/*
Genome-wide Efficient Mixed Model Association (GEMMA)
Copyright (C) 2011-2017, Xiang Zhou
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "gsl/gsl_vector.h"
#include "gsl/gsl_matrix.h"
#include "gsl/gsl_linalg.h"
#include "gsl/gsl_blas.h"
#include "gsl/gsl_eigen.h"
#include "gsl/gsl_randist.h"
#include "gsl/gsl_cdf.h"
#include "gsl/gsl_roots.h"
#include "lapack.h"
#include "param.h"
#include "bslmm.h"
#include "lmm.h"
#include "lm.h"
#include "mathfunc.h"
using namespace std;
void BSLMM::CopyFromParam (PARAM &cPar) {
a_mode=cPar.a_mode;
d_pace=cPar.d_pace;
file_bfile=cPar.file_bfile;
file_geno=cPar.file_geno;
file_out=cPar.file_out;
path_out=cPar.path_out;
l_min=cPar.h_min;
l_max=cPar.h_max;
n_region=cPar.n_region;
pve_null=cPar.pve_null;
pheno_mean=cPar.pheno_mean;
time_UtZ=0.0;
time_Omega=0.0;
n_accept=0;
h_min=cPar.h_min;
h_max=cPar.h_max;
h_scale=cPar.h_scale;
rho_min=cPar.rho_min;
rho_max=cPar.rho_max;
rho_scale=cPar.rho_scale;
logp_min=cPar.logp_min;
logp_max=cPar.logp_max;
logp_scale=cPar.logp_scale;
s_min=cPar.s_min;
s_max=cPar.s_max;
w_step=cPar.w_step;
s_step=cPar.s_step;
r_pace=cPar.r_pace;
w_pace=cPar.w_pace;
n_mh=cPar.n_mh;
geo_mean=cPar.geo_mean;
randseed=cPar.randseed;
trace_G=cPar.trace_G;
ni_total=cPar.ni_total;
ns_total=cPar.ns_total;
ni_test=cPar.ni_test;
ns_test=cPar.ns_test;
n_cvt=cPar.n_cvt;
indicator_idv=cPar.indicator_idv;
indicator_snp=cPar.indicator_snp;
snpInfo=cPar.snpInfo;
return;
}
void BSLMM::CopyToParam (PARAM &cPar) {
cPar.time_UtZ=time_UtZ;
cPar.time_Omega=time_Omega;
cPar.time_Proposal=time_Proposal;
cPar.cHyp_initial=cHyp_initial;
cPar.n_accept=n_accept;
cPar.pheno_mean=pheno_mean;
cPar.randseed=randseed;
return;
}
void BSLMM::WriteBV (const gsl_vector *bv) {
string file_str;
file_str=path_out+"/"+file_out;
file_str+=".bv.txt";
ofstream outfile (file_str.c_str(), ofstream::out);
if (!outfile) {
cout<<"error writing file: "< > &beta_g,
const gsl_vector *alpha, const size_t w) {
string file_str;
file_str=path_out+"/"+file_out;
file_str+=".param.txt";
ofstream outfile (file_str.c_str(), ofstream::out);
if (!outfile) {
cout<<"error writing file: "< &rank) {
size_t pos;
for (size_t i=0; isize2, UtXgamma->size2);
gsl_vector *Xty=gsl_vector_alloc (UtXgamma->size2);
gsl_vector *OiXty=gsl_vector_alloc (UtXgamma->size2);
gsl_matrix_set_identity (Omega);
gsl_matrix_scale (Omega, 1.0/sigma_a2);
lapack_dgemm ((char *)"T", (char *)"N", 1.0, UtXgamma, UtXgamma,
1.0, Omega);
gsl_blas_dgemv (CblasTrans, 1.0, UtXgamma, Uty, 0.0, Xty);
CholeskySolve(Omega, Xty, OiXty);
gsl_blas_ddot (Xty, OiXty, &pve);
gsl_blas_ddot (Uty, Uty, &var_y);
pve/=var_y;
gsl_matrix_free (Omega);
gsl_vector_free (Xty);
gsl_vector_free (OiXty);
return pve;
}
void BSLMM::InitialMCMC (const gsl_matrix *UtX, const gsl_vector *Uty,
