix_safe_free(G);
gsl_vector_safe_free(u_hat);
}
// add beta
if (!cPar.file_bfile.empty()) {
cPRDT.AnalyzePlink(y_prdt);
} else {
cPRDT.AnalyzeBimbam(y_prdt);
}
// add mu
gsl_vector_add_constant(y_prdt, cPar.pheno_mean);
// convert y to probability if needed
if (cPar.a_mode == 42) {
double d;
for (size_t i = 0; i < y_prdt->size; i++) {
d = gsl_vector_get(y_prdt, i);
d = gsl_cdf_gaussian_P(d, 1.0);
gsl_vector_set(y_prdt, i, d);
}
}
cPRDT.CopyToParam(cPar);
cPRDT.WriteFiles(y_prdt);
gsl_vector_safe_free(y_prdt);
}
// Prediction with kinship matrix only; for one or more phenotypes
if (cPar.a_mode == 43) {
// first, use individuals with full phenotypes to obtain estimates of Vg and
// Ve
gsl_matrix *Y = gsl_matrix_safe_alloc(cPar.ni_test, cPar.n_ph);
gsl_matrix *W = gsl_matrix_safe_alloc(Y->size1, cPar.n_cvt);
gsl_matrix *G = gsl_matrix_safe_alloc(Y->size1, Y->size1);
gsl_matrix *U = gsl_matrix_safe_alloc(Y->size1, Y->size1);
gsl_matrix *UtW = gsl_matrix_safe_alloc(Y->size1, W->size2);
gsl_matrix *UtY = gsl_matrix_safe_alloc(Y->size1, Y->size2);
gsl_vector *eval = gsl_vector_safe_alloc(Y->size1);
gsl_matrix *Y_full = gsl_matrix_safe_alloc(cPar.ni_cvt, cPar.n_ph);
gsl_matrix *W_full = gsl_matrix_safe_alloc(Y_full->size1, cPar.n_cvt);
// set covariates matrix W and phenotype matrix Y
// an intercept should be included in W,
cPar.CopyCvtPhen(W, Y, 0);
cPar.CopyCvtPhen(W_full, Y_full, 1);
gsl_matrix *Y_hat = gsl_matrix_safe_alloc(Y_full->size1, cPar.n_ph);
gsl_matrix *G_full = gsl_matrix_safe_alloc(Y_full->size1, Y_full->size1);
gsl_matrix *H_full = gsl_matrix_safe_alloc(Y_full->size1 * Y_hat->size2,
Y_full->size1 * Y_hat->size2);
// read relatedness matrix G, and matrix G_full
ReadFile_kin(cPar.file_kin, cPar.indicator_idv, cPar.mapID2num, cPar.k_mode,
cPar.error, G);
if (cPar.error == true) {
cout << "error! fail to read kinship/relatedness file. " << endl;
return;
}
// This is not so elegant. Reads twice to select on idv and then cvt
ReadFile_kin(cPar.file_kin, cPar.indicator_cvt, cPar.mapID2num, cPar.k_mode,
cPar.error, G_full);
if (cPar.error == true) {
cout << "error! fail to read kinship/relatedness file. " << endl;
return;
}
// center matrix G
CenterMatrix(G);
CenterMatrix(G_full);
validate_K(G);
// eigen-decomposition and calculate trace_G
cout << "Start Eigen-Decomposition..." << endl;
time_start = clock();
cPar.trace_G = EigenDecomp_Zeroed(G, U, eval, 0);
// write(eval,"eval zeroed");
cPar.time_eigen = (clock() - time_start) / (double(CLOCKS_PER_SEC) * 60.0);
// calculate UtW and Uty
CalcUtX(U, W, UtW);
CalcUtX(U, Y, UtY);
// calculate variance component and beta estimates
// and then obtain predicted values
if (cPar.n_ph == 1) {
gsl_vector *beta = gsl_vector_safe_alloc(W->size2);
gsl_vector *se_beta = gsl_vector_safe_alloc(W->size2);
double lambda, logl, vg, ve;
gsl_vector_view UtY_col = gsl_matrix_column(UtY, 0);
// obtain estimates
CalcLambda('R', eval, UtW, &UtY_col.vector, cPar.l_min, cPar.l_max,
cPar.n_region, lambda, logl);
CalcLmmVgVeBeta(eval, UtW, &UtY_col.vector, lambda, vg, ve, beta,
se_beta);
cout << "REMLE estimate for vg in the null model = " << vg << endl;
cout << "REMLE estimate for ve in the null model = " << ve << endl;
cPar.vg_remle_null = vg;
cPar.ve_remle_null = ve;
// obtain Y_hat from fixed effects
gsl_vector_view Yhat_col = gsl_matrix_column(Y_hat, 0);
gsl_blas_dgemv(CblasNoTrans, 1.0, W_full, beta, 0.0, &Yhat_col.vector);
// obtain H
gsl_matrix_set_identity(H_full);
gsl_matrix_scale(H_full, ve);
gsl_matrix_scale(G_full, vg);
gsl_matrix_add(H_full, G_full);
// free matrices
gsl_vector_safe_free(beta);
gsl_vector_safe_free(se_beta);
} else {
gsl_matrix *Vg = gsl_matrix_safe_alloc(cPar.n_ph, cPar.n_ph);
gsl_matrix *Ve = gsl_matrix_safe_alloc(cPar.n_ph, cPar.n_ph);
gsl_matrix *B = gsl_matrix_safe_alloc(cPar.n_ph, W->size2);
gsl_matrix *se_B = gsl_matrix_safe_alloc(cPar.n_ph, W->size2);
// obtain estimates
CalcMvLmmVgVeBeta(eval, UtW, UtY, cPar.em_iter, cPar.nr_iter,
cPar.em_prec, cPar.nr_prec, cPar.l_min, cPar.l_max,
cPar.n_region, Vg, Ve, B, se_B);
cout << "REMLE estimate for Vg in the null model: " << endl;
for (size_t i = 0; i < Vg->size1; i++) {
for (size_t j = 0; j <= i; j++) {
cout << tab(j) << gsl_matrix_get(Vg, i, j);
}
cout << endl;
}
cout << "REMLE estimate for Ve in the null model: " << endl;
for (size_t i = 0; i < Ve->size1; i++) {
for (size_t j = 0; j <= i; j++) {
cout << tab(j) << gsl_matrix_get(Ve, i, j);
}
cout << endl;
}
cPar.Vg_remle_null.clear();
cPar.Ve_remle_null.clear();
for (size_t i = 0; i < Vg->size1; i++) {
for (size_t j = i; j < Vg->size2; j++) {
cPar.Vg_remle_null.push_back(gsl_matrix_get(Vg, i, j));
cPar.Ve_remle_null.push_back(gsl_matrix_get(Ve, i, j));
}
}
// obtain Y_hat from fixed effects
gsl_blas_dgemm(CblasNoTrans, CblasTrans, 1.0, W_full, B, 0.0, Y_hat);
// obtain H
KroneckerSym(G_full, Vg, H_full);
for (size_t i = 0; i < G_full->size1; i++) {
gsl_matrix_view H_sub = gsl_matrix_submatrix(
H_full, i * Ve->size1, i * Ve->size2, Ve->size1, Ve->size2);
gsl_matrix_add(&H_sub.matrix, Ve);
}
// free matrices
gsl_matrix_safe_free(Vg);
gsl_matrix_safe_free(Ve);
gsl_matrix_safe_free(B);
gsl_matrix_safe_free(se_B);
}
PRDT cPRDT;
cPRDT.CopyFromParam(cPar);
cout << "Predicting Missing Phentypes ... " << endl;
time_start = clock();
cPRDT.MvnormPrdt(Y_hat, H_full, Y_full);
cPar.time_opt = (clock() - time_start) / (double(CLOCKS_PER_SEC) * 60.0);
cPRDT.WriteFiles(Y_full);
gsl_matrix_safe_free(Y);
gsl_matrix_safe_free(W);
gsl_matrix_safe_free(G);
gsl_matrix_safe_free(U);
gsl_matrix_safe_free(UtW);
gsl_matrix_safe_free(UtY);
gsl_vector_safe_free(eval);
gsl_matrix_safe_free(Y_full);
gsl_matrix_safe_free(Y_hat);
gsl_matrix_safe_free(W_full);
gsl_matrix_safe_free(G_full);
gsl_matrix_safe_free(H_full);
}
// Generate Kinship matrix (optionally using LOCO)
if (cPar.a_mode == M_KIN || cPar.a_mode == M_KIN2) {
cout << "Calculating Relatedness Matrix ... " << endl;
gsl_matrix *G = gsl_matrix_safe_alloc(cPar.ni_total, cPar.ni_total);
enforce_msg(G, "allocate G"); // just to be sure
time_start = clock();
cPar.CalcKin(G);
cPar.time_G = (clock() - time_start) / (double(CLOCKS_PER_SEC) * 60.0);
if (cPar.error == true) {
cout << "error! fail to calculate relatedness matrix. " << endl;
return;
}
// Now we have the Kinship matrix test it
validate_K(G);
if (cPar.a_mode == M_KIN) {
cPar.WriteMatrix(G, "cXX");
} else {
cPar.WriteMatrix(G, "sXX");
}
gsl_matrix_safe_free(G);
}
// Compute the LDSC weights (not implemented yet)
if (cPar.a_mode == 72) {
cout << "Calculating Weights ... " << endl;
VARCOV cVarcov;
cVarcov.CopyFromParam(cPar);
if (is_check_mode()) disable_segfpe(); // disable fast NaN checking for now
if (!cPar.file_bfile.empty()) {
cVarcov.AnalyzePlink();
} else {
cVarcov.AnalyzeBimbam();
}
cVarcov.CopyToParam(cPar);
}
// Compute the S matrix (and its variance), that is used for
// variance component estimation using summary statistics.
