/*
Genome-wide Efficient Mixed Model Association (GEMMA)
Copyright (C) 2011-2017, Xiang Zhou
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#include
#include
#include
#include
#include
#include
#include
#include "gsl/gsl_vector.h"
#include "gsl/gsl_matrix.h"
#include "gsl/gsl_linalg.h"
#include "gsl/gsl_blas.h"
#include "gsl/gsl_eigen.h"
#include "gsl/gsl_cdf.h"
#include "lapack.h"
#include "io.h"
#include "gemma.h"
#include "vc.h"
#include "lm.h"
#include "bslmm.h"
#include "bslmmdap.h"
#include "ldr.h"
#include "lmm.h"
#include "mvlmm.h"
#include "prdt.h"
#include "varcov.h"
#include "mathfunc.h"
using namespace std;
GEMMA::GEMMA(void):
version("0.96"), date("05/17/2017"), year("2017")
{}
void GEMMA::PrintHeader (void) {
cout< indicator_all;
size_t c_bv=0;
for (size_t i=0; isize; i++) {
d=gsl_vector_get(y_prdt, i);
d=gsl_cdf_gaussian_P(d, 1.0);
gsl_vector_set(y_prdt, i, d);
}
}
cPRDT.CopyToParam(cPar);
cPRDT.WriteFiles(y_prdt);
gsl_vector_free(y_prdt);
}
//Prediction with kinship matrix only; for one or more phenotypes
if (cPar.a_mode==43) {
//first, use individuals with full phenotypes to obtain estimates of Vg and Ve
gsl_matrix *Y=gsl_matrix_alloc (cPar.ni_test, cPar.n_ph);
gsl_matrix *W=gsl_matrix_alloc (Y->size1, cPar.n_cvt);
gsl_matrix *G=gsl_matrix_alloc (Y->size1, Y->size1);
gsl_matrix *U=gsl_matrix_alloc (Y->size1, Y->size1);
gsl_matrix *UtW=gsl_matrix_alloc (Y->size1, W->size2);
gsl_matrix *UtY=gsl_matrix_alloc (Y->size1, Y->size2);
gsl_vector *eval=gsl_vector_alloc (Y->size1);
gsl_matrix *Y_full=gsl_matrix_alloc (cPar.ni_cvt, cPar.n_ph);
gsl_matrix *W_full=gsl_matrix_alloc (Y_full->size1, cPar.n_cvt);
//set covariates matrix W and phenotype matrix Y
//an intercept should be included in W,
cPar.CopyCvtPhen (W, Y, 0);
cPar.CopyCvtPhen (W_full, Y_full, 1);
gsl_matrix *Y_hat=gsl_matrix_alloc (Y_full->size1, cPar.n_ph);
gsl_matrix *G_full=gsl_matrix_alloc (Y_full->size1, Y_full->size1);
gsl_matrix *H_full=gsl_matrix_alloc (Y_full->size1*Y_hat->size2, Y_full->size1*Y_hat->size2);
//read relatedness matrix G, and matrix G_full
ReadFile_kin (cPar.file_kin, cPar.indicator_idv, cPar.mapID2num, cPar.k_mode, cPar.error, G);
if (cPar.error==true) {cout<<"error! fail to read kinship/relatedness file. "<size; i++) {
if (gsl_vector_get (eval, i)<1e-10) {gsl_vector_set (eval, i, 0);}
cPar.trace_G+=gsl_vector_get (eval, i);
}
cPar.trace_G/=(double)eval->size;
cPar.time_eigen=(clock()-time_start)/(double(CLOCKS_PER_SEC)*60.0);
//calculate UtW and Uty
CalcUtX (U, W, UtW);
CalcUtX (U, Y, UtY);
//calculate variance component and beta estimates
//and then obtain predicted values
if (cPar.n_ph==1) {
gsl_vector *beta=gsl_vector_alloc (W->size2);
gsl_vector *se_beta=gsl_vector_alloc (W->size2);
double lambda, logl, vg, ve;
gsl_vector_view UtY_col=gsl_matrix_column (UtY, 0);
//obtain estimates
CalcLambda ('R', eval, UtW, &UtY_col.vector, cPar.l_min, cPar.l_max, cPar.n_region, lambda, logl);
CalcLmmVgVeBeta (eval, UtW, &UtY_col.vector, lambda, vg, ve, beta, se_beta);
cout<<"REMLE estimate for vg in the null model = "<size1; i++) {
