/*
Genome-wide Efficient Mixed Model Association (GEMMA)
Copyright © 2011-2017, Xiang Zhou
Copyright © 2017, Peter Carbonetto
Copyright © 2017, Pjotr Prins
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "gsl/gsl_blas.h"
#include "gsl/gsl_cdf.h"
#include "gsl/gsl_eigen.h"
#include "gsl/gsl_linalg.h"
#include "gsl/gsl_matrix.h"
#include "gsl/gsl_vector.h"
#include "debug.h"
#include "mathfunc.h"
static bool debug_mode = false;
static bool debug_data_mode = false;
static bool debug_check = true; // check data/algorithms
static bool debug_fpe_check = true; // check floating point errors (intel hardware)
static bool debug_strict = false; // fail on error, more rigorous checks
static bool debug_quiet = false;
static uint debug_issue = 0; // track github issues
static bool debug_legacy = false; // legacy mode
void debug_set_debug_mode(bool setting) { debug_mode = setting; }
void debug_set_debug_data_mode(bool setting) { debug_data_mode = setting; }
void debug_set_no_check_mode(bool setting) {debug_check = !setting; }
void debug_set_no_fpe_check_mode(bool setting) {debug_fpe_check = !setting; }
void debug_set_strict_mode(bool setting) { debug_strict = setting; }
void debug_set_quiet_mode(bool setting) { debug_quiet = setting; }
void debug_set_issue(uint issue) { debug_issue = issue; }
void debug_set_legacy_mode(bool setting) { debug_legacy = setting; }
bool is_debug_mode() { return debug_mode; };
bool is_debug_data_mode() { return debug_data_mode; };
bool is_no_check_mode() { return !debug_check; };
bool is_check_mode() { return debug_check; };
bool is_fpe_check_mode() { return debug_fpe_check; };
bool is_strict_mode() { return debug_strict; };
bool is_quiet_mode() { return debug_quiet; };
bool is_issue(uint issue) { return issue == debug_issue; };
bool is_legacy_mode() { return debug_legacy; };
#include
#include
#include
#include
void sighandler(int signum)
{
cout << R"(
FATAL ERROR: GEMMA caused a floating point error which suggests machine boundaries were reached.
You can disable floating point tests with the -no-check switch (use at your own risk!)
)" << endl;
signal(signum, SIG_DFL);
kill(getpid(), signum); // should force a core dump
}
/*
Force the floating point processor to throw an exception when the result of
a double/float computation is overflow, underflow, NaN or inf. In principle
this is an Intel hardware feature that does not slow down computations.
*/
#if defined(__APPLE__) && defined(__MACH__)
// Public domain polyfill for feenableexcept on OS X
// http://www-personal.umich.edu/~williams/archive/computation/fe-handling-example.c
inline int feenableexcept(unsigned int excepts)
{
static fenv_t fenv;
unsigned int new_excepts = excepts & FE_ALL_EXCEPT;
// previous masks
unsigned int old_excepts;
if (fegetenv(&fenv)) {
return -1;
}
old_excepts = fenv.__control & FE_ALL_EXCEPT;
// unmask
fenv.__control &= ~new_excepts;
fenv.__mxcsr &= ~(new_excepts << 7);
return fesetenv(&fenv) ? -1 : old_excepts;
}
inline int fedisableexcept(unsigned int excepts)
{
static fenv_t fenv;
unsigned int new_excepts = excepts & FE_ALL_EXCEPT;
// all previous masks
unsigned int old_excepts;
if (fegetenv(&fenv)) {
return -1;
}
old_excepts = fenv.__control & FE_ALL_EXCEPT;
// mask
fenv.__control |= new_excepts;
fenv.__mxcsr |= new_excepts << 7;
return fesetenv(&fenv) ? -1 : old_excepts;
}
#endif
void enable_segfpe() {
if (!is_fpe_check_mode() || is_legacy_mode()) return;
#ifdef __GNUC__
#if defined(__x86_64__)
// debug_msg("enable segfpe hardware floating point error detection");
signal(SIGFPE, sighandler);
feenableexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW);
#endif
#endif
}
void disable_segfpe() {
if (!is_fpe_check_mode() || is_legacy_mode()) return;
#ifdef __GNUC__
#if defined(__x86_64__)
// debug_msg("disable segfpe");
fedisableexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW);
#endif
#endif
}
void write(const char *s, const char *msg) {
if (!is_debug_data_mode()) return;