if (cPar.a_mode == 25 || cPar.a_mode == 26) {
cout << "Calculating the S Matrix ... " << endl;
gsl_matrix *S = gsl_matrix_safe_alloc(cPar.n_vc * 2, cPar.n_vc);
gsl_vector *ns = gsl_vector_safe_alloc(cPar.n_vc + 1);
gsl_matrix_set_zero(S);
gsl_vector_set_zero(ns);
gsl_matrix_view S_mat = gsl_matrix_submatrix(S, 0, 0, cPar.n_vc, cPar.n_vc);
gsl_matrix_view Svar_mat =
gsl_matrix_submatrix(S, cPar.n_vc, 0, cPar.n_vc, cPar.n_vc);
gsl_vector_view ns_vec = gsl_vector_subvector(ns, 0, cPar.n_vc);
gsl_matrix *K = gsl_matrix_safe_alloc(cPar.ni_test, cPar.n_vc * cPar.ni_test);
gsl_matrix *A = gsl_matrix_safe_alloc(cPar.ni_test, cPar.n_vc * cPar.ni_test);
gsl_matrix_set_zero(K);
gsl_matrix_set_zero(A);
gsl_vector *y = gsl_vector_safe_alloc(cPar.ni_test);
gsl_matrix *W = gsl_matrix_safe_alloc(cPar.ni_test, cPar.n_cvt);
cPar.CopyCvtPhen(W, y, 0);
set setSnps_beta;
map mapRS2wA, mapRS2wK;
cPar.ObtainWeight(setSnps_beta, mapRS2wK);
time_start = clock();
cPar.CalcS(mapRS2wA, mapRS2wK, W, A, K, &S_mat.matrix, &Svar_mat.matrix,
&ns_vec.vector);
cPar.time_G = (clock() - time_start) / (double(CLOCKS_PER_SEC) * 60.0);
if (cPar.error == true) {
cout << "error! fail to calculate the S matrix. " << endl;
return;
}
gsl_vector_set(ns, cPar.n_vc, cPar.ni_test);
cPar.WriteMatrix(S, "S");
cPar.WriteVector(ns, "size");
cPar.WriteVar("snps");
gsl_matrix_safe_free(S);
gsl_vector_safe_free(ns);
gsl_matrix_safe_free(A);
gsl_matrix_safe_free(K);
gsl_vector_safe_free(y);
gsl_matrix_safe_free(K);
}
// Compute the q vector, that is used for variance component estimation using
// summary statistics
if (cPar.a_mode == 27 || cPar.a_mode == 28) {
gsl_matrix *Vq = gsl_matrix_safe_alloc(cPar.n_vc, cPar.n_vc);
gsl_vector *q = gsl_vector_safe_alloc(cPar.n_vc);
gsl_vector *s = gsl_vector_safe_alloc(cPar.n_vc + 1);
gsl_vector_set_zero(q);
gsl_vector_set_zero(s);
gsl_vector_view s_vec = gsl_vector_subvector(s, 0, cPar.n_vc);
vector vec_cat, vec_ni;
vector vec_weight, vec_z2;
map mapRS2weight;
mapRS2weight.clear();
time_start = clock();
ReadFile_beta(cPar.file_beta, cPar.mapRS2cat, mapRS2weight, vec_cat, vec_ni,
vec_weight, vec_z2, cPar.ni_total, cPar.ns_total,
cPar.ns_test);
cout << "## number of total individuals = " << cPar.ni_total << endl;
cout << "## number of total SNPs/var = " << cPar.ns_total << endl;
cout << "## number of analyzed SNPs/var = " << cPar.ns_test << endl;
cout << "## number of variance components = " << cPar.n_vc << endl;
cout << "Calculating the q vector ... " << endl;
Calcq(cPar.n_block, vec_cat, vec_ni, vec_weight, vec_z2, Vq, q,
&s_vec.vector);
cPar.time_G = (clock() - time_start) / (double(CLOCKS_PER_SEC) * 60.0);
if (cPar.error == true) {
cout << "error! fail to calculate the q vector. " << endl;
return;
}
gsl_vector_set(s, cPar.n_vc, cPar.ni_total);
cPar.WriteMatrix(Vq, "Vq");
cPar.WriteVector(q, "q");
cPar.WriteVector(s, "size");
gsl_matrix_safe_free(Vq);
gsl_vector_safe_free(q);
gsl_vector_safe_free(s);
}
// Calculate SNP covariance.
if (cPar.a_mode == 71) {
VARCOV cVarcov;
cVarcov.CopyFromParam(cPar);
if (is_check_mode()) disable_segfpe(); // fast NaN checking for now
if (!cPar.file_bfile.empty()) {
cVarcov.AnalyzePlink();
} else {
cVarcov.AnalyzeBimbam();
}
cVarcov.CopyToParam(cPar);
}
// LM.
if (cPar.a_mode == 51 || cPar.a_mode == 52 || cPar.a_mode == 53 ||
cPar.a_mode == 54) { // Fit LM
gsl_matrix *Y = gsl_matrix_safe_alloc(cPar.ni_test, cPar.n_ph);
gsl_matrix *W = gsl_matrix_safe_alloc(Y->size1, cPar.n_cvt);
// set covariates matrix W and phenotype matrix Y
// an intercept should be included in W,
cPar.CopyCvtPhen(W, Y, 0);
// Fit LM or mvLM
if (cPar.n_ph == 1) {
LM cLm;
cLm.CopyFromParam(cPar);
gsl_vector_view Y_col = gsl_matrix_column(Y, 0);
// if (is_check_mode()) disable_segfpe(); // disable fast NaN checking for now
if (!cPar.file_gene.empty()) {
cLm.AnalyzeGene(W,
&Y_col.vector); // y is the predictor, not the phenotype
} else if (!cPar.file_bfile.empty()) {
cLm.AnalyzePlink(W, &Y_col.vector);
} else {
cLm.AnalyzeBimbam(W, &Y_col.vector);
}
cLm.WriteFiles();
cLm.CopyToParam(cPar);
}
// release all matrices and vectors
gsl_matrix_safe_free(Y);
gsl_matrix_safe_free(W);
}
// VC estimation with one or multiple kinship matrices
// REML approach only
// if file_kin or file_ku/kd is provided, then a_mode is changed to 5 already,
// in param.cpp
// for one phenotype only;
if (cPar.a_mode == 61 || cPar.a_mode == 62 || cPar.a_mode == 63) {
if (!cPar.file_beta.empty()) {
// need to obtain a common set of SNPs between beta file and the genotype
// file; these are saved in mapRS2wA and mapRS2wK
// normalize the weight in mapRS2wK to have an average of one; each
// element of mapRS2wA is 1
// update indicator_snps, so that the numbers are in accordance with
// mapRS2wK
set setSnps_beta;
ReadFile_snps_header(cPar.file_beta, setSnps_beta);
map mapRS2wA, mapRS2wK;
cPar.ObtainWeight(setSnps_beta, mapRS2wK);
cPar.UpdateSNP(mapRS2wK);
// Setup matrices and vectors.