for (size_t j=0; j<=i; j++) {
cout<size1; i++) {
for (size_t j=0; j<=i; j++) {
cout<size1; i++) {
for (size_t j=i; jsize2; j++) {
cPar.Vg_remle_null.push_back(gsl_matrix_get (Vg, i, j) );
cPar.Ve_remle_null.push_back(gsl_matrix_get (Ve, i, j) );
}
}
//obtain Y_hat from fixed effects
gsl_blas_dgemm (CblasNoTrans, CblasTrans, 1.0, W_full, B, 0.0, Y_hat);
//obtain H
KroneckerSym(G_full, Vg, H_full);
for (size_t i=0; isize1; i++) {
gsl_matrix_view H_sub=gsl_matrix_submatrix (H_full, i*Ve->size1, i*Ve->size2, Ve->size1, Ve->size2);
gsl_matrix_add (&H_sub.matrix, Ve);
}
//free matrices
gsl_matrix_free (Vg);
gsl_matrix_free (Ve);
gsl_matrix_free (B);
gsl_matrix_free (se_B);
}
PRDT cPRDT;
cPRDT.CopyFromParam(cPar);
cout<<"Predicting Missing Phentypes ... "< setSnps_beta;
map mapRS2wA, mapRS2wK;
cPar.ObtainWeight(setSnps_beta, mapRS2wK);
time_start=clock();
cPar.CalcS (mapRS2wA, mapRS2wK, W, A, K, &S_mat.matrix, &Svar_mat.matrix, &ns_vec.vector);
cPar.time_G=(clock()-time_start)/(double(CLOCKS_PER_SEC)*60.0);
if (cPar.error==true) {cout<<"error! fail to calculate the S matrix. "< vec_cat, vec_ni;
vector vec_weight, vec_z2;
map mapRS2weight;
mapRS2weight.clear();
time_start=clock();
ReadFile_beta (cPar.file_beta, cPar.mapRS2cat, mapRS2weight, vec_cat, vec_ni, vec_weight, vec_z2, cPar.ni_total, cPar.ns_total, cPar.ns_test);
cout<<"## number of total individuals = "<size1, cPar.n_cvt);
//set covariates matrix W and phenotype matrix Y
//an intercept should be included in W,
cPar.CopyCvtPhen (W, Y, 0);
//Fit LM or mvLM
if (cPar.n_ph==1) {
LM cLm;
cLm.CopyFromParam(cPar);
gsl_vector_view Y_col=gsl_matrix_column (Y, 0);
if (!cPar.file_gene.empty()) {
cLm.AnalyzeGene (W, &Y_col.vector); //y is the predictor, not the phenotype
} else if (!cPar.file_bfile.empty()) {
cLm.AnalyzePlink (W, &Y_col.vector);
} else if (!cPar.file_oxford.empty()) {
cLm.Analyzebgen (W, &Y_col.vector);
} else {
cLm.AnalyzeBimbam (W, &Y_col.vector);
}
cLm.WriteFiles();
cLm.CopyToParam(cPar);
}
/*
else {
MVLM cMvlm;
cMvlm.CopyFromParam(cPar);
if (!cPar.file_bfile.empty()) {
cMvlm.AnalyzePlink (W, Y);
} else {
cMvlm.AnalyzeBimbam (W, Y);
}
cMvlm.WriteFiles();
cMvlm.CopyToParam(cPar);
}
*/
//release all matrices and vectors
gsl_matrix_free (Y);
gsl_matrix_free (W);
}
//VC estimation with one or multiple kinship matrices
//REML approach only
//if file_kin or file_ku/kd is provided, then a_mode is changed to 5 already, in param.cpp
//for one phenotype only;
if (cPar.a_mode==61 || cPar.a_mode==62 || cPar.a_mode==63) {
if (!cPar.file_beta.empty() ) {
//need to obtain a common set of SNPs between beta file and the genotype file; these are saved in mapRS2wA and mapRS2wK
//normalize the weight in mapRS2wK to have an average of one; each element of mapRS2wA is 1
//update indicator_snps, so that the numbers are in accordance with mapRS2wK
set setSnps_beta;
ReadFile_snps_header (cPar.file_beta, setSnps_beta);
map mapRS2wA, mapRS2wK;
cPar.ObtainWeight(setSnps_beta, mapRS2wK);
cPar.UpdateSNP (mapRS2wK);
// Setup matrices and vectors.
