/* Genome-wide Efficient Mixed Model Association (GEMMA) Copyright (C) 2011-2017, Xiang Zhou This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include #include #include #include #include #include #include #include #include #include #include "gsl/gsl_blas.h" #include "gsl/gsl_cdf.h" #include "gsl/gsl_eigen.h" #include "gsl/gsl_linalg.h" #include "gsl/gsl_matrix.h" #include "gsl/gsl_randist.h" #include "gsl/gsl_roots.h" #include "gsl/gsl_vector.h" #include "bslmmdap.h" #include "gemma_io.h" #include "lapack.h" #include "lm.h" #include "lmm.h" #include "logistic.h" #include "mathfunc.h" #include "param.h" using namespace std; void BSLMMDAP::CopyFromParam(PARAM &cPar) { file_out = cPar.file_out; path_out = cPar.path_out; time_UtZ = 0.0; time_Omega = 0.0; h_min = cPar.h_min; h_max = cPar.h_max; h_ngrid = cPar.h_ngrid; rho_min = cPar.rho_min; rho_max = cPar.rho_max; rho_ngrid = cPar.rho_ngrid; if (h_min <= 0) { h_min = 0.01; } if (h_max >= 1) { h_max = 0.99; } if (rho_min <= 0) { rho_min = 0.01; } if (rho_max >= 1) { rho_max = 0.99; } trace_G = cPar.trace_G; ni_total = cPar.ni_total; ns_total = cPar.ns_total; ni_test = cPar.ni_test; ns_test = cPar.ns_test; indicator_idv = cPar.indicator_idv; indicator_snp = cPar.indicator_snp; snpInfo = cPar.snpInfo; return; } void BSLMMDAP::CopyToParam(PARAM &cPar) { cPar.time_UtZ = time_UtZ; cPar.time_Omega = time_Omega; return; } // Read hyp file. void ReadFile_hyb(const string &file_hyp, vector &vec_sa2, vector &vec_sb2, vector &vec_wab) { vec_sa2.clear(); vec_sb2.clear(); vec_wab.clear(); igzstream infile(file_hyp.c_str(), igzstream::in); if (!infile) { cout << "error! fail to open hyp file: " << file_hyp << endl; return; } string line; char *ch_ptr; getline(infile, line); while (!safeGetline(infile, line).eof()) { ch_ptr = strtok_safe((char *)line.c_str(), " , \t"); ch_ptr = strtok_safe(NULL, " , \t"); ch_ptr = strtok_safe(NULL, " , \t"); vec_sa2.push_back(atof(ch_ptr)); ch_ptr = strtok_safe(NULL, " , \t"); vec_sb2.push_back(atof(ch_ptr)); ch_ptr = strtok_safe(NULL, " , \t"); vec_wab.push_back(atof(ch_ptr)); } infile.close(); infile.clear(); return; } // Read bf file. void ReadFile_bf(const string &file_bf, vector &vec_rs, vector>> &BF) { BF.clear(); vec_rs.clear(); igzstream infile(file_bf.c_str(), igzstream::in); if (!infile) { cout << "error! fail to open bf file: " << file_bf << endl; return; } string line, rs, block; vector vec_bf; vector> mat_bf; char *ch_ptr; size_t bf_size = 0, flag_block; getline(infile, line); size_t t = 0; while (!safeGetline(infile, line).eof()) { flag_block = 0; ch_ptr = strtok_safe((char *)line.c_str(), " , \t"); rs = ch_ptr; vec_rs.push_back(rs); ch_ptr = strtok_safe(NULL, " , \t"); if (t == 0) { block = ch_ptr; } else { if (strcmp(ch_ptr, block.c_str()) != 0) { flag_block = 1; block = ch_ptr; } } ch_ptr = strtok(NULL, " , \t"); while (ch_ptr != NULL) { vec_bf.push_back(atof(ch_ptr)); ch_ptr = strtok(NULL, " , \t"); } if (t == 0) { bf_size = vec_bf.size(); } else { if (bf_size != vec_bf.size()) { cout << "error! unequal row size in bf file." << endl; } } if (flag_block == 0) { mat_bf.push_back(vec_bf); } else { BF.push_back(mat_bf); mat_bf.clear(); } vec_bf.clear(); t++; } infile.close(); infile.clear(); return; } // Read category files. // Read both continuous and discrete category file, record mapRS2catc. void ReadFile_cat(const string &file_cat, const vector &vec_rs, gsl_matrix *Ac, gsl_matrix_int *Ad, gsl_vector_int *dlevel, size_t &kc, size_t &kd) { igzstream infile(file_cat.c_str(), igzstream::in); if (!infile) { cout << "error! fail to open category file: " << file_cat << endl; return; } string line; char *ch_ptr; string rs, chr, a1, a0, pos, cm; // Read header. HEADER header; safeGetline(infile, line).eof(); ReadHeader_io(line, header); // Use the header to determine the number of categories. kc = header.catc_col.size(); kd = header.catd_col.size(); // set up storage and mapper map> mapRS2catc; map> mapRS2catd; vector catc; vector catd; // Read the following lines to record mapRS2cat. while (!safeGetline(infile, line).eof()) { ch_ptr = strtok_safe((char *)line.c_str(), " , \t"); if (header.rs_col == 0) { rs = chr + ":" + pos; } catc.clear(); catd.clear(); for (size_t i = 0; i < header.coln; i++) { enforce(ch_ptr); if (header.rs_col != 0 && header.rs_col == i + 1) { rs = ch_ptr; } else if (header.chr_col != 0 && header.chr_col == i + 1) { chr = ch_ptr; } else if (header.pos_col != 0 && header.pos_col == i + 1) { pos = ch_ptr; } else if (header.cm_col != 0 && header.cm_col == i + 1) { cm = ch_ptr; } else if (header.a1_col != 0 && header.a1_col == i + 1) { a1 = ch_ptr; } else if (header.a0_col != 0 && header.a0_col == i + 1) { a0 = ch_ptr; } else if (header.catc_col.size() != 0 && header.catc_col.count(i + 1) != 0) { catc.push_back(atof(ch_ptr)); } else if (header.catd_col.size() != 0 && header.catd_col.count(i + 1) != 0) { catd.push_back(atoi(ch_ptr)); } else { } ch_ptr = strtok(NULL, " , \t"); } if (mapRS2catc.count(rs) == 0 && kc > 0) { mapRS2catc[rs] = catc; } if (mapRS2catd.count(rs) == 0 && kd > 0) { mapRS2catd[rs] = catd; } } // Load into Ad and Ac. if (kc > 0) { Ac = gsl_matrix_alloc(vec_rs.size(), kc); for (size_t i = 0; i < vec_rs.size(); i++) { if (mapRS2catc.count(vec_rs[i]) != 0) { for (size_t j = 0; j < kc; j++) { gsl_matrix_set(Ac, i, j, mapRS2catc[vec_rs[i]][j]); } } else { for (size_t j = 0; j < kc; j++) { gsl_matrix_set(Ac, i, j, 0); } } } } if (kd > 0) { Ad = gsl_matrix_int_alloc(vec_rs.size(), kd); for (size_t i = 0; i < vec_rs.size(); i++) { if (mapRS2catd.count(vec_rs[i]) != 0) { for (size_t j = 0; j < kd; j++) { gsl_matrix_int_set(Ad, i, j, mapRS2catd[vec_rs[i]][j]); } } else { for (size_t j = 0; j < kd; j++) { gsl_matrix_int_set(Ad, i, j, 0); } } } dlevel = gsl_vector_int_alloc(kd); map rcd; int val; for (size_t j = 0; j < kd; j++) { rcd.clear(); for (size_t i = 0; i < Ad->size1; i++) { val = gsl_matrix_int_get(Ad, i, j); rcd[val] = 1; } gsl_vector_int_set(dlevel, j, rcd.size()); } } infile.clear(); infile.close(); return; } void BSLMMDAP::WriteResult(const gsl_matrix *Hyper, const gsl_matrix *BF) { string file_bf, file_hyp; file_bf = path_out + "/" + file_out; file_bf += ".bf.txt"; file_hyp = path_out + "/" + file_out; file_hyp += ".hyp.txt"; ofstream outfile_bf, outfile_hyp; outfile_bf.open(file_bf.c_str(), ofstream::out); outfile_hyp.open(file_hyp.c_str(), ofstream::out); if (!outfile_bf) { cout << "error writing file: " << file_bf << endl; return; } if (!outfile_hyp) { cout << "error writing file: " << file_hyp << endl; return; } outfile_hyp << "h" << "\t" << "rho" << "\t" << "sa2" << "\t" << "sb2" << "\t" << "weight" << endl; outfile_hyp << scientific; for (size_t i = 0; i < Hyper->size1; i++) { for (size_t j = 0; j < Hyper->size2; j++) { outfile_hyp << setprecision(6) << gsl_matrix_get(Hyper, i, j) << "\t"; } outfile_hyp << endl; } outfile_bf << "chr" << "\t" << "rs" << "\t" << "ps" << "\t" << "n_miss"; for (size_t i = 0; i < BF->size2; i++) { outfile_bf << "\t" << "BF" << i + 1; } outfile_bf << endl; size_t t = 0; for (size_t i = 0; i < ns_total; ++i) { if (indicator_snp[i] == 0) { continue; } outfile_bf << snpInfo[i].chr << "\t" << snpInfo[i].rs_number << "\t" << snpInfo[i].base_position << "\t" << snpInfo[i].n_miss; outfile_bf << scientific; for (size_t j = 0; j < BF->size2; j++) { outfile_bf << "\t" << setprecision(6) << gsl_matrix_get(BF, t, j); } outfile_bf << endl; t++; } outfile_hyp.close(); outfile_hyp.clear(); outfile_bf.close(); outfile_bf.clear(); return; } void BSLMMDAP::WriteResult(const vector &vec_rs, const gsl_matrix *Hyper, const gsl_vector *pip, const gsl_vector *coef) { string file_gamma, file_hyp, file_coef; file_gamma = path_out + "/" + file_out; file_gamma += ".gamma.txt"; file_hyp = path_out + "/" + file_out; file_hyp += ".hyp.txt"; file_coef = path_out + "/" + file_out; file_coef += ".coef.txt"; ofstream outfile_gamma, outfile_hyp, outfile_coef; outfile_gamma.open(file_gamma.c_str(), ofstream::out); outfile_hyp.open(file_hyp.c_str(), ofstream::out); outfile_coef.open(file_coef.c_str(), ofstream::out); if (!outfile_gamma) { cout << "error writing file: " << file_gamma << endl; return; } if (!outfile_hyp) { cout << "error writing file: " << file_hyp << endl; return; } if (!outfile_coef) { cout << "error writing file: " << file_coef << endl; return; } outfile_hyp << "h" << "\t" << "rho" << "\t" << "sa2" << "\t" << "sb2" << "\t" << "weight" << endl; outfile_hyp << scientific; for (size_t i = 0; i < Hyper->size1; i++) { for (size_t j = 0; j < Hyper->size2; j++) { outfile_hyp << setprecision(6) << gsl_matrix_get(Hyper, i, j) << "\t"; } outfile_hyp << endl; } outfile_gamma << "rs" << "\t" << "gamma" << endl; for (size_t i = 0; i < vec_rs.size(); ++i) { outfile_gamma << vec_rs[i] << "\t" << scientific << setprecision(6) << gsl_vector_get(pip, i) << endl; } outfile_coef << "coef" << endl; outfile_coef << scientific; for (size_t i = 0; i < coef->size; i++) { outfile_coef << setprecision(6) << gsl_vector_get(coef, i) << endl; } outfile_coef.close(); outfile_coef.clear(); outfile_hyp.close(); outfile_hyp.clear(); outfile_gamma.close(); outfile_gamma.clear(); return; } double BSLMMDAP::CalcMarginal(const gsl_vector *Uty, const gsl_vector *K_eval, const double sigma_b2, const double tau) { gsl_vector *weight_Hi = gsl_vector_alloc(Uty->size); double logm = 0.0; double d, uy, Hi_yy = 