gsl_matrix *S = gsl_matrix_safe_alloc(cPar.n_vc * 2, cPar.n_vc);
gsl_matrix *Vq = gsl_matrix_safe_alloc(cPar.n_vc, cPar.n_vc);
gsl_vector *q = gsl_vector_safe_alloc(cPar.n_vc);
gsl_vector *s = gsl_vector_safe_alloc(cPar.n_vc + 1);
gsl_matrix *K = gsl_matrix_safe_alloc(cPar.ni_test, cPar.n_vc * cPar.ni_test);
gsl_matrix *A = gsl_matrix_safe_alloc(cPar.ni_test, cPar.n_vc * cPar.ni_test);
gsl_vector *y = gsl_vector_safe_alloc(cPar.ni_test);
gsl_matrix *W = gsl_matrix_safe_alloc(cPar.ni_test, cPar.n_cvt);
gsl_matrix_set_zero(K);
gsl_matrix_set_zero(A);
gsl_matrix_set_zero(S);
gsl_matrix_set_zero(Vq);
gsl_vector_set_zero(q);
gsl_vector_set_zero(s);
cPar.CopyCvtPhen(W, y, 0);
gsl_matrix_view S_mat =
gsl_matrix_submatrix(S, 0, 0, cPar.n_vc, cPar.n_vc);
gsl_matrix_view Svar_mat =
gsl_matrix_submatrix(S, cPar.n_vc, 0, cPar.n_vc, cPar.n_vc);
gsl_vector_view s_vec = gsl_vector_subvector(s, 0, cPar.n_vc);
vector vec_cat, vec_ni;
vector vec_weight, vec_z2;
// read beta, based on the mapRS2wK
ReadFile_beta(cPar.file_beta, cPar.mapRS2cat, mapRS2wK, vec_cat, vec_ni,
vec_weight, vec_z2, cPar.ni_study, cPar.ns_study,
cPar.ns_test);
cout << "Study Panel: " << endl;
cout << "## number of total individuals = " << cPar.ni_study << endl;
cout << "## number of total SNPs/var = " << cPar.ns_study << endl;
cout << "## number of analyzed SNPs/var = " << cPar.ns_test << endl;
cout << "## number of variance components = " << cPar.n_vc << endl;
// compute q
Calcq(cPar.n_block, vec_cat, vec_ni, vec_weight, vec_z2, Vq, q,
&s_vec.vector);
// compute S
time_start = clock();
cPar.CalcS(mapRS2wA, mapRS2wK, W, A, K, &S_mat.matrix, &Svar_mat.matrix,
&s_vec.vector);
cPar.time_G += (clock() - time_start) / (double(CLOCKS_PER_SEC) * 60.0);
if (cPar.error == true) {
cout << "error! fail to calculate the S matrix. " << endl;
return;
}
// compute vc estimates
CalcVCss(Vq, &S_mat.matrix, &Svar_mat.matrix, q, &s_vec.vector,
cPar.ni_study, cPar.v_pve, cPar.v_se_pve, cPar.pve_total,
cPar.se_pve_total, cPar.v_sigma2, cPar.v_se_sigma2,
cPar.v_enrich, cPar.v_se_enrich);
assert(!has_nan(cPar.v_se_pve));
// if LDSC weights, then compute the weights and run the above steps again
if (cPar.a_mode == 62) {
// compute the weights and normalize the weights for A
cPar.UpdateWeight(1, mapRS2wK, cPar.ni_study, &s_vec.vector, mapRS2wA);
// read beta file again, and update weigths vector
ReadFile_beta(cPar.file_beta, cPar.mapRS2cat, mapRS2wA, vec_cat, vec_ni,
vec_weight, vec_z2, cPar.ni_study, cPar.ns_total,
cPar.ns_test);
// compute q
Calcq(cPar.n_block, vec_cat, vec_ni, vec_weight, vec_z2, Vq, q,
&s_vec.vector);
// compute S
time_start = clock();
cPar.CalcS(mapRS2wA, mapRS2wK, W, A, K, &S_mat.matrix, &Svar_mat.matrix,
&s_vec.vector);
cPar.time_G += (clock() - time_start) / (double(CLOCKS_PER_SEC) * 60.0);
if (cPar.error == true) {
cout << "error! fail to calculate the S matrix. " << endl;
return;
}
// compute vc estimates
CalcVCss(Vq, &S_mat.matrix, &Svar_mat.matrix, q, &s_vec.vector,
cPar.ni_study, cPar.v_pve, cPar.v_se_pve, cPar.pve_total,
cPar.se_pve_total, cPar.v_sigma2, cPar.v_se_sigma2,
cPar.v_enrich, cPar.v_se_enrich);
assert(!has_nan(cPar.v_se_pve));
}
gsl_vector_set(s, cPar.n_vc, cPar.ni_test);
cPar.WriteMatrix(S, "S");
cPar.WriteMatrix(Vq, "Vq");
cPar.WriteVector(q, "q");
cPar.WriteVector(s, "size");
gsl_matrix_safe_free(S);
gsl_matrix_safe_free(Vq);
gsl_vector_safe_free(q);
gsl_vector_safe_free(s);
gsl_matrix_safe_free(A);
gsl_matrix_safe_free(K);
gsl_vector_safe_free(y);
gsl_matrix_safe_free(W);
} else if (!cPar.file_study.empty() || !cPar.file_mstudy.empty()) {
if (!cPar.file_study.empty()) {
string sfile = cPar.file_study + ".size.txt";
CountFileLines(sfile, cPar.n_vc);
} else {
string file_name;
igzstream infile(cPar.file_mstudy.c_str(), igzstream::in);
if (!infile) {
cout << "error! fail to open mstudy file: " << cPar.file_study
<< endl;
return;
}
safeGetline(infile, file_name);
infile.clear();
infile.close();
string sfile = file_name + ".size.txt";
CountFileLines(sfile, cPar.n_vc);
}
cPar.n_vc = cPar.n_vc - 1;
gsl_matrix *S = gsl_matrix_safe_alloc(2 * cPar.n_vc, cPar.n_vc);
gsl_matrix *Vq = gsl_matrix_safe_alloc(cPar.n_vc, cPar.n_vc);
// gsl_matrix *V=gsl_matrix_safe_alloc (cPar.n_vc+1,
// (cPar.n_vc*(cPar.n_vc+1))/2*(cPar.n_vc+1) );
// gsl_matrix *Vslope=gsl_matrix_safe_alloc (n_lines+1,
// (n_lines*(n_lines+1))/2*(n_lines+1) );
gsl_vector *q = gsl_vector_safe_alloc(cPar.n_vc);
gsl_vector *s_study = gsl_vector_safe_alloc(cPar.n_vc);
gsl_vector *s_ref = gsl_vector_safe_alloc(cPar.n_vc);
gsl_vector *s = gsl_vector_safe_alloc(cPar.n_vc + 1);
gsl_matrix_set_zero(S);
gsl_matrix_view S_mat =
gsl_matrix_submatrix(S, 0, 0, cPar.n_vc, cPar.n_vc);
gsl_matrix_view Svar_mat =
gsl_matrix_submatrix(S, cPar.n_vc, 0, cPar.n_vc, cPar.n_vc);
gsl_matrix_set_zero(Vq);
// gsl_matrix_set_zero(V);
// gsl_matrix_set_zero(Vslope);
gsl_vector_set_zero(q);
gsl_vector_set_zero(s_study);
gsl_vector_set_zero(s_ref);
if (!cPar.file_study.empty()) {
ReadFile_study(cPar.file_study, Vq, q, s_study, cPar.ni_study);
} else {
ReadFile_mstudy(cPar.file_mstudy, Vq, q, s_study, cPar.ni_study);
}
if (!cPar.file_ref.empty()) {
ReadFile_ref(cPar.file_ref, &S_mat.matrix, &Svar_mat.matrix, s_ref,
cPar.ni_ref);
} else {
ReadFile_mref(cPar.file_mref, &S_mat.matrix, &Svar_mat.matrix, s_ref,
cPar.ni_ref);
}
cout << "## number of variance components = " << cPar.n_vc << endl;
cout << "## number of individuals in the sample = " << cPar.ni_study
<< endl;
cout << "## number of individuals in the reference = " << cPar.ni_ref
<< endl;
CalcVCss(Vq, &S_mat.matrix, &Svar_mat.matrix, q, s_study, cPar.ni_study,
cPar.v_pve, cPar.v_se_pve, cPar.pve_total, cPar.se_pve_total,
cPar.v_sigma2, cPar.v_se_sigma2, cPar.v_enrich,
cPar.v_se_enrich);
assert(!has_nan(cPar.v_se_pve));
gsl_vector_view s_sub = gsl_vector_subvector(s, 0, cPar.n_vc);
gsl_vector_safe_memcpy(&s_sub.vector, s_ref);
gsl_vector_set(s, cPar.n_vc, cPar.ni_ref);
cPar.WriteMatrix(S, "S");
cPar.WriteMatrix(Vq, "Vq");
cPar.WriteVector(q, "q");
cPar.WriteVector(s, "size");
gsl_matrix_safe_free(S);
gsl_matrix_safe_free(Vq);
// gsl_matrix_safe_free (V);
// gsl_matrix_safe_free (Vslope);
gsl_vector_safe_free(q);
gsl_vector_safe_free(s_study);
gsl_vector_safe_free(s_ref);
gsl_vector_safe_free(s);
} else {
gsl_matrix *Y = gsl_matrix_safe_alloc(cPar.ni_test, cPar.n_ph);