gsl_matrix *S=gsl_matrix_alloc (cPar.n_vc*2, cPar.n_vc);
gsl_matrix *Vq=gsl_matrix_alloc (cPar.n_vc, cPar.n_vc);
gsl_vector *q=gsl_vector_alloc (cPar.n_vc);
gsl_vector *s=gsl_vector_alloc (cPar.n_vc+1);
gsl_matrix *K=gsl_matrix_alloc (cPar.ni_test, cPar.n_vc*cPar.ni_test);
gsl_matrix *A=gsl_matrix_alloc (cPar.ni_test, cPar.n_vc*cPar.ni_test);
gsl_vector *y=gsl_vector_alloc (cPar.ni_test);
gsl_matrix *W=gsl_matrix_alloc (cPar.ni_test, cPar.n_cvt);
gsl_matrix_set_zero (K);
gsl_matrix_set_zero (A);
gsl_matrix_set_zero(S);
gsl_matrix_set_zero(Vq);
gsl_vector_set_zero (q);
gsl_vector_set_zero (s);
cPar.CopyCvtPhen (W, y, 0);
gsl_matrix_view S_mat=gsl_matrix_submatrix(S, 0, 0, cPar.n_vc, cPar.n_vc);
gsl_matrix_view Svar_mat=gsl_matrix_submatrix (S, cPar.n_vc, 0, cPar.n_vc, cPar.n_vc);
gsl_vector_view s_vec=gsl_vector_subvector(s, 0, cPar.n_vc);
vector vec_cat, vec_ni;
vector vec_weight, vec_z2;
//read beta, based on the mapRS2wK
ReadFile_beta (cPar.file_beta, cPar.mapRS2cat, mapRS2wK, vec_cat, vec_ni, vec_weight, vec_z2, cPar.ni_study, cPar.ns_study, cPar.ns_test);
cout<<"Study Panel: "<size1, cPar.n_cvt);
gsl_matrix *G=gsl_matrix_alloc (Y->size1, Y->size1*cPar.n_vc );
//set covariates matrix W and phenotype matrix Y
//an intercept should be included in W,
cPar.CopyCvtPhen (W, Y, 0);
//read kinship matrices
if (!(cPar.file_mk).empty()) {
ReadFile_mk (cPar.file_mk, cPar.indicator_idv, cPar.mapID2num, cPar.k_mode, cPar.error, G);
if (cPar.error==true) {cout<<"error! fail to read kinship/relatedness file. "<size1, G->size1, G->size1);
CenterMatrix (&G_sub.matrix);
d=0;
for (size_t j=0; jsize1; j++) {
d+=gsl_matrix_get (&G_sub.matrix, j, j);
}
d/=(double)G->size1;
(cPar.v_traceG).push_back(d);
}
} else if (!(cPar.file_kin).empty()) {
ReadFile_kin (cPar.file_kin, cPar.indicator_idv, cPar.mapID2num, cPar.k_mode, cPar.error, G);
if (cPar.error==true) {cout<<"error! fail to read kinship/relatedness file. "<size1; j++) {
d+=gsl_matrix_get (G, j, j);
}
d/=(double)G->size1;
(cPar.v_traceG).push_back(d);
}
/*
//eigen-decomposition and calculate trace_G
cout<<"Start Eigen-Decomposition..."<size; i++) {
if (gsl_vector_get (eval, i)<1e-10) {gsl_vector_set (eval, i, 0);}
cPar.trace_G+=gsl_vector_get (eval, i);
}
cPar.trace_G/=(double)eval->size;
cPar.time_eigen=(clock()-time_start)/(double(CLOCKS_PER_SEC)*60.0);
} else {
ReadFile_eigenU (cPar.file_ku, cPar.error, U);
if (cPar.error==true) {cout<<"error! fail to read the U file. "<size; i++) {
if (gsl_vector_get(eval, i)<1e-10) {gsl_vector_set(eval, i, 0);}
cPar.trace_G+=gsl_vector_get(eval, i);
}
cPar.trace_G/=(double)eval->size;
}
*/
//fit multiple variance components
if (cPar.n_ph==1) {
// if (cPar.n_vc==1) {
/*
//calculate UtW and Uty
CalcUtX (U, W, UtW);
CalcUtX (U, Y, UtY);
gsl_vector_view beta=gsl_matrix_row (B, 0);
gsl_vector_view se_beta=gsl_matrix_row (se_B, 0);
gsl_vector_view UtY_col=gsl_matrix_column (UtY, 0);
CalcLambda ('L', eval, UtW, &UtY_col.vector, cPar.l_min, cPar.l_max, cPar.n_region, cPar.l_mle_null, cPar.logl_mle_H0);
CalcLmmVgVeBeta (eval, UtW, &UtY_col.vector, cPar.l_mle_null, cPar.vg_mle_null, cPar.ve_mle_null, &beta.vector, &se_beta.vector);