cout << s << ": " << msg << endl;
}
void write(const gsl_vector *v, const char *msg) {
if (!is_debug_data_mode()) return;
if (msg) cout << "// " << msg << endl;
cout << "// vector size: " << v->size << endl;
cout << "double " << msg << "[] = {";
for (size_t i=0; i < v->size; i++) {
cout << gsl_vector_get(v,i) << ",";
}
cout << "}" << endl;
}
void write(const gsl_matrix *m, const char *msg) {
if (!is_debug_data_mode()) return;
if (msg) cout << "// " << msg << endl;
// Matrices are stored in row-major order, meaning that each row of
// elements forms a contiguous block in memory. This is the standard
// “C-language ordering” of two-dimensional arrays. The number of
// rows is size1.
auto rows = m->size1; // see https://www.gnu.org/software/gsl/manual/html_node/Matrices.html#Matrices
auto cols = m->size2;
auto tda = m->tda;
cout << "// matrix size: " << cols << " cols, " << rows << " rows," << tda << " tda" << endl;
cout << "double " << msg << "[] = {";
for (size_t row=0; row < rows; row++) {
for (size_t col=0; col < cols; col++) {
// cout << "(" << i << "," << j << ")";
cout << gsl_matrix_safe_get(m,row,col);
cout << ",";
}
cout << "// row " << row << endl;
}
cout << "}" << endl;
}
/*
Helper function to make sure gsl allocations do their job because
gsl_matrix_alloc does not initiatize values (behaviour that changed
in GSL2) we introduced a 'strict mode' by initializing the buffer
with NaNs. This happens when NO-CHECKS is not set (default) and with
DEBUG (i.e. -debug option).
*/
gsl_matrix *gsl_matrix_safe_alloc(size_t rows,size_t cols) {
gsl_matrix *m = gsl_matrix_alloc(rows,cols);
enforce_msg(m,"Not enough memory"); // just to be sure when there is no error handler set
if (is_check_mode() && is_debug_mode()) {
gsl_matrix_set_all(m, nan(""));
}
return m;
}
int gsl_matrix_safe_memcpy (gsl_matrix *dest, const gsl_matrix *src) {
enforce(dest->size1 == src->size1);
enforce(dest->size2 == src->size2);
return gsl_matrix_memcpy(dest,src);
}
void do_gsl_matrix_safe_free (gsl_matrix *m, const char *__pretty_function, const char *__file, int __line, bool warn_only) {
enforce(m);
if (is_strict_mode() && is_check_mode() && is_debug_mode()) {
bool has_NaN = has_nan(m);
bool has_Inf = has_inf(m);
if (has_NaN || has_Inf) {
write(m);
std::string msg = "Matrix (size ";
msg += std::to_string(m->size1);
msg += "x";
msg += std::to_string(m->size2);
msg += ")";
if (warn_only) {
if (has_Inf)
warning_at_msg(__file,__line,(msg+" contains Infinite on free!").c_str());
if (has_NaN)
warning_at_msg(__file,__line,(msg+" contains NaN on free!").c_str());
}
else {
if (has_Inf)
warnfail_at_msg(is_strict_mode(),__pretty_function,__file,__line,(msg+" contains Infinite on free!").c_str());
if (has_NaN)
warnfail_at_msg(is_strict_mode(),__pretty_function,__file,__line,(msg+" contains NaN on free!").c_str());
}
}
}
return gsl_matrix_free(m);
}
int gsl_vector_safe_memcpy (gsl_vector *dest, const gsl_vector *src) {
enforce(dest->size == src->size);
return gsl_vector_memcpy(dest,src);
}
void do_gsl_vector_safe_free (gsl_vector *v, const char *__pretty_function, const char *__file, int __line) {
enforce(v);
if (is_strict_mode() && is_check_mode() && is_debug_mode()) {
bool has_NaN = has_nan(v);
bool has_Inf = has_inf(v);
if (has_NaN || has_Inf) {
write(v);
std::string msg = "Vector (size ";
msg += std::to_string(v->size);
msg += ")";
if (has_Inf)
warnfail_at_msg(is_strict_mode(),__pretty_function,__file,__line,(msg+" contains Infinite on free!").c_str());
if (has_NaN)
warnfail_at_msg(is_strict_mode(),__pretty_function,__file,__line,(msg+" contains NaN on free!").c_str());
}
}
return gsl_vector_free(v);
}
/*
Helper function to make sure gsl allocations do their job because
gsl_vector_alloc does not initiatize values (behaviour that changed
in GSL2) we introduced a 'strict mode' by initializing the buffer
with NaNs. This happens when NO-CHECKS is not set and with DEBUG
(i.e. -debug option).