vector &rank, class HYPBSLMM &cHyp,
vector > &pos_loglr) {
double q_genome=gsl_cdf_chisq_Qinv(0.05/(double)ns_test, 1);
cHyp.n_gamma=0;
for (size_t i=0; iq_genome) {cHyp.n_gamma++;}
}
if (cHyp.n_gamma<10) {cHyp.n_gamma=10;}
if (cHyp.n_gamma>s_max) {cHyp.n_gamma=s_max;}
if (cHyp.n_gamma1.0) {cHyp.rho=1.0;}
if (cHyp.hh_max) {cHyp.h=h_max;}
if (cHyp.rhorho_max) {cHyp.rho=rho_max;}
if (cHyp.logplogp_max) {cHyp.logp=logp_max;}
cout<<"initial value of h = "<size);
gsl_vector *weight_Hi=gsl_vector_alloc (Uty->size);
double logpost=0.0;
double d, ds, uy, Hi_yy=0, logdet_H=0.0;
for (size_t i=0; isize1,
UtXgamma->size2);
gsl_matrix *Omega=gsl_matrix_alloc (UtXgamma->size2, UtXgamma->size2);
gsl_vector *XtHiy=gsl_vector_alloc (UtXgamma->size2);
gsl_vector *beta_hat=gsl_vector_alloc (UtXgamma->size2);
gsl_vector *Utu_rand=gsl_vector_alloc (UtXgamma->size1);
gsl_vector *weight_Hi=gsl_vector_alloc (UtXgamma->size1);
gsl_matrix_memcpy (UtXgamma_eval, UtXgamma);
logdet_H=0.0; P_yy=0.0;
for (size_t i=0; isize; i++)
{
d=gsl_ran_gaussian(gsl_r, 1);
gsl_vector_set(beta, i, d);
}
gsl_blas_dtrsv(CblasUpper, CblasNoTrans, CblasNonUnit, Omega, beta);
// This computes inv(L^T(Omega)) %*% beta.
gsl_vector_scale(beta, sqrt(sigma_a2/tau));
gsl_vector_add(beta, beta_hat);
gsl_blas_dgemv (CblasNoTrans, 1.0, UtXgamma, beta, 0.0, UtXb);
// Sample alpha.
gsl_vector_memcpy (alpha_prime, Uty);
gsl_vector_sub (alpha_prime, UtXb);
gsl_vector_mul (alpha_prime, weight_Hi);
gsl_vector_scale (alpha_prime, sigma_b2);
// Sample u.
gsl_vector_memcpy (Utu, alpha_prime);
gsl_vector_mul (Utu, K_eval);
if (a_mode==11) {gsl_vector_scale (Utu_rand, sqrt(1.0/tau));}
gsl_vector_add (Utu, Utu_rand);
// For quantitative traits, calculate pve and pge.
if (a_mode==11) {
gsl_blas_ddot (UtXb, UtXb, &d);
cHyp.pge=d/(double)ni_test;
gsl_blas_ddot (Utu, Utu, &d);
cHyp.pve=cHyp.pge+d/(double)ni_test;
if (cHyp.pve==0) {cHyp.pge=0.0;}
else {cHyp.pge/=cHyp.pve;}
cHyp.pve/=cHyp.pve+1.0/tau;
}
gsl_matrix_free (UtXgamma_eval);
gsl_matrix_free (Omega);
gsl_vector_free (XtHiy);
gsl_vector_free (beta_hat);
gsl_vector_free (Utu_rand);
gsl_vector_free (weight_Hi);
logpost=-0.5*logdet_H-0.5*logdet_O;
if (a_mode==11) {logpost-=0.5*(double)ni_test*log(P_yy);}
else {logpost-=0.5*P_yy;}
logpost+=((double)cHyp.n_gamma-1.0)*cHyp.logp+
((double)ns_test-(double)cHyp.n_gamma)*log(1.0-exp(cHyp.logp));
return logpost;
}
// Calculate pve and pge, and calculate z_hat for case-control data.
void BSLMM::CalcCC_PVEnZ (const gsl_matrix *U, const gsl_vector *Utu,
gsl_vector *z_hat, class HYPBSLMM &cHyp) {
double d;
gsl_blas_ddot (Utu, Utu, &d);
cHyp.pve=d/(double)ni_test;
gsl_blas_dgemv (CblasNoTrans, 1.0, U, Utu, 0.0, z_hat);
cHyp.pve/=cHyp.pve+1.0;
cHyp.pge=0.0;
return;
}
// Calculate pve and pge, and calculate z_hat for case-control data.