cPar.beta_mle_null.clear();
cPar.se_beta_mle_null.clear();
for (size_t i=0; isize2; i++) {
cPar.beta_mle_null.push_back(gsl_matrix_get(B, 0, i) );
cPar.se_beta_mle_null.push_back(gsl_matrix_get(se_B, 0, i) );
}
CalcLambda ('R', eval, UtW, &UtY_col.vector, cPar.l_min, cPar.l_max, cPar.n_region, cPar.l_remle_null, cPar.logl_remle_H0);
CalcLmmVgVeBeta (eval, UtW, &UtY_col.vector, cPar.l_remle_null, cPar.vg_remle_null, cPar.ve_remle_null, &beta.vector, &se_beta.vector);
cPar.beta_remle_null.clear();
cPar.se_beta_remle_null.clear();
for (size_t i=0; isize2; i++) {
cPar.beta_remle_null.push_back(gsl_matrix_get(B, 0, i) );
cPar.se_beta_remle_null.push_back(gsl_matrix_get(se_B, 0, i) );
}
CalcPve (eval, UtW, &UtY_col.vector, cPar.l_remle_null, cPar.trace_G, cPar.pve_null, cPar.pve_se_null);
cPar.PrintSummary();
//calculate and output residuals
if (cPar.a_mode==5) {
gsl_vector *Utu_hat=gsl_vector_alloc (Y->size1);
gsl_vector *Ute_hat=gsl_vector_alloc (Y->size1);
gsl_vector *u_hat=gsl_vector_alloc (Y->size1);
gsl_vector *e_hat=gsl_vector_alloc (Y->size1);
gsl_vector *y_hat=gsl_vector_alloc (Y->size1);
//obtain Utu and Ute
gsl_vector_memcpy (y_hat, &UtY_col.vector);
gsl_blas_dgemv (CblasNoTrans, -1.0, UtW, &beta.vector, 1.0, y_hat);
double d, u, e;
for (size_t i=0; isize; i++) {
d=gsl_vector_get (eval, i);
u=cPar.l_remle_null*d/(cPar.l_remle_null*d+1.0)*gsl_vector_get(y_hat, i);
e=1.0/(cPar.l_remle_null*d+1.0)*gsl_vector_get(y_hat, i);
gsl_vector_set (Utu_hat, i, u);
gsl_vector_set (Ute_hat, i, e);
}
//obtain u and e
gsl_blas_dgemv (CblasNoTrans, 1.0, U, Utu_hat, 0.0, u_hat);
gsl_blas_dgemv (CblasNoTrans, 1.0, U, Ute_hat, 0.0, e_hat);
//output residuals
cPar.WriteVector(u_hat, "residU");
cPar.WriteVector(e_hat, "residE");
gsl_vector_free(u_hat);
gsl_vector_free(e_hat);
gsl_vector_free(y_hat);
}
*/
// } else {
gsl_vector_view Y_col=gsl_matrix_column (Y, 0);
VC cVc;
cVc.CopyFromParam(cPar);
if (cPar.a_mode==61) {
cVc.CalcVChe (G, W, &Y_col.vector);
} else if (cPar.a_mode==62) {
cVc.CalcVCreml (cPar.noconstrain, G, W, &Y_col.vector);
} else {
cVc.CalcVCacl (G, W, &Y_col.vector);
}
cVc.CopyToParam(cPar);
//obtain pve from sigma2
//obtain se_pve from se_sigma2
//}
}
}
}
//compute confidence intervals with additional summary statistics
//we do not check the sign of z-scores here, but they have to be matched with the genotypes
if (cPar.a_mode==66 || cPar.a_mode==67) {
//read reference file first
gsl_matrix *S=gsl_matrix_alloc (cPar.n_vc, cPar.n_vc);
gsl_matrix *Svar=gsl_matrix_alloc (cPar.n_vc, cPar.n_vc);
gsl_vector *s_ref=gsl_vector_alloc (cPar.n_vc);
gsl_matrix_set_zero(S);
gsl_matrix_set_zero(Svar);
gsl_vector_set_zero(s_ref);
if (!cPar.file_ref.empty()) {
ReadFile_ref(cPar.file_ref, S, Svar, s_ref, cPar.ni_ref);
} else {
ReadFile_mref(cPar.file_mref, S, Svar, s_ref, cPar.ni_ref);
}
//need to obtain a common set of SNPs between beta file and the genotype file; these are saved in mapRS2wA and mapRS2wK
//normalize the weight in mapRS2wK to have an average of one; each element of mapRS2wA is 1