gsl_matrix *W = gsl_matrix_safe_alloc(Y->size1, cPar.n_cvt);
gsl_matrix *G = gsl_matrix_safe_alloc(Y->size1, Y->size1 * cPar.n_vc);
// set covariates matrix W and phenotype matrix Y
// an intercept should be included in W,
cPar.CopyCvtPhen(W, Y, 0);
// read kinship matrices
if (!(cPar.file_mk).empty()) {
ReadFile_mk(cPar.file_mk, cPar.indicator_idv, cPar.mapID2num,
cPar.k_mode, cPar.error, G);
if (cPar.error == true) {
cout << "error! fail to read kinship/relatedness file. " << endl;
return;
}
// center matrix G, and obtain v_traceG
double d = 0;
(cPar.v_traceG).clear();
for (size_t i = 0; i < cPar.n_vc; i++) {
gsl_matrix_view G_sub =
gsl_matrix_submatrix(G, 0, i * G->size1, G->size1, G->size1);
CenterMatrix(&G_sub.matrix);
d = 0;
for (size_t j = 0; j < G->size1; j++) {
d += gsl_matrix_get(&G_sub.matrix, j, j);
}
d /= (double)G->size1;
(cPar.v_traceG).push_back(d);
}
} else if (!(cPar.file_kin).empty()) {
ReadFile_kin(cPar.file_kin, cPar.indicator_idv, cPar.mapID2num,
cPar.k_mode, cPar.error, G);
if (cPar.error == true) {
cout << "error! fail to read kinship/relatedness file. " << endl;
return;
}
// center matrix G
CenterMatrix(G);
validate_K(G);
(cPar.v_traceG).clear();
double d = 0;
for (size_t j = 0; j < G->size1; j++) {
d += gsl_matrix_get(G, j, j);
}
d /= (double)G->size1;
(cPar.v_traceG).push_back(d);
}
// fit multiple variance components
if (cPar.n_ph == 1) {
// if (cPar.n_vc==1) {
// } else {
gsl_vector_view Y_col = gsl_matrix_column(Y, 0);
VC cVc;
cVc.CopyFromParam(cPar);
if (cPar.a_mode == 61) {
cVc.CalcVChe(G, W, &Y_col.vector);
} else if (cPar.a_mode == 62) {
cVc.CalcVCreml(cPar.noconstrain, G, W, &Y_col.vector);
} else {
cVc.CalcVCacl(G, W, &Y_col.vector);
}
cVc.CopyToParam(cPar);
// obtain pve from sigma2
// obtain se_pve from se_sigma2
//}
}
}
}
// compute confidence intervals with additional summary statistics
// we do not check the sign of z-scores here, but they have to be matched with
// the genotypes
if (cPar.a_mode == 66 || cPar.a_mode == 67) {
// read reference file first
gsl_matrix *S = gsl_matrix_safe_alloc(cPar.n_vc, cPar.n_vc);
gsl_matrix *Svar = gsl_matrix_safe_alloc(cPar.n_vc, cPar.n_vc);
gsl_vector *s_ref = gsl_vector_safe_alloc(cPar.n_vc);
gsl_matrix_set_zero(S);
gsl_matrix_set_zero(Svar);
gsl_vector_set_zero(s_ref);
if (!cPar.file_ref.empty()) {
ReadFile_ref(cPar.file_ref, S, Svar, s_ref, cPar.ni_ref);
} else {
ReadFile_mref(cPar.file_mref, S, Svar, s_ref, cPar.ni_ref);
}
// need to obtain a common set of SNPs between beta file and the genotype
// file; these are saved in mapRS2wA and mapRS2wK
// normalize the weight in mapRS2wK to have an average of one; each element
// of mapRS2wA is 1
set setSnps_beta;
ReadFile_snps_header(cPar.file_beta, setSnps_beta);
// obtain the weights for wA, which contains the SNP weights for SNPs used
// in the model
map mapRS2wK;
cPar.ObtainWeight(setSnps_beta, mapRS2wK);
// set up matrices and vector
gsl_matrix *Xz = gsl_matrix_safe_alloc(cPar.ni_test, cPar.n_vc);
gsl_matrix *XWz = gsl_matrix_safe_alloc(cPar.ni_test, cPar.n_vc);
gsl_matrix *XtXWz =
gsl_matrix_safe_alloc(mapRS2wK.size(), cPar.n_vc * cPar.n_vc);
gsl_vector *w = gsl_vector_safe_alloc(mapRS2wK.size());
gsl_vector *w1 = gsl_vector_safe_alloc(mapRS2wK.size());
gsl_vector *z = gsl_vector_safe_alloc(mapRS2wK.size());
gsl_vector *s_vec = gsl_vector_safe_alloc(cPar.n_vc);
vector vec_cat, vec_size;
vector vec_z;
map mapRS2z, mapRS2wA;
map mapRS2A1;
string file_str;
// update s_vec, the number of snps in each category
for (size_t i = 0; i < cPar.n_vc; i++) {
vec_size.push_back(0);
}
for (map::const_iterator it = mapRS2wK.begin();
it != mapRS2wK.end(); ++it) {
vec_size[cPar.mapRS2cat[it->first]]++;
}
for (size_t i = 0; i < cPar.n_vc; i++) {
gsl_vector_set(s_vec, i, vec_size[i]);
}
// update mapRS2wA using v_pve and s_vec
if (cPar.a_mode == 66) {
for (map::const_iterator it = mapRS2wK.begin();
it != mapRS2wK.end(); ++it) {
mapRS2wA[it->first] = 1;
}
} else {
cPar.UpdateWeight(0, mapRS2wK, cPar.ni_test, s_vec, mapRS2wA);
}
// read in z-scores based on allele 0, and save that into a vector
ReadFile_beta(cPar.file_beta, mapRS2wA, mapRS2A1, mapRS2z);
// update snp indicator, save weights to w, save z-scores to vec_z, save
// category label to vec_cat
// sign of z is determined by matching alleles
cPar.UpdateSNPnZ(mapRS2wA, mapRS2A1, mapRS2z, w, z, vec_cat);
// compute an n by k matrix of X_iWz
cout << "Calculating Xz ... " << endl;
gsl_matrix_set_zero(Xz);
gsl_vector_set_all(w1, 1);
if (!cPar.file_bfile.empty()) {
file_str = cPar.file_bfile + ".bed";
PlinkXwz(file_str, cPar.d_pace, cPar.indicator_idv, cPar.indicator_snp,
vec_cat, w1, z, 0, Xz);
} else if (!cPar.file_geno.empty()) {
BimbamXwz(cPar.file_geno, cPar.d_pace, cPar.indicator_idv,
cPar.indicator_snp, vec_cat, w1, z, 0, Xz);
} else if (!cPar.file_mbfile.empty()) {
MFILEXwz(1, cPar.file_mbfile, cPar.d_pace, cPar.indicator_idv,
cPar.mindicator_snp, vec_cat, w1, z, Xz);
} else if (!cPar.file_mgeno.empty()) {
MFILEXwz(0, cPar.file_mgeno, cPar.d_pace, cPar.indicator_idv,
cPar.mindicator_snp, vec_cat, w1, z, Xz);
}
if (cPar.a_mode == 66) {
gsl_matrix_safe_memcpy(XWz, Xz);
} else if (cPar.a_mode == 67) {
cout << "Calculating XWz ... " << endl;
gsl_matrix_set_zero(XWz);
if (!cPar.file_bfile.empty()) {
file_str = cPar.file_bfile + ".bed";
PlinkXwz(file_str, cPar.d_pace, cPar.indicator_idv, cPar.indicator_snp,
vec_cat, w, z, 0, XWz);
} else if (!cPar.file_geno.empty()) {
BimbamXwz(cPar.file_geno, cPar.d_pace, cPar.indicator_idv,
cPar.indicator_snp, vec_cat, w, z, 0, XWz);
} else if (!cPar.file_mbfile.empty()) {
MFILEXwz(1, cPar.file_mbfile, cPar.d_pace, cPar.indicator_idv,
cPar.mindicator_snp, vec_cat, w, z, XWz);
} else if (!cPar.file_mgeno.empty()) {
MFILEXwz(0, cPar.file_mgeno, cPar.d_pace, cPar.indicator_idv,
cPar.mindicator_snp, vec_cat, w, z, XWz);
}
}
// compute an p by k matrix of X_j^TWX_iWz
cout << "Calculating XtXWz ... " << endl;
gsl_matrix_set_zero(XtXWz);
if (!cPar.file_bfile.empty()) {
file_str = cPar.file_bfile + ".bed";
PlinkXtXwz(file_str, cPar.d_pace, cPar.indicator_idv, cPar.indicator_snp,
XWz, 0, XtXWz);
} else if (!cPar.file_geno.empty()) {
BimbamXtXwz(cPar.file_geno, cPar.d_pace, cPar.indicator_idv,
cPar.indicator_snp, XWz, 0, XtXWz);
} else if (!cPar.file_mbfile.empty()) {
MFILEXtXwz(1, cPar.file_mbfile, cPar.d_pace, cPar.indicator_idv,
cPar.mindicator_snp, XWz, XtXWz);