*/
gsl_vector *gsl_vector_safe_alloc(size_t n) {
gsl_vector *v = gsl_vector_alloc(n);
enforce_msg(v,"Not enough memory"); // just to be sure when there is no error handler set
if (is_check_mode() && is_debug_mode()) {
gsl_vector_set_all(v, nan(""));
}
return v;
}
double do_gsl_matrix_safe_get(const gsl_matrix * m, const size_t row, const size_t col,
const char *__pretty_function, const char *__file, int __line) {
enforce(m);
if (!is_legacy_mode() && (is_debug_mode() || is_check_mode() || is_strict_mode())) {
auto rows = m->size1; // see above write function
auto cols = m->size2;
if (col >= cols || row >= rows) {
std::string msg = "Matrix out of bounds (" + std::to_string(rows) + "," + std::to_string(cols) + ") ";
msg += std::to_string(row);
msg += "r,";
msg += std::to_string(col);
fail_at_msg(__file,__line,msg.c_str());
}
}
return gsl_matrix_get(m,row,col);
}
char *do_strtok_safe(char *tokenize, const char *delimiters, const char *__pretty_function, const char *__file, int __line,
const char *infile) {
auto token = strtok(tokenize,delimiters);
if (token == NULL) {
if (infile)
fail_at_msg(__file,__line,string("Parsing input file '") + infile + "' failed in function " + __pretty_function);
else
fail_at_msg(__file,__line,string("Parsing input file failed in function ") + __pretty_function);
}
return token;
}
// Helper function called by macro validate_K(K, check). K is validated
// unless -no-check option is used.
void do_validate_K(const gsl_matrix *K, const char *__pretty_function, const char *__file, int __line) {
if (is_check_mode()) {
// debug_msg("Validating K");
auto eigenvalues = getEigenValues(K);
const uint count_small = count_abs_small_values(eigenvalues,EIGEN_MINVALUE);
if (count_small>1) {
std::string msg = "K has ";
msg += std::to_string(count_small);
msg += " eigenvalues close to zero";
warning_at_msg(__file,__line,msg);
}
if (isMatrixIllConditioned(eigenvalues))
warning_at_msg(__file,__line,"K is ill conditioned!");
if (!isMatrixSymmetric(K))
warnfail_at_msg(is_strict_mode(),__pretty_function,__file,__line,"K is not symmetric!" );
const bool negative_eigen_values = has_negative_values_but_one(eigenvalues);
if (negative_eigen_values) {
warning_at_msg(__file,__line,"K has more than one negative eigenvalues!");
}
if (count_small>1 && negative_eigen_values && !isMatrixPositiveDefinite(K))
warnfail_at_msg(is_strict_mode(),__pretty_function,__file,__line,"K is not positive definite!");
gsl_vector_free(eigenvalues);
}
}