set setSnps_beta;
ReadFile_snps_header (cPar.file_beta, setSnps_beta);
//obtain the weights for wA, which contains the SNP weights for SNPs used in the model
map mapRS2wK;
cPar.ObtainWeight(setSnps_beta, mapRS2wK);
//set up matrices and vector
gsl_matrix *Xz=gsl_matrix_alloc (cPar.ni_test, cPar.n_vc);
gsl_matrix *XWz=gsl_matrix_alloc (cPar.ni_test, cPar.n_vc);
gsl_matrix *XtXWz=gsl_matrix_alloc (mapRS2wK.size(), cPar.n_vc*cPar.n_vc);
gsl_vector *w=gsl_vector_alloc (mapRS2wK.size());
gsl_vector *w1=gsl_vector_alloc (mapRS2wK.size());
gsl_vector *z=gsl_vector_alloc (mapRS2wK.size());
gsl_vector *s_vec=gsl_vector_alloc (cPar.n_vc);
vector vec_cat, vec_size;
vector vec_z;
map mapRS2z, mapRS2wA;
map mapRS2A1;
string file_str;
//update s_vec, the number of snps in each category
for (size_t i=0; i::const_iterator it=mapRS2wK.begin(); it!=mapRS2wK.end(); ++it) {
vec_size[cPar.mapRS2cat[it->first]]++;
}
for (size_t i=0; i::const_iterator it=mapRS2wK.begin(); it!=mapRS2wK.end(); ++it) {
mapRS2wA[it->first]=1;
}
} else {
cPar.UpdateWeight (0, mapRS2wK, cPar.ni_test, s_vec, mapRS2wA);
}
//read in z-scores based on allele 0, and save that into a vector
ReadFile_beta (cPar.file_beta, mapRS2wA, mapRS2A1, mapRS2z);
//update snp indicator, save weights to w, save z-scores to vec_z, save category label to vec_cat
//sign of z is determined by matching alleles
cPar.UpdateSNPnZ (mapRS2wA, mapRS2A1, mapRS2z, w, z, vec_cat);
//compute an n by k matrix of X_iWz
cout<<"Calculating Xz ... "<size1, cPar.n_cvt);
gsl_matrix *B=gsl_matrix_alloc (Y->size2, W->size2); //B is a d by c matrix
gsl_matrix *se_B=gsl_matrix_alloc (Y->size2, W->size2);
gsl_matrix *G=gsl_matrix_alloc (Y->size1, Y->size1);
gsl_matrix *U=gsl_matrix_alloc (Y->size1, Y->size1);
gsl_matrix *UtW=gsl_matrix_alloc (Y->size1, W->size2);
gsl_matrix *UtY=gsl_matrix_alloc (Y->size1, Y->size2);
gsl_vector *eval=gsl_vector_alloc (Y->size1);
gsl_vector *env=gsl_vector_alloc (Y->size1);
gsl_vector *weight=gsl_vector_alloc (Y->size1);
//set covariates matrix W and phenotype matrix Y
//an intercept should be included in W,
cPar.CopyCvtPhen (W, Y, 0);
if (!cPar.file_gxe.empty()) {cPar.CopyGxe (env);}
//read relatedness matrix G
if (!(cPar.file_kin).empty()) {
ReadFile_kin (cPar.file_kin, cPar.indicator_idv, cPar.mapID2num, cPar.k_mode, cPar.error, G);
if (cPar.error==true) {cout<<"error! fail to read kinship/relatedness file. "<size1; i++) {
wi=gsl_vector_get(weight, i);
for (size_t j=i; jsize2; j++) {
wj=gsl_vector_get(weight, j);
d=gsl_matrix_get(G, i, j);
if (wi<=0 || wj<=0) {d=0;} else {d/=sqrt(wi*wj);}
gsl_matrix_set(G, i, j, d);
if (j!=i) {gsl_matrix_set(G, j, i, d);}
}
}
}
//eigen-decomposition and calculate trace_G
cout<<"Start Eigen-Decomposition..."<size1; i++) {
wi=gsl_vector_get(weight, i);
if (wi<=0) {wi=0;} else {wi=sqrt(wi);}
gsl_vector_view Urow=gsl_matrix_row (U, i);
gsl_vector_scale (&Urow.vector, wi);
}
}
cPar.trace_G=0.0;
for (size_t i=0; isize; i++) {
if (gsl_vector_get (eval, i)<1e-10) {gsl_vector_set (eval, i, 0);}
cPar.trace_G+=gsl_vector_get (eval, i);
}
cPar.trace_G/=(double)eval->size;