} else if (!cPar.file_mgeno.empty()) {
MFILEXtXwz(0, cPar.file_mgeno, cPar.d_pace, cPar.indicator_idv,
cPar.mindicator_snp, XWz, XtXWz);
}
// compute confidence intervals
CalcCIss(Xz, XWz, XtXWz, S, Svar, w, z, s_vec, vec_cat, cPar.v_pve,
cPar.v_se_pve, cPar.pve_total, cPar.se_pve_total, cPar.v_sigma2,
cPar.v_se_sigma2, cPar.v_enrich, cPar.v_se_enrich);
assert(!has_nan(cPar.v_se_pve));
gsl_matrix_safe_free(S);
gsl_matrix_safe_free(Svar);
gsl_vector_safe_free(s_ref);
gsl_matrix_safe_free(Xz);
gsl_matrix_safe_free(XWz);
gsl_matrix_safe_free(XtXWz);
gsl_vector_safe_free(w);
gsl_vector_safe_free(w1);
gsl_vector_safe_free(z);
gsl_vector_safe_free(s_vec);
}
// LMM or mvLMM or Eigen-Decomposition
if (cPar.a_mode == M_LMM1 || cPar.a_mode == M_LMM2 || cPar.a_mode == M_LMM3 ||
cPar.a_mode == M_LMM4 || cPar.a_mode == M_LMM5 ||
cPar.a_mode == M_EIGEN) { // Fit LMM or mvLMM or eigen
gsl_matrix *Y = gsl_matrix_safe_alloc(cPar.ni_test, cPar.n_ph);
enforce_msg(Y, "allocate Y"); // just to be sure
gsl_matrix *W = gsl_matrix_safe_alloc(Y->size1, cPar.n_cvt);
gsl_matrix *B = gsl_matrix_safe_alloc(Y->size2, W->size2); // B is a d by c
// matrix
gsl_matrix *se_B = gsl_matrix_safe_alloc(Y->size2, W->size2);
gsl_matrix *G = gsl_matrix_safe_alloc(Y->size1, Y->size1);
gsl_matrix *U = gsl_matrix_safe_alloc(Y->size1, Y->size1);
gsl_matrix *UtW = gsl_matrix_calloc(Y->size1, W->size2);
gsl_matrix *UtY = gsl_matrix_calloc(Y->size1, Y->size2);
gsl_vector *eval = gsl_vector_calloc(Y->size1);
gsl_vector *env = gsl_vector_safe_alloc(Y->size1);
gsl_vector *weight = gsl_vector_safe_alloc(Y->size1);
assert_issue(is_issue(26), UtY->data[0] == 0.0);
// set covariates matrix W and phenotype matrix Y
// an intercept should be included in W,
cPar.CopyCvtPhen(W, Y, 0);
if (!cPar.file_gxe.empty()) {
cPar.CopyGxe(env);
}
// read relatedness matrix G
if (!(cPar.file_kin).empty()) {
ReadFile_kin(cPar.file_kin, cPar.indicator_idv, cPar.mapID2num,
cPar.k_mode, cPar.error, G);
if (cPar.error == true) {
cout << "error! fail to read kinship/relatedness file. " << endl;
return;
}
// center matrix G
CenterMatrix(G);
validate_K(G);
// is residual weights are provided, then
if (!cPar.file_weight.empty()) {
cPar.CopyWeight(weight);
double d, wi, wj;
for (size_t i = 0; i < G->size1; i++) {
wi = gsl_vector_get(weight, i);
for (size_t j = i; j < G->size2; j++) {
wj = gsl_vector_get(weight, j);
d = gsl_matrix_get(G, i, j);
if (wi <= 0 || wj <= 0) {
d = 0;
} else {
d /= safe_sqrt(wi * wj);
}
gsl_matrix_set(G, i, j, d);
if (j != i) {
gsl_matrix_set(G, j, i, d);
}
}
}
}
// eigen-decomposition and calculate trace_G
cout << "Start Eigen-Decomposition..." << endl;
time_start = clock();
if (cPar.a_mode == M_EIGEN) {
cPar.trace_G = EigenDecomp_Zeroed(G, U, eval, 1);
} else {
cPar.trace_G = EigenDecomp_Zeroed(G, U, eval, 0);
}
// write(eval,"eval");
if (!cPar.file_weight.empty()) {
double wi;
for (size_t i = 0; i < U->size1; i++) {
wi = gsl_vector_get(weight, i);
if (wi <= 0) {
wi = 0;
} else {
wi = safe_sqrt(wi);
}
gsl_vector_view Urow = gsl_matrix_row(U, i);
gsl_vector_scale(&Urow.vector, wi);
}
}
cPar.time_eigen =
(clock() - time_start) / (double(CLOCKS_PER_SEC) * 60.0);
} else {
ReadFile_eigenU(cPar.file_ku, cPar.error, U);
if (cPar.error == true) {
cout << "error! fail to read the U file. " << endl;
return;
}
ReadFile_eigenD(cPar.file_kd, cPar.error, eval);
if (cPar.error == true) {
cout << "error! fail to read the D file. " << endl;
return;
}
cPar.trace_G = 0.0;
for (size_t i = 0; i < eval->size; i++) {
if (gsl_vector_get(eval, i) < 1e-10) {
gsl_vector_set(eval, i, 0);
}
cPar.trace_G += gsl_vector_get(eval, i);
}
cPar.trace_G /= (double)eval->size;
}
// write(eval,"eval2");
if (cPar.a_mode == M_EIGEN) {
cPar.WriteMatrix(U, "eigenU");
cPar.WriteVector(eval, "eigenD");
} else if (!cPar.file_gene.empty()) {
// calculate UtW and Uty
CalcUtX(U, W, UtW);
CalcUtX(U, Y, UtY);
assert_issue(is_issue(26), ROUND(UtY->data[0]) == -16.6143);
LMM cLmm;
cLmm.CopyFromParam(cPar);
gsl_vector_view Y_col = gsl_matrix_column(Y, 0);
gsl_vector_view UtY_col = gsl_matrix_column(UtY, 0);
cLmm.AnalyzeGene(U, eval, UtW, &UtY_col.vector, W,
&Y_col.vector); // y is the predictor, not the phenotype
cLmm.WriteFiles();
cLmm.CopyToParam(cPar);
} else {
// calculate UtW and Uty
CalcUtX(U, W, UtW);
CalcUtX(U, Y, UtY);
assert_issue(is_issue(26), ROUND(UtY->data[0]) == -16.6143);
// calculate REMLE/MLE estimate and pve for univariate model
if (cPar.n_ph == 1) { // one phenotype
gsl_vector_view beta = gsl_matrix_row(B, 0);
gsl_vector_view se_beta = gsl_matrix_row(se_B, 0);
gsl_vector_view UtY_col = gsl_matrix_column(UtY, 0);
assert_issue(is_issue(26), ROUND(UtY->data[0]) == -16.6143);
CalcLambda('L', eval, UtW, &UtY_col.vector, cPar.l_min, cPar.l_max,
cPar.n_region, cPar.l_mle_null, cPar.logl_mle_H0);
assert(!isnan(UtY->data[0]));
CalcLmmVgVeBeta(eval, UtW, &UtY_col.vector, cPar.l_mle_null,
cPar.vg_mle_null, cPar.ve_mle_null, &beta.vector,
&se_beta.vector);
assert(!isnan(UtY->data[0]));
cPar.beta_mle_null.clear();
cPar.se_beta_mle_null.clear();
assert(!isnan(B->data[0]));
assert(!isnan(se_B->data[0]));
for (size_t i = 0; i < B->size2; i++) {
cPar.beta_mle_null.push_back(gsl_matrix_get(B, 0, i));
cPar.se_beta_mle_null.push_back(gsl_matrix_get(se_B, 0, i));
}
assert(!isnan(UtY->data[0]));
assert(!isnan(cPar.beta_mle_null.front()));
assert(!isnan(cPar.se_beta_mle_null.front()));
// the following functions do not modify eval
CalcLambda('R', eval, UtW, &UtY_col.vector, cPar.l_min, cPar.l_max,
cPar.n_region, cPar.l_remle_null, cPar.logl_remle_H0);
CalcLmmVgVeBeta(eval, UtW, &UtY_col.vector, cPar.l_remle_null,
cPar.vg_remle_null, cPar.ve_remle_null, &beta.vector,
&se_beta.vector);
cPar.beta_remle_null.clear();
cPar.se_beta_remle_null.clear();
assert(!isnan(B->data[0]));
assert(!isnan(se_B->data[0]));
for (size_t i = 0; i < B->size2; i++) {
cPar.beta_remle_null.push_back(gsl_matrix_get(B, 0, i));
cPar.se_beta_remle_null.push_back(gsl_matrix_get(se_B, 0, i));
}
CalcPve(eval, UtW, &UtY_col.vector, cPar.l_remle_null, cPar.trace_G,
cPar.pve_null, cPar.pve_se_null);
cPar.PrintSummary();
// calculate and output residuals
if (cPar.a_mode == M_LMM5) {
gsl_vector *Utu_hat = gsl_vector_safe_alloc(Y->size1);
gsl_vector *Ute_hat = gsl_vector_safe_alloc(Y->size1);
gsl_vector *u_hat = gsl_vector_safe_alloc(Y->size1);