void BSLMM::CalcCC_PVEnZ (const gsl_matrix *U, const gsl_vector *UtXb,
const gsl_vector *Utu, gsl_vector *z_hat,
class HYPBSLMM &cHyp) {
double d;
gsl_vector *UtXbU=gsl_vector_alloc (Utu->size);
gsl_blas_ddot (UtXb, UtXb, &d);
cHyp.pge=d/(double)ni_test;
gsl_blas_ddot (Utu, Utu, &d);
cHyp.pve=cHyp.pge+d/(double)ni_test;
gsl_vector_memcpy (UtXbU, Utu);
gsl_vector_add (UtXbU, UtXb);
gsl_blas_dgemv (CblasNoTrans, 1.0, U, UtXbU, 0.0, z_hat);
if (cHyp.pve==0) {cHyp.pge=0.0;}
else {cHyp.pge/=cHyp.pve;}
cHyp.pve/=cHyp.pve+1.0;
gsl_vector_free(UtXbU);
return;
}
void BSLMM::SampleZ (const gsl_vector *y, const gsl_vector *z_hat,
gsl_vector *z) {
double d1, d2, z_rand=0.0;
for (size_t i=0; isize; ++i) {
d1=gsl_vector_get (y, i);
d2=gsl_vector_get (z_hat, i);
// y is centered for case control studies.
if (d1<=0.0) {
// Control, right truncated.
do {
z_rand=d2+gsl_ran_gaussian(gsl_r, 1.0);
} while (z_rand>0.0);
}
else {
do {
z_rand=d2+gsl_ran_gaussian(gsl_r, 1.0);
} while (z_rand<0.0);
}
gsl_vector_set (z, i, z_rand);
}
return;
}
double BSLMM::ProposeHnRho (const class HYPBSLMM &cHyp_old,
class HYPBSLMM &cHyp_new, const size_t &repeat) {
double h=cHyp_old.h, rho=cHyp_old.rho;
double d_h=(h_max-h_min)*h_scale, d_rho=(rho_max-rho_min)*rho_scale;
for (size_t i=0; ih_max) {h=2*h_max-h;}
rho=rho+(gsl_rng_uniform(gsl_r)-0.5)*d_rho;
if (rhorho_max) {rho=2*rho_max-rho;}
}
cHyp_new.h=h;
cHyp_new.rho=rho;
return 0.0;
}
double BSLMM::ProposePi (const class HYPBSLMM &cHyp_old,
class HYPBSLMM &cHyp_new, const size_t &repeat) {
double logp_old=cHyp_old.logp, logp_new=cHyp_old.logp;
double log_ratio=0.0;
double d_logp=min(0.1, (logp_max-logp_min)*logp_scale);
for (size_t i=0; ilogp_max) {logp_new=2*logp_max-logp_new;}
log_ratio+=logp_new-logp_old;
logp_old=logp_new;
}
cHyp_new.logp=logp_new;
return log_ratio;
}
bool comp_vec (size_t a, size_t b) {
return (a < b);
}
double BSLMM::ProposeGamma (const vector &rank_old,
vector &rank_new,
const double *p_gamma,
const class HYPBSLMM &cHyp_old,
class HYPBSLMM &cHyp_new,
const size_t &repeat) {
map mapRank2in;
size_t r;
double unif, logp=0.0;
int flag_gamma;
size_t r_add, r_remove, col_id;
rank_new.clear();
if (cHyp_old.n_gamma!=rank_old.size()) {cout<<"size wrong"<=0.40 && unif < 0.80 &&
cHyp_new.n_gamma>s_min) {
flag_gamma=2;
}
else if (unif>=0.80 && cHyp_new.n_gamma>0 &&
cHyp_new.n_gamma a, pair b) {
return (a.second > b.second);
}
// If a_mode==13 then Uty==y.