cPar.time_eigen=(clock()-time_start)/(double(CLOCKS_PER_SEC)*60.0);
} else {
ReadFile_eigenU (cPar.file_ku, cPar.error, U);
if (cPar.error==true) {cout<<"error! fail to read the U file. "<size; i++) {
if (gsl_vector_get(eval, i)<1e-10) {gsl_vector_set(eval, i, 0);}
cPar.trace_G+=gsl_vector_get(eval, i);
}
cPar.trace_G/=(double)eval->size;
}
if (cPar.a_mode==31) {
cPar.WriteMatrix(U, "eigenU");
cPar.WriteVector(eval, "eigenD");
} else if (!cPar.file_gene.empty() ) {
//calculate UtW and Uty
CalcUtX (U, W, UtW);
CalcUtX (U, Y, UtY);
LMM cLmm;
cLmm.CopyFromParam(cPar);
gsl_vector_view Y_col=gsl_matrix_column (Y, 0);
gsl_vector_view UtY_col=gsl_matrix_column (UtY, 0);
cLmm.AnalyzeGene (U, eval, UtW, &UtY_col.vector, W, &Y_col.vector); //y is the predictor, not the phenotype
cLmm.WriteFiles();
cLmm.CopyToParam(cPar);
} else {
//calculate UtW and Uty
CalcUtX (U, W, UtW);
CalcUtX (U, Y, UtY);
//calculate REMLE/MLE estimate and pve for univariate model
if (cPar.n_ph==1) {
gsl_vector_view beta=gsl_matrix_row (B, 0);
gsl_vector_view se_beta=gsl_matrix_row (se_B, 0);
gsl_vector_view UtY_col=gsl_matrix_column (UtY, 0);
CalcLambda ('L', eval, UtW, &UtY_col.vector, cPar.l_min, cPar.l_max, cPar.n_region, cPar.l_mle_null, cPar.logl_mle_H0);
CalcLmmVgVeBeta (eval, UtW, &UtY_col.vector, cPar.l_mle_null, cPar.vg_mle_null, cPar.ve_mle_null, &beta.vector, &se_beta.vector);
cPar.beta_mle_null.clear();
cPar.se_beta_mle_null.clear();
for (size_t i=0; isize2; i++) {
cPar.beta_mle_null.push_back(gsl_matrix_get(B, 0, i) );
cPar.se_beta_mle_null.push_back(gsl_matrix_get(se_B, 0, i) );
}
CalcLambda ('R', eval, UtW, &UtY_col.vector, cPar.l_min, cPar.l_max, cPar.n_region, cPar.l_remle_null, cPar.logl_remle_H0);
CalcLmmVgVeBeta (eval, UtW, &UtY_col.vector, cPar.l_remle_null, cPar.vg_remle_null, cPar.ve_remle_null, &beta.vector, &se_beta.vector);
cPar.beta_remle_null.clear();
cPar.se_beta_remle_null.clear();
for (size_t i=0; isize2; i++) {
cPar.beta_remle_null.push_back(gsl_matrix_get(B, 0, i) );
cPar.se_beta_remle_null.push_back(gsl_matrix_get(se_B, 0, i) );
}
CalcPve (eval, UtW, &UtY_col.vector, cPar.l_remle_null, cPar.trace_G, cPar.pve_null, cPar.pve_se_null);
cPar.PrintSummary();
//calculate and output residuals
if (cPar.a_mode==5) {
gsl_vector *Utu_hat=gsl_vector_alloc (Y->size1);
gsl_vector *Ute_hat=gsl_vector_alloc (Y->size1);
gsl_vector *u_hat=gsl_vector_alloc (Y->size1);
gsl_vector *e_hat=gsl_vector_alloc (Y->size1);
gsl_vector *y_hat=gsl_vector_alloc (Y->size1);
//obtain Utu and Ute
gsl_vector_memcpy (y_hat, &UtY_col.vector);
gsl_blas_dgemv (CblasNoTrans, -1.0, UtW, &beta.vector, 1.0, y_hat);
double d, u, e;
for (size_t i=0; isize; i++) {
d=gsl_vector_get (eval, i);
u=cPar.l_remle_null*d/(cPar.l_remle_null*d+1.0)*gsl_vector_get(y_hat, i);
e=1.0/(cPar.l_remle_null*d+1.0)*gsl_vector_get(y_hat, i);
gsl_vector_set (Utu_hat, i, u);
gsl_vector_set (Ute_hat, i, e);
}
//obtain u and e
gsl_blas_dgemv (CblasNoTrans, 1.0, U, Utu_hat, 0.0, u_hat);
gsl_blas_dgemv (CblasNoTrans, 1.0, U, Ute_hat, 0.0, e_hat);
//output residuals
cPar.WriteVector(u_hat, "residU");