gsl_vector *e_hat = gsl_vector_safe_alloc(Y->size1);
gsl_vector *y_hat = gsl_vector_safe_alloc(Y->size1);
// obtain Utu and Ute
gsl_vector_safe_memcpy(y_hat, &UtY_col.vector);
gsl_blas_dgemv(CblasNoTrans, -1.0, UtW, &beta.vector, 1.0, y_hat);
double d, u, e;
for (size_t i = 0; i < eval->size; i++) {
d = gsl_vector_get(eval, i);
u = cPar.l_remle_null * d / (cPar.l_remle_null * d + 1.0) *
gsl_vector_get(y_hat, i);
e = 1.0 / (cPar.l_remle_null * d + 1.0) * gsl_vector_get(y_hat, i);
gsl_vector_set(Utu_hat, i, u);
gsl_vector_set(Ute_hat, i, e);
}
// obtain u and e
gsl_blas_dgemv(CblasNoTrans, 1.0, U, Utu_hat, 0.0, u_hat);
gsl_blas_dgemv(CblasNoTrans, 1.0, U, Ute_hat, 0.0, e_hat);
// output residuals
cPar.WriteVector(u_hat, "residU");
cPar.WriteVector(e_hat, "residE");
gsl_vector_safe_free(u_hat);
gsl_vector_safe_free(e_hat);
gsl_vector_safe_free(y_hat);
}
}
// Fit LMM or mvLMM (w. LOCO)
if (cPar.a_mode == 1 || cPar.a_mode == 2 || cPar.a_mode == 3 ||
cPar.a_mode == 4) {
if (cPar.n_ph == 1) {
LMM cLmm;
cLmm.CopyFromParam(cPar);
// if (is_check_mode()) disable_segfpe(); // disable fast NaN checking for now
gsl_vector_view Y_col = gsl_matrix_column(Y, 0);
gsl_vector_view UtY_col = gsl_matrix_column(UtY, 0);
if (!cPar.file_bfile.empty()) {
// PLINK analysis
if (cPar.file_gxe.empty()) {
cLmm.AnalyzePlink(U, eval, UtW, &UtY_col.vector, W,
&Y_col.vector, cPar.setGWASnps);
}
else {
cLmm.AnalyzePlinkGXE(U, eval, UtW, &UtY_col.vector, W,
&Y_col.vector, env);
}
}
else {
// BIMBAM analysis
if (cPar.file_gxe.empty()) {
cLmm.AnalyzeBimbam(U, eval, UtW, &UtY_col.vector, W,
&Y_col.vector, cPar.setGWASnps);
} else {
cLmm.AnalyzeBimbamGXE(U, eval, UtW, &UtY_col.vector, W,
&Y_col.vector, env);
}
}
cLmm.WriteFiles();
cLmm.CopyToParam(cPar);
} else {
MVLMM cMvlmm;
cMvlmm.CopyFromParam(cPar);
// if (is_check_mode()) disable_segfpe(); // disable fast NaN checking
// write(eval,"eval3");
if (!cPar.file_bfile.empty()) {
if (cPar.file_gxe.empty()) {
cMvlmm.AnalyzePlink(U, eval, UtW, UtY);
} else {
cMvlmm.AnalyzePlinkGXE(U, eval, UtW, UtY, env);
}
} else {
if (cPar.file_gxe.empty()) {
cMvlmm.AnalyzeBimbam(U, eval, UtW, UtY);
} else {
cMvlmm.AnalyzeBimbamGXE(U, eval, UtW, UtY, env);
}
}
cMvlmm.WriteFiles();
cMvlmm.CopyToParam(cPar);
}
}
}
// release all matrices and vectors
gsl_matrix_safe_free(Y);
gsl_matrix_safe_free(W);
gsl_matrix_warn_free(B); // sometimes unused
gsl_matrix_warn_free(se_B);
gsl_matrix_warn_free(G);
gsl_matrix_safe_free(U);
gsl_matrix_safe_free(UtW);
gsl_matrix_safe_free(UtY);
gsl_vector_safe_free(eval);
gsl_vector_free(env); // sometimes unused
}
// BSLMM
if (cPar.a_mode == 11 || cPar.a_mode == 12 || cPar.a_mode == 13) {
gsl_vector *y = gsl_vector_safe_alloc(cPar.ni_test);
gsl_matrix *W = gsl_matrix_safe_alloc(y->size, cPar.n_cvt);
gsl_matrix *G = gsl_matrix_safe_alloc(y->size, y->size);
gsl_matrix *UtX = gsl_matrix_safe_alloc(y->size, cPar.ns_test);
// set covariates matrix W and phenotype vector y
// an intercept should be included in W,
cPar.CopyCvtPhen(W, y, 0);
// center y, even for case/control data
cPar.pheno_mean = CenterVector(y);
// run bvsr if rho==1
if (cPar.rho_min == 1 && cPar.rho_max == 1) {
// read genotypes X (not UtX)
cPar.ReadGenotypes(UtX, G, false);
// perform BSLMM analysis
BSLMM cBslmm;
cBslmm.CopyFromParam(cPar);
time_start = clock();
cBslmm.MCMC(UtX, y);
cPar.time_opt = (clock() - time_start) / (double(CLOCKS_PER_SEC) * 60.0);
cBslmm.CopyToParam(cPar);
// else, if rho!=1
} else {
gsl_matrix *U = gsl_matrix_safe_alloc(y->size, y->size);
gsl_vector *eval = gsl_vector_safe_alloc(y->size);
gsl_matrix *UtW = gsl_matrix_safe_alloc(y->size, W->size2);
gsl_vector *Uty = gsl_vector_safe_alloc(y->size);
// read relatedness matrix G
if (!(cPar.file_kin).empty()) {
cPar.ReadGenotypes(UtX, G, false);
// read relatedness matrix G
ReadFile_kin(cPar.file_kin, cPar.indicator_idv, cPar.mapID2num,
cPar.k_mode, cPar.error, G);
if (cPar.error == true) {
cout << "error! fail to read kinship/relatedness file. " << endl;
return;
}
// center matrix G
CenterMatrix(G);
validate_K(G);
} else {
cPar.ReadGenotypes(UtX, G, true);
}
// eigen-decomposition and calculate trace_G
cout << "Start Eigen-Decomposition..." << endl;
time_start = clock();
cPar.trace_G = EigenDecomp_Zeroed(G, U, eval, 0);
cPar.time_eigen =
(clock() - time_start) / (double(CLOCKS_PER_SEC) * 60.0);
// calculate UtW and Uty
CalcUtX(U, W, UtW);
CalcUtX(U, y, Uty);
// calculate REMLE/MLE estimate and pve
CalcLambda('L', eval, UtW, Uty, cPar.l_min, cPar.l_max, cPar.n_region,
cPar.l_mle_null, cPar.logl_mle_H0);
CalcLambda('R', eval, UtW, Uty, cPar.l_min, cPar.l_max, cPar.n_region,
cPar.l_remle_null, cPar.logl_remle_H0);
CalcPve(eval, UtW, Uty, cPar.l_remle_null, cPar.trace_G, cPar.pve_null,
cPar.pve_se_null);
cPar.PrintSummary();
// Creat and calcualte UtX, use a large memory
cout << "Calculating UtX..." << endl;
time_start = clock();
CalcUtX(U, UtX);
cPar.time_UtX = (clock() - time_start) / (double(CLOCKS_PER_SEC) * 60.0);
// perform BSLMM or BSLMMDAP analysis
if (cPar.a_mode == 11 || cPar.a_mode == 12 || cPar.a_mode == 13) {
BSLMM cBslmm;
cBslmm.CopyFromParam(cPar);
time_start = clock();
if (cPar.a_mode == 12) { // ridge regression
cBslmm.RidgeR(U, UtX, Uty, eval, cPar.l_remle_null);
} else { // Run MCMC
cBslmm.MCMC(U, UtX, Uty, eval, y);
}
cPar.time_opt =
(clock() - time_start) / (double(CLOCKS_PER_SEC) * 60.0);
cBslmm.CopyToParam(cPar);
} else {
}
// release all matrices and vectors
gsl_matrix_safe_free(G);
gsl_matrix_safe_free(U);
gsl_matrix_safe_free(UtW);
gsl_vector_safe_free(eval);
gsl_vector_safe_free(Uty);
}
gsl_matrix_safe_free(W);
gsl_vector_safe_free(y);
gsl_matrix_safe_free(UtX);
}
// BSLMM-DAP
if (cPar.a_mode == 14 || cPar.a_mode == 15 || cPar.a_mode == 16) {
if (cPar.a_mode == 14) {
gsl_vector *y = gsl_vector_safe_alloc(cPar.ni_test);
gsl_matrix *W = gsl_matrix_safe_alloc(y->size, cPar.n_cvt);
gsl_matrix *G = gsl_matrix_safe_alloc(y->size, y->size);
gsl_matrix *UtX = gsl_matrix_safe_alloc(y->size, cPar.ns_test);
// set covariates matrix W and phenotype vector y
// an intercept should be included in W,
cPar.CopyCvtPhen(W, y, 0);
// center y, even for case/control data
cPar.pheno_mean = CenterVector(y);
// run bvsr if rho==1
if (cPar.rho_min == 1 && cPar.rho_max == 1) {
// read genotypes X (not UtX)
cPar.ReadGenotypes(UtX, G, false);
// perform BSLMM analysis
BSLMM cBslmm;