0, logdet_H = 0.0; for (size_t i = 0; i < ni_test; ++i) { d = gsl_vector_get(K_eval, i) * sigma_b2; d = 1.0 / (d + 1.0); gsl_vector_set(weight_Hi, i, d); logdet_H -= log(d); uy = gsl_vector_get(Uty, i); Hi_yy += d * uy * uy; } // Calculate likelihood. logm = -0.5 * logdet_H - 0.5 * tau * Hi_yy + 0.5 * log(tau) * (double)ni_test; gsl_vector_free(weight_Hi); return logm; } double BSLMMDAP::CalcMarginal(const gsl_matrix *UtXgamma, const gsl_vector *Uty, const gsl_vector *K_eval, const double sigma_a2, const double sigma_b2, const double tau) { clock_t time_start; double logm = 0.0; double d, uy, P_yy = 0, logdet_O = 0.0, logdet_H = 0.0; gsl_matrix *UtXgamma_eval = gsl_matrix_alloc(UtXgamma->size1, UtXgamma->size2); gsl_matrix *Omega = gsl_matrix_alloc(UtXgamma->size2, UtXgamma->size2); gsl_vector *XtHiy = gsl_vector_alloc(UtXgamma->size2); gsl_vector *beta_hat = gsl_vector_alloc(UtXgamma->size2); gsl_vector *weight_Hi = gsl_vector_alloc(UtXgamma->size1); gsl_matrix_memcpy(UtXgamma_eval, UtXgamma); logdet_H = 0.0; P_yy = 0.0; for (size_t i = 0; i < ni_test; ++i) { gsl_vector_view UtXgamma_row = gsl_matrix_row(UtXgamma_eval, i); d = gsl_vector_get(K_eval, i) * sigma_b2; d = 1.0 / (d + 1.0); gsl_vector_set(weight_Hi, i, d); logdet_H -= log(d); uy = gsl_vector_get(Uty, i); P_yy += d * uy * uy; gsl_vector_scale(&UtXgamma_row.vector, d); } // Calculate Omega. gsl_matrix_set_identity(Omega); time_start = clock(); lapack_dgemm((char *)"T", (char *)"N", sigma_a2, UtXgamma_eval, UtXgamma, 1.0, Omega); time_Omega += (clock() - time_start) / (double(CLOCKS_PER_SEC) * 60.0); // Calculate beta_hat. gsl_blas_dgemv(CblasTrans, 1.0, UtXgamma_eval, Uty, 0.0, XtHiy); logdet_O = CholeskySolve(Omega, XtHiy, beta_hat); gsl_vector_scale(beta_hat, sigma_a2); gsl_blas_ddot(XtHiy, beta_hat, &d); P_yy -= d; gsl_matrix_free(UtXgamma_eval); gsl_matrix_free(Omega); gsl_vector_free(XtHiy); gsl_vector_free(beta_hat); gsl_vector_free(weight_Hi); logm = -0.5 * logdet_H - 0.5 * logdet_O - 0.5 * tau * P_yy + 0.5 * log(tau) * (double)ni_test; return logm; } double BSLMMDAP::CalcPrior(class HYPBSLMM &cHyp) { double logprior = 0; logprior = ((double)cHyp.n_gamma - 1.0) * cHyp.logp + ((double)ns_test - (double)cHyp.n_gamma) * log(1.0 - exp(cHyp.logp)); return logprior; } // Where A is the ni_test by n_cat matrix of annotations. void BSLMMDAP::DAP_CalcBF(const gsl_matrix *U, const gsl_matrix *UtX, const gsl_vector *Uty, const gsl_vector *K_eval, const gsl_vector *y) { clock_t time_start; // Set up BF. double tau, h, rho, sigma_a2, sigma_b2, d; size_t ns_causal = 10; size_t n_grid = h_ngrid * rho_ngrid; vector vec_sa2, vec_sb2, logm_null; gsl_matrix *BF = gsl_matrix_alloc(ns_test, n_grid); gsl_matrix *Xgamma = gsl_matrix_alloc(ni_test, 1); gsl_matrix *Hyper = gsl_matrix_alloc(n_grid, 5); // Compute tau by using yty. gsl_blas_ddot(Uty, Uty, &tau); tau = (double)ni_test / tau; // Set up grid values for sigma_a2 and sigma_b2 based on an // approximately even grid for h and rho, and a fixed number // of causals. size_t ij = 0; for (size_t i = 0; i < h_ngrid; i++) { h = h_min + (h_max - h_min) * (double)i / ((double)h_ngrid - 1); for (size_t j = 0; j < rho_ngrid; j++) { rho = rho_min + (rho_max - rho_min) * (double)j / ((double)rho_ngrid - 1); sigma_a2 = h * rho / ((1 - h) * (double)ns_causal); sigma_b2 = h * (1.0 - rho) / (trace_G * (1 - h)); vec_sa2.push_back(sigma_a2); vec_sb2.push_back(sigma_b2); logm_null.push_back(CalcMarginal(Uty, K_eval, 0.0, tau)); gsl_matrix_set(Hyper, ij, 0, h); gsl_matrix_set(Hyper, ij, 1, rho); gsl_matrix_set(Hyper, ij, 2, sigma_a2); gsl_matrix_set(Hyper, ij, 3, sigma_b2); gsl_matrix_set(Hyper, ij, 4, 1 / (double)n_grid); ij++; } } // Compute BF factors. time_start = clock(); cout << "Calculating BF..." << endl; for (size_t t = 0; t < ns_test; t++) { gsl_vector_view Xgamma_col = gsl_matrix_column(Xgamma, 0); gsl_vector_const_view X_col = gsl_matrix_const_column(UtX, t); gsl_vector_memcpy(&Xgamma_col.vector, &X_col.vector); for (size_t ij = 0; ij < n_grid; ij++) { sigma_a2 = vec_sa2[ij]; sigma_b2 = vec_sb2[ij]; d = CalcMarginal(Xgamma, Uty, K_eval, sigma_a2, sigma_b2, tau); d -= logm_null[ij]; d = exp(d); gsl_matrix_set(BF, t, ij, d); } } time_Proposal = (clock() - time_start) / (double(CLOCKS_PER_SEC) * 60.0); // Save results. WriteResult(Hyper, BF); // Free matrices and vectors. gsl_matrix_free(BF); gsl_matrix_free(Xgamma); gsl_matrix_free(Hyper); return; } void single_ct_regression(const gsl_matrix_int *Xd, const gsl_vector_int *dlevel, const gsl_vector *pip_vec, gsl_vector *coef, gsl_vector *prior_vec) { map sum_pip; map sum; int levels = gsl_vector_int_get(dlevel, 0); for (int i = 0; i < levels; i++) { sum_pip[i] = sum[i] = 0; } for (size_t i = 0; i < Xd->size1; i++) { int cat = gsl_matrix_int_get(Xd, i, 0); sum_pip[cat] += gsl_vector_get(pip_vec, i); sum[cat] += 1; } for (size_t i = 0; i < Xd->size1; i++) { int cat = gsl_matrix_int_get(Xd, i, 0); gsl_vector_set(prior_vec, i, sum_pip[cat] / sum[cat]); } for (int i = 0; i < levels; i++) { double new_prior = sum_pip[i] / sum[i]; gsl_vector_set(coef, i, log(new_prior / (1 - new_prior))); } return; } // Where A is the ni_test by n_cat matrix of annotations. void BSLMMDAP::DAP_EstimateHyper( const size_t kc, const size_t kd, const vector &vec_rs, const vector &vec_sa2, const vector &vec_sb2, const vector &wab, const vector>> &BF, gsl_matrix *Ac, gsl_matrix_int *Ad, gsl_vector_int *dlevel) { // clock_t time_start; // Set up BF. double h, rho, sigma_a2, sigma_b2, d, s, logm, logm_save = nan(""); size_t t1, t2; size_t n_grid = wab.size(), ns_test = vec_rs.size(); gsl_vector *prior_vec = gsl_vector_alloc(ns_test); gsl_matrix *Hyper = gsl_matrix_alloc(n_grid, 5); gsl_vector *pip = gsl_vector_alloc(ns_test); gsl_vector *coef = gsl_vector_alloc(kc + kd + 1); // Perform the EM algorithm. vector vec_wab, vec_wab_new; // Initial values. for (size_t t = 0; t < ns_test; t++) { gsl_vector_set(prior_vec, t, (double)BF.size() / (double)ns_test); } for (size_t ij = 0; ij < n_grid; ij++) { vec_wab.push_back(wab[ij]); vec_wab_new.push_back(wab[ij]); } // EM iteration. size_t it = 0; double dif = 1; while (it < 100 && dif > 1e-3) { // Update E_gamma. t1 = 0, t2 = 0; for (size_t b = 0; b < BF.size(); b++) { s = 1; for (size_t