cPar.WriteVector(e_hat, "residE");
gsl_vector_free(u_hat);
gsl_vector_free(e_hat);
gsl_vector_free(y_hat);
}
}
//Fit LMM or mvLMM
if (cPar.a_mode==1 || cPar.a_mode==2 || cPar.a_mode==3 || cPar.a_mode==4) {
if (cPar.n_ph==1) {
LMM cLmm;
cLmm.CopyFromParam(cPar);
gsl_vector_view Y_col=gsl_matrix_column (Y, 0);
gsl_vector_view UtY_col=gsl_matrix_column (UtY, 0);
if (!cPar.file_bfile.empty()) {
if (cPar.file_gxe.empty()) {
cLmm.AnalyzePlink (U, eval, UtW, &UtY_col.vector, W, &Y_col.vector);
} else {
cLmm.AnalyzePlinkGXE (U, eval, UtW, &UtY_col.vector, W, &Y_col.vector, env);
}
}
// WJA added
else if(!cPar.file_oxford.empty()) {
cLmm.Analyzebgen (U, eval, UtW, &UtY_col.vector, W, &Y_col.vector);
}
else {
if (cPar.file_gxe.empty()) {
cLmm.AnalyzeBimbam (U, eval, UtW, &UtY_col.vector, W, &Y_col.vector);
} else {
cLmm.AnalyzeBimbamGXE (U, eval, UtW, &UtY_col.vector, W, &Y_col.vector, env);
}
}
cLmm.WriteFiles();
cLmm.CopyToParam(cPar);
} else {
MVLMM cMvlmm;
cMvlmm.CopyFromParam(cPar);
if (!cPar.file_bfile.empty()) {
if (cPar.file_gxe.empty()) {
cMvlmm.AnalyzePlink (U, eval, UtW, UtY);
} else {
cMvlmm.AnalyzePlinkGXE (U, eval, UtW, UtY, env);
}
}
else if(!cPar.file_oxford.empty())
{
cMvlmm.Analyzebgen (U, eval, UtW, UtY);
}
else {
if (cPar.file_gxe.empty()) {
cMvlmm.AnalyzeBimbam (U, eval, UtW, UtY);
} else {
cMvlmm.AnalyzeBimbamGXE (U, eval, UtW, UtY, env);
}
}
cMvlmm.WriteFiles();
cMvlmm.CopyToParam(cPar);
}
}
}
//release all matrices and vectors
gsl_matrix_free (Y);
gsl_matrix_free (W);
gsl_matrix_free(B);
gsl_matrix_free(se_B);
gsl_matrix_free (G);
gsl_matrix_free (U);
gsl_matrix_free (UtW);
gsl_matrix_free (UtY);
gsl_vector_free (eval);
gsl_vector_free (env);
}
//BSLMM
if (cPar.a_mode==11 || cPar.a_mode==12 || cPar.a_mode==13) {
gsl_vector *y=gsl_vector_alloc (cPar.ni_test);
gsl_matrix *W=gsl_matrix_alloc (y->size, cPar.n_cvt);
gsl_matrix *G=gsl_matrix_alloc (y->size, y->size);
gsl_matrix *UtX=gsl_matrix_alloc (y->size, cPar.ns_test);
//set covariates matrix W and phenotype vector y
//an intercept should be included in W,
cPar.CopyCvtPhen (W, y, 0);
//center y, even for case/control data
cPar.pheno_mean=CenterVector(y);
//run bvsr if rho==1
if (cPar.rho_min==1 && cPar.rho_max==1) {
//read genotypes X (not UtX)
cPar.ReadGenotypes (UtX, G, false);
//perform BSLMM analysis
BSLMM cBslmm;
cBslmm.CopyFromParam(cPar);
time_start=clock();
cBslmm.MCMC(UtX, y);
cPar.time_opt=(clock()-time_start)/(double(CLOCKS_PER_SEC)*60.0);
cBslmm.CopyToParam(cPar);
//else, if rho!=1
} else {
gsl_matrix *U=gsl_matrix_alloc (y->size, y->size);
gsl_vector *eval=gsl_vector_alloc (y->size);
gsl_matrix *UtW=gsl_matrix_alloc (y->size, W->size2);
gsl_vector *Uty=gsl_vector_alloc (y->size);
//read relatedness matrix G
if (!(cPar.file_kin).empty()) {
cPar.ReadGenotypes (UtX, G, false);
//read relatedness matrix G
ReadFile_kin (cPar.file_kin, cPar.indicator_idv, cPar.mapID2num, cPar.k_mode, cPar.error, G);
if (cPar.error==true) {cout<<"error! fail to read kinship/relatedness file. "<size; i++) {
if (gsl_vector_get (eval, i)<1e-10) {gsl_vector_set (eval, i, 0);}
cPar.trace_G+=gsl_vector_get (eval, i);