cBslmm.CopyFromParam(cPar);
time_start = clock();
cBslmm.MCMC(UtX, y);
cPar.time_opt =
(clock() - time_start) / (double(CLOCKS_PER_SEC) * 60.0);
cBslmm.CopyToParam(cPar);
// else, if rho!=1
} else {
gsl_matrix *U = gsl_matrix_safe_alloc(y->size, y->size);
gsl_vector *eval = gsl_vector_safe_alloc(y->size);
gsl_matrix *UtW = gsl_matrix_safe_alloc(y->size, W->size2);
gsl_vector *Uty = gsl_vector_safe_alloc(y->size);
// read relatedness matrix G
if (!(cPar.file_kin).empty()) {
cPar.ReadGenotypes(UtX, G, false);
// read relatedness matrix G
ReadFile_kin(cPar.file_kin, cPar.indicator_idv, cPar.mapID2num,
cPar.k_mode, cPar.error, G);
if (cPar.error == true) {
cout << "error! fail to read kinship/relatedness file. " << endl;
return;
}
// center matrix G
CenterMatrix(G);
validate_K(G);
} else {
cPar.ReadGenotypes(UtX, G, true);
}
// eigen-decomposition and calculate trace_G
cout << "Start Eigen-Decomposition..." << endl;
time_start = clock();
cPar.trace_G = EigenDecomp_Zeroed(G, U, eval, 0);
cPar.time_eigen =
(clock() - time_start) / (double(CLOCKS_PER_SEC) * 60.0);
// calculate UtW and Uty
CalcUtX(U, W, UtW);
CalcUtX(U, y, Uty);
// calculate REMLE/MLE estimate and pve
CalcLambda('L', eval, UtW, Uty, cPar.l_min, cPar.l_max, cPar.n_region,
cPar.l_mle_null, cPar.logl_mle_H0);
CalcLambda('R', eval, UtW, Uty, cPar.l_min, cPar.l_max, cPar.n_region,
cPar.l_remle_null, cPar.logl_remle_H0);
CalcPve(eval, UtW, Uty, cPar.l_remle_null, cPar.trace_G, cPar.pve_null,
cPar.pve_se_null);
cPar.PrintSummary();
// Creat and calcualte UtX, use a large memory
cout << "Calculating UtX..." << endl;
time_start = clock();
CalcUtX(U, UtX);
cPar.time_UtX =
(clock() - time_start) / (double(CLOCKS_PER_SEC) * 60.0);
// perform analysis; assume X and y are already centered
BSLMMDAP cBslmmDap;
cBslmmDap.CopyFromParam(cPar);
time_start = clock();
cBslmmDap.DAP_CalcBF(U, UtX, Uty, eval, y);
cPar.time_opt =
(clock() - time_start) / (double(CLOCKS_PER_SEC) * 60.0);
cBslmmDap.CopyToParam(cPar);
// release all matrices and vectors
gsl_matrix_safe_free(G);
gsl_matrix_safe_free(U);
gsl_matrix_safe_free(UtW);
gsl_vector_safe_free(eval);
gsl_vector_safe_free(Uty);
}
gsl_matrix_safe_free(W);
gsl_vector_safe_free(y);
gsl_matrix_safe_free(UtX);
} else if (cPar.a_mode == 15) {
// perform EM algorithm and estimate parameters
vector vec_rs;
vector vec_sa2, vec_sb2, wab;
vector>> BF;
// read hyp and bf files (functions defined in BSLMMDAP)
ReadFile_hyb(cPar.file_hyp, vec_sa2, vec_sb2, wab);
ReadFile_bf(cPar.file_bf, vec_rs, BF);
cPar.ns_test = vec_rs.size();
if (wab.size() != BF[0][0].size()) {
cout << "error! hyp and bf files dimension do not match" << endl;
}
// load annotations
gsl_matrix *Ac = NULL;
gsl_matrix_int *Ad = NULL;
gsl_vector_int *dlevel = NULL;
size_t kc, kd;
if (!cPar.file_cat.empty()) {
ReadFile_cat(cPar.file_cat, vec_rs, Ac, Ad, dlevel, kc, kd);
} else {
kc = 0;
kd = 0;
}
cout << "## number of blocks = " << BF.size() << endl;
cout << "## number of analyzed SNPs/var = " << vec_rs.size() << endl;
cout << "## grid size for hyperparameters = " << wab.size() << endl;
cout << "## number of continuous annotations = " << kc << endl;
cout << "## number of discrete annotations = " << kd << endl;
// DAP_EstimateHyper (const size_t kc, const size_t kd, const
// vector &vec_rs, const vector &vec_sa2, const
// vector &vec_sb2, const vector &wab, const
// vector > > &BF, gsl_matrix *Ac, gsl_matrix_int
// *Ad, gsl_vector_int *dlevel);
// perform analysis
BSLMMDAP cBslmmDap;
cBslmmDap.CopyFromParam(cPar);
time_start = clock();
cBslmmDap.DAP_EstimateHyper(kc, kd, vec_rs, vec_sa2, vec_sb2, wab, BF, Ac,
Ad, dlevel);
cPar.time_opt = (clock() - time_start) / (double(CLOCKS_PER_SEC) * 60.0);
cBslmmDap.CopyToParam(cPar);
gsl_matrix_safe_free(Ac);
gsl_matrix_int_free(Ad);
gsl_vector_int_free(dlevel);
} else {
//
}
}
cPar.time_total = (clock() - time_begin) / (double(CLOCKS_PER_SEC) * 60.0);
return;
}
// #include "Eigen/Dense"
void GEMMA::WriteLog(int argc, char **argv, PARAM &cPar) {
string file_str;
file_str = cPar.path_out + "/" + cPar.file_out;
file_str += ".log.txt";
ofstream outfile(file_str.c_str(), ofstream::out);
if (!outfile) {
cout << "error writing log file: " << file_str.c_str() << endl;
return;
}
outfile << "##" << endl;
outfile << "## GEMMA Version = " << version << " (" << date << ")" << endl;
outfile << "## Build profile = " << GEMMA_PROFILE << endl ;
#ifdef __GNUC__
outfile << "## GCC version = " << __GNUC__ << "." << __GNUC_MINOR__ << "." << __GNUC_PATCHLEVEL__ << endl;
#endif
outfile << "## GSL Version = " << GSL_VERSION << endl;
// outfile << "## Eigen Version = " << EIGEN_WORLD_VERSION << "." << EIGEN_MAJOR_VERSION << "." << EIGEN_MINOR_VERSION << endl;
#ifdef OPENBLAS
#ifndef OPENBLAS_LEGACY
outfile << "## OpenBlas =" << OPENBLAS_VERSION << " - " << openblas_get_config() << endl;
outfile << "## arch = " << openblas_get_corename() << endl;
outfile << "## threads = " << openblas_get_num_threads() << endl;
#else
outfile << "## OpenBlas = " << openblas_get_config() << endl;
#endif
string* pStr = new string[4] { "sequential", "threaded", "openmp" };
outfile << "## parallel type = " << pStr[openblas_get_parallel()] << endl;
#endif
outfile << "##" << endl;
outfile << "## Command Line Input = ";
for (int i = 0; i < argc; i++) {
outfile << argv[i] << " ";
}
outfile << endl;
outfile << "##" << endl;
time_t rawtime;
time(&rawtime);
tm *ptm = localtime(&rawtime);
outfile << "## Date = " << asctime(ptm);
outfile << "##" << endl;
outfile << "## Summary Statistics:" << endl;
if (!cPar.file_cor.empty() || !cPar.file_study.empty() ||
!cPar.file_mstudy.empty()) {
outfile << "## number of total individuals in the sample = "
<< cPar.ni_study << endl;
outfile << "## number of total individuals in the reference = "
<< cPar.ni_ref << endl;
outfile << "## number of variance components = " << cPar.n_vc << endl;
outfile << "## pve estimates = ";
for (size_t i = 0; i < cPar.v_pve.size(); i++) {
outfile << " " << cPar.v_pve[i];
}
outfile << endl;
outfile << "## se(pve) = ";
for (size_t i = 0; i < cPar.v_se_pve.size(); i++) {
outfile << " " << cPar.v_se_pve[i];
}
outfile << endl;
assert(!has_nan(cPar.v_se_pve));
if (cPar.n_vc > 1) {
outfile << "## total pve = " << cPar.pve_total << endl;
outfile << "## se(total pve) = " << cPar.se_pve_total << endl;
}
outfile << "## sigma2 per snp = ";