m = 0; m < BF[b].size(); m++) { d = 0; for (size_t ij = 0; ij < n_grid; ij++) { d += vec_wab_new[ij] * BF[b][m][ij]; } d *= gsl_vector_get(prior_vec, t1) / (1 - gsl_vector_get(prior_vec, t1)); gsl_vector_set(pip, t1, d); s += d; t1++; } for (size_t m = 0; m < BF[b].size(); m++) { d = gsl_vector_get(pip, t2) / s; gsl_vector_set(pip, t2, d); t2++; } } // Update E_wab. s = 0; for (size_t ij = 0; ij < n_grid; ij++) { vec_wab_new[ij] = 0; t1 = 0; for (size_t b = 0; b < BF.size(); b++) { d = 1; for (size_t m = 0; m < BF[b].size(); m++) { d += gsl_vector_get(prior_vec, t1) / (1 - gsl_vector_get(prior_vec, t1)) * vec_wab[ij] * BF[b][m][ij]; t1++; } vec_wab_new[ij] += log(d); } s = max(s, vec_wab_new[ij]); } d = 0; for (size_t ij = 0; ij < n_grid; ij++) { vec_wab_new[ij] = exp(vec_wab_new[ij] - s); d += vec_wab_new[ij]; } for (size_t ij = 0; ij < n_grid; ij++) { vec_wab_new[ij] /= d; } // Update coef, and pi. if (kc == 0 && kd == 0) { // No annotation. s = 0; for (size_t t = 0; t < pip->size; t++) { s += gsl_vector_get(pip, t); } s = s / (double)pip->size; for (size_t t = 0; t < pip->size; t++) { gsl_vector_set(prior_vec, t, s); } gsl_vector_set(coef, 0, log(s / (1 - s))); } else if (kc == 0 && kd != 0) { // Only discrete annotations. if (kd == 1) { single_ct_regression(Ad, dlevel, pip, coef, prior_vec); } else { logistic_cat_fit(coef, Ad, dlevel, pip, 0, 0); logistic_cat_pred(coef, Ad, dlevel, prior_vec); } } else if (kc != 0 && kd == 0) { // Only continuous annotations. logistic_cont_fit(coef, Ac, pip, 0, 0); logistic_cont_pred(coef, Ac, prior_vec); } else if (kc != 0 && kd != 0) { // Both continuous and categorical annotations. logistic_mixed_fit(coef, Ad, dlevel, Ac, pip, 0, 0); logistic_mixed_pred(coef, Ad, dlevel, Ac, prior_vec); } // Compute marginal likelihood. logm = 0; t1 = 0; for (size_t b = 0; b < BF.size(); b++) { d = 1; s = 0; for (size_t m = 0; m < BF[b].size(); m++) { s += log(1 - gsl_vector_get(prior_vec, t1)); for (size_t ij = 0; ij < n_grid; ij++) { d += gsl_vector_get(prior_vec, t1) / (1 - gsl_vector_get(prior_vec, t1)) * vec_wab[ij] * BF[b][m][ij]; } } logm += log(d) + s; t1++; } if (it > 0) { dif = logm - logm_save; } logm_save = logm; it++; cout << "iteration = " << it << "; marginal likelihood = " << logm << endl; } // Update h and rho that correspond to w_ab. for (size_t ij = 0; ij < n_grid; ij++) { sigma_a2 = vec_sa2[ij]; sigma_b2 = vec_sb2[ij]; d = exp(gsl_vector_get(coef, coef->size - 1)) / (1 + exp(gsl_vector_get(coef, coef->size - 1))); h = (d * (double)ns_test * sigma_a2 + 1 * sigma_b2) / (1 + d * (double)ns_test * sigma_a2 + 1 * sigma_b2); rho = d * (double)ns_test * sigma_a2 / (d * (double)ns_test * sigma_a2 + 1 * sigma_b2); gsl_matrix_set(Hyper, ij, 0, h); gsl_matrix_set(Hyper, ij, 1, rho); gsl_matrix_set(Hyper, ij, 2, sigma_a2); gsl_matrix_set(Hyper, ij, 3, sigma_b2); gsl_matrix_set(Hyper, ij, 4, vec_wab_new[ij]); } // Obtain beta and alpha parameters. // Save results. WriteResult(vec_rs, Hyper, pip, coef); // Free matrices and vectors. gsl_vector_free(prior_vec); gsl_matrix_free(Hyper); gsl_vector_free(pip); gsl_vector_free(coef); return; }