}
cPar.trace_G/=(double)eval->size;
cPar.time_eigen=(clock()-time_start)/(double(CLOCKS_PER_SEC)*60.0);
//calculate UtW and Uty
CalcUtX (U, W, UtW);
CalcUtX (U, y, Uty);
//calculate REMLE/MLE estimate and pve
CalcLambda ('L', eval, UtW, Uty, cPar.l_min, cPar.l_max, cPar.n_region, cPar.l_mle_null, cPar.logl_mle_H0);
CalcLambda ('R', eval, UtW, Uty, cPar.l_min, cPar.l_max, cPar.n_region, cPar.l_remle_null, cPar.logl_remle_H0);
CalcPve (eval, UtW, Uty, cPar.l_remle_null, cPar.trace_G, cPar.pve_null, cPar.pve_se_null);
cPar.PrintSummary();
//Creat and calcualte UtX, use a large memory
cout<<"Calculating UtX..."<size, cPar.n_cvt);
gsl_matrix *G=gsl_matrix_alloc (y->size, y->size);
gsl_matrix *UtX=gsl_matrix_alloc (y->size, cPar.ns_test);
//set covariates matrix W and phenotype vector y
//an intercept should be included in W,
cPar.CopyCvtPhen (W, y, 0);
//center y, even for case/control data
cPar.pheno_mean=CenterVector(y);
//run bvsr if rho==1
if (cPar.rho_min==1 && cPar.rho_max==1) {
//read genotypes X (not UtX)
cPar.ReadGenotypes (UtX, G, false);
//perform BSLMM analysis
BSLMM cBslmm;
cBslmm.CopyFromParam(cPar);
time_start=clock();
cBslmm.MCMC(UtX, y);
cPar.time_opt=(clock()-time_start)/(double(CLOCKS_PER_SEC)*60.0);
cBslmm.CopyToParam(cPar);
//else, if rho!=1
} else {
gsl_matrix *U=gsl_matrix_alloc (y->size, y->size);
gsl_vector *eval=gsl_vector_alloc (y->size);
gsl_matrix *UtW=gsl_matrix_alloc (y->size, W->size2);
gsl_vector *Uty=gsl_vector_alloc (y->size);
//read relatedness matrix G
if (!(cPar.file_kin).empty()) {
cPar.ReadGenotypes (UtX, G, false);
//read relatedness matrix G
ReadFile_kin (cPar.file_kin, cPar.indicator_idv, cPar.mapID2num, cPar.k_mode, cPar.error, G);
if (cPar.error==true) {cout<<"error! fail to read kinship/relatedness file. "<size; i++) {
if (gsl_vector_get (eval, i)<1e-10) {gsl_vector_set (eval, i, 0);}
cPar.trace_G+=gsl_vector_get (eval, i);
}
cPar.trace_G/=(double)eval->size;
cPar.time_eigen=(clock()-time_start)/(double(CLOCKS_PER_SEC)*60.0);
//calculate UtW and Uty
CalcUtX (U, W, UtW);
CalcUtX (U, y, Uty);
//calculate REMLE/MLE estimate and pve
CalcLambda ('L', eval, UtW, Uty, cPar.l_min, cPar.l_max, cPar.n_region, cPar.l_mle_null, cPar.logl_mle_H0);
CalcLambda ('R', eval, UtW, Uty, cPar.l_min, cPar.l_max, cPar.n_region, cPar.l_remle_null, cPar.logl_remle_H0);
CalcPve (eval, UtW, Uty, cPar.l_remle_null, cPar.trace_G, cPar.pve_null, cPar.pve_se_null);
cPar.PrintSummary();
//Creat and calcualte UtX, use a large memory
cout<<"Calculating UtX..."< vec_rs;
vector vec_sa2, vec_sb2, wab;
vector > > BF;
//read hyp and bf files (functions defined in BSLMMDAP)
ReadFile_hyb (cPar.file_hyp, vec_sa2, vec_sb2, wab);
ReadFile_bf (cPar.file_bf, vec_rs, BF);
cPar.ns_test=vec_rs.size();
if (wab.size()!=BF[0][0].size()) {cout<<"error! hyp and bf files dimension do not match"<tm_month<<":"<tm_day":"<tm_hour<<":"<tm_min<1) {
outfile<<"## total pve = "<1) {
outfile<<"## total pve = "<1) {
outfile<<"## total pve = "<=1 && cPar.a_mode<=4) || (cPar.a_mode>=51 && cPar.a_mode<=54) ) {
outfile<<"## time on optimization = "<