for (size_t i = 0; i < cPar.v_sigma2.size(); i++) {
outfile << " " << cPar.v_sigma2[i];
}
outfile << endl;
outfile << "## se(sigma2 per snp) = ";
for (size_t i = 0; i < cPar.v_se_sigma2.size(); i++) {
outfile << " " << cPar.v_se_sigma2[i];
}
outfile << endl;
outfile << "## enrichment = ";
for (size_t i = 0; i < cPar.v_enrich.size(); i++) {
outfile << " " << cPar.v_enrich[i];
}
outfile << endl;
outfile << "## se(enrichment) = ";
for (size_t i = 0; i < cPar.v_se_enrich.size(); i++) {
outfile << " " << cPar.v_se_enrich[i];
}
outfile << endl;
} else if (!cPar.file_beta.empty() &&
(cPar.a_mode == 61 || cPar.a_mode == 62)) {
outfile << "## number of total individuals in the sample = "
<< cPar.ni_study << endl;
outfile << "## number of total individuals in the reference = "
<< cPar.ni_total << endl;
outfile << "## number of total SNPs/var in the sample = " << cPar.ns_study
<< endl;
outfile << "## number of total SNPs/var in the reference panel = "
<< cPar.ns_total << endl;
outfile << "## number of analyzed SNPs/var = " << cPar.ns_test << endl;
outfile << "## number of variance components = " << cPar.n_vc << endl;
} else if (!cPar.file_beta.empty() &&
(cPar.a_mode == 66 || cPar.a_mode == 67)) {
outfile << "## number of total individuals in the sample = "
<< cPar.ni_total << endl;
outfile << "## number of total individuals in the reference = "
<< cPar.ni_ref << endl;
outfile << "## number of total SNPs/var in the sample = " << cPar.ns_total
<< endl;
outfile << "## number of analyzed SNPs/var = " << cPar.ns_test << endl;
outfile << "## number of variance components = " << cPar.n_vc << endl;
outfile << "## pve estimates = ";
for (size_t i = 0; i < cPar.v_pve.size(); i++) {
outfile << " " << cPar.v_pve[i];
}
outfile << endl;
outfile << "## se(pve) = ";
for (size_t i = 0; i < cPar.v_se_pve.size(); i++) {
outfile << " " << cPar.v_se_pve[i];
}
outfile << endl;
if (cPar.n_vc > 1) {
outfile << "## total pve = " << cPar.pve_total << endl;
outfile << "## se(total pve) = " << cPar.se_pve_total << endl;
}
outfile << "## sigma2 per snp = ";
for (size_t i = 0; i < cPar.v_sigma2.size(); i++) {
outfile << " " << cPar.v_sigma2[i];
}
outfile << endl;
outfile << "## se(sigma2 per snp) = ";
for (size_t i = 0; i < cPar.v_se_sigma2.size(); i++) {
outfile << " " << cPar.v_se_sigma2[i];
}
outfile << endl;
outfile << "## enrichment = ";
for (size_t i = 0; i < cPar.v_enrich.size(); i++) {
outfile << " " << cPar.v_enrich[i];
}
outfile << endl;
outfile << "## se(enrichment) = ";
for (size_t i = 0; i < cPar.v_se_enrich.size(); i++) {
outfile << " " << cPar.v_se_enrich[i];
}
outfile << endl;
} else {
outfile << "## number of total individuals = " << cPar.ni_total << endl;
if (cPar.a_mode == 43) {
outfile << "## number of analyzed individuals = " << cPar.ni_cvt << endl;
outfile << "## number of individuals with full phenotypes = "
<< cPar.ni_test << endl;
} else if (cPar.a_mode != 27 && cPar.a_mode != 28) {
outfile << "## number of analyzed individuals = " << cPar.ni_test << endl;
}
outfile << "## number of covariates = " << cPar.n_cvt << endl;
outfile << "## number of phenotypes = " << cPar.n_ph << endl;
if (cPar.a_mode == 43) {
outfile << "## number of observed data = " << cPar.np_obs << endl;
outfile << "## number of missing data = " << cPar.np_miss << endl;
}
if (cPar.a_mode == 25 || cPar.a_mode == 26 || cPar.a_mode == 27 ||
cPar.a_mode == 28 || cPar.a_mode == 61 || cPar.a_mode == 62 ||
cPar.a_mode == 63 || cPar.a_mode == 66 || cPar.a_mode == 67) {
outfile << "## number of variance components = " << cPar.n_vc << endl;
}
if (!(cPar.file_gene).empty()) {
outfile << "## number of total genes = " << cPar.ng_total << endl;
outfile << "## number of analyzed genes = " << cPar.ng_test << endl;
} else if (cPar.file_epm.empty()) {
outfile << "## number of total SNPs/var = " << cPar.ns_total << endl;
outfile << "## number of analyzed SNPs/var = " << cPar.ns_test << endl;
} else {
outfile << "## number of analyzed SNPs/var = " << cPar.ns_test << endl;
}
if (cPar.a_mode == 13) {
outfile << "## number of cases = " << cPar.ni_case << endl;
outfile << "## number of controls = " << cPar.ni_control << endl;
}
}
if ((cPar.a_mode == 61 || cPar.a_mode == 62 || cPar.a_mode == 63) &&
cPar.file_cor.empty() && cPar.file_study.empty() &&
cPar.file_mstudy.empty()) {
// outfile<<"## REMLE log-likelihood in the null model =
//"< 1) {
outfile << "## total pve = " << cPar.pve_total << endl;
outfile << "## se(total pve) = " << cPar.se_pve_total << endl;
}
outfile << "## sigma2 estimates = ";
for (size_t i = 0; i < cPar.v_sigma2.size(); i++) {
outfile << " " << cPar.v_sigma2[i];
}
outfile << endl;
outfile << "## se(sigma2) = ";
for (size_t i = 0; i < cPar.v_se_sigma2.size(); i++) {
outfile << " " << cPar.v_se_sigma2[i];
}
outfile << endl;
if (!cPar.file_beta.empty()) {
outfile << "## enrichment = ";
for (size_t i = 0; i < cPar.v_enrich.size(); i++) {
outfile << " " << cPar.v_enrich[i];
}
outfile << endl;
outfile << "## se(enrichment) = ";
for (size_t i = 0; i < cPar.v_se_enrich.size(); i++) {
outfile << " " << cPar.v_se_enrich[i];
}
outfile << endl;
}
}
}
if (cPar.a_mode == 1 || cPar.a_mode == 2 || cPar.a_mode == 3 ||
cPar.a_mode == 4 || cPar.a_mode == 5 || cPar.a_mode == 11 ||
cPar.a_mode == 12 || cPar.a_mode == 13) {
outfile << "## REMLE log-likelihood in the null model = "
<< cPar.logl_remle_H0 << endl;
outfile << "## MLE log-likelihood in the null model = " << cPar.logl_mle_H0
<< endl;
if (cPar.n_ph == 1) {
// outfile<<"## lambda REMLE estimate in the null (linear mixed) model =
// "<= 1 && cPar.a_mode <= 4) ||
(cPar.a_mode >= 51 && cPar.a_mode <= 54)) {
outfile << "## time on optimization = " << cPar.time_opt << " min "
<< endl;
}
if (cPar.a_mode == 11 || cPar.a_mode == 13) {
outfile << "## time on proposal = " << cPar.time_Proposal << " min "
<< endl;
outfile << "## time on mcmc = " << cPar.time_opt << " min " << endl;
outfile << "## time on Omega = " << cPar.time_Omega << " min " << endl;
}
if (cPar.a_mode == 41 || cPar.a_mode == 42) {
outfile << "## time on eigen-decomposition = " << cPar.time_eigen
<< " min " << endl;
}
if (cPar.a_mode == 43) {
outfile << "## time on eigen-decomposition = " << cPar.time_eigen
<< " min " << endl;
outfile << "## time on predicting phenotypes = " << cPar.time_opt
<< " min " << endl;
}
outfile << "##" << endl;
outfile.close();
outfile.clear();
info_msg("Done");
return;
}