void BSLMM::MCMC (const gsl_matrix *U, const gsl_matrix *UtX,
const gsl_vector *Uty, const gsl_vector *K_eval,
const gsl_vector *y) {
clock_t time_start;
class HYPBSLMM cHyp_old, cHyp_new;
gsl_matrix *Result_hyp=gsl_matrix_alloc (w_pace, 6);
gsl_matrix *Result_gamma=gsl_matrix_alloc (w_pace, s_max);
gsl_vector *alpha_prime=gsl_vector_alloc (ni_test);
gsl_vector *alpha_new=gsl_vector_alloc (ni_test);
gsl_vector *alpha_old=gsl_vector_alloc (ni_test);
gsl_vector *Utu=gsl_vector_alloc (ni_test);
gsl_vector *Utu_new=gsl_vector_alloc (ni_test);
gsl_vector *Utu_old=gsl_vector_alloc (ni_test);
gsl_vector *UtXb_new=gsl_vector_alloc (ni_test);
gsl_vector *UtXb_old=gsl_vector_alloc (ni_test);
gsl_vector *z_hat=gsl_vector_alloc (ni_test);
gsl_vector *z=gsl_vector_alloc (ni_test);
gsl_vector *Utz=gsl_vector_alloc (ni_test);
gsl_vector_memcpy (Utz, Uty);
double logPost_new, logPost_old;
double logMHratio;
double mean_z=0.0;
gsl_matrix_set_zero (Result_gamma);
gsl_vector_set_zero (Utu);
gsl_vector_set_zero (alpha_prime);
if (a_mode==13) {
pheno_mean=0.0;
}
vector > beta_g;
for (size_t i=0; i rank_new, rank_old;
vector beta_new, beta_old;
vector > pos_loglr;
time_start=clock();
MatrixCalcLR (U, UtX, Utz, K_eval, l_min, l_max, n_region, pos_loglr);
time_Proposal=(clock()-time_start)/(double(CLOCKS_PER_SEC)*60.0);
stable_sort (pos_loglr.begin(), pos_loglr.end(), comp_lr);
for (size_t i=0; itm_hour%24*3600+
ptm->tm_min*60+ptm->tm_sec);
}
gsl_r = gsl_rng_alloc(gslType);
gsl_rng_set(gsl_r, randseed);
double *p_gamma = new double[ns_test];
CalcPgamma (p_gamma);
gsl_t=gsl_ran_discrete_preproc (ns_test, p_gamma);
// Initial parameters.
InitialMCMC (UtX, Utz, rank_old, cHyp_old, pos_loglr);
cHyp_initial=cHyp_old;
if (cHyp_old.n_gamma==0 || cHyp_old.rho==0) {
logPost_old=CalcPosterior(Utz, K_eval, Utu_old, alpha_old,
cHyp_old);
beta_old.clear();
for (size_t i=0; isize; ++i) {
beta_old.push_back(gsl_vector_get(beta, i));
}
gsl_matrix_free (UtXgamma);
gsl_vector_free (beta);
}
// Calculate centered z_hat, and pve.
if (a_mode==13) {
time_start=clock();
if (cHyp_old.n_gamma==0 || cHyp_old.rho==0) {
CalcCC_PVEnZ (U, Utu_old, z_hat, cHyp_old);
}
else {
CalcCC_PVEnZ (U, UtXb_old, Utu_old, z_hat, cHyp_old);
}
time_UtZ+=(clock()-time_start)/(double(CLOCKS_PER_SEC)*60.0);
}
// Start MCMC.
int accept;
size_t total_step=w_step+s_step;
size_t w=0, w_col, pos;
size_t repeat=0;
for (size_t t=0; tsize; ++i) {
beta_old.push_back(gsl_vector_get(beta, i));
}
gsl_matrix_free (UtXgamma);
gsl_vector_free (beta);
}
}
// M-H steps.
for (size_t i=0; isize; ++i) {
beta_new.push_back(gsl_vector_get(beta, i));
}
gsl_matrix_free (UtXgamma);
gsl_vector_free (beta);
}
logMHratio+=logPost_new-logPost_old;
if (logMHratio>0 ||
log(gsl_rng_uniform(gsl_r))size2);
gsl_vector *H_eval=gsl_vector_alloc (Uty->size);
gsl_vector *bv=gsl_vector_alloc (Uty->size);
gsl_vector_memcpy (H_eval, eval);
gsl_vector_scale (H_eval, lambda);
gsl_vector_add_constant (H_eval, 1.0);
gsl_vector_memcpy (bv, Uty);
gsl_vector_div (bv, H_eval);
gsl_blas_dgemv (CblasTrans, lambda/(double)UtX->size2,
UtX, bv, 0.0, beta);
gsl_vector_add_constant (H_eval, -1.0);
gsl_vector_mul (H_eval, bv);
gsl_blas_dgemv (CblasNoTrans, 1.0, U, H_eval, 0.0, bv);
WriteParam (beta);
WriteBV(bv);
gsl_vector_free (H_eval);
gsl_vector_free (beta);
gsl_vector_free (bv);
return;
}
// Below fits MCMC for rho=1.
void BSLMM::CalcXtX (const gsl_matrix *X, const gsl_vector *y,
const size_t s_size, gsl_matrix *XtX, gsl_vector *Xty) {
time_t time_start=clock();
gsl_matrix_const_view X_sub=gsl_matrix_const_submatrix(X, 0, 0, X->size1,
s_size);
gsl_matrix_view XtX_sub=gsl_matrix_submatrix(XtX, 0, 0, s_size, s_size);
gsl_vector_view Xty_sub=gsl_vector_subvector(Xty, 0, s_size);
lapack_dgemm ((char *)"T", (char *)"N", 1.0, &X_sub.matrix,
&X_sub.matrix, 0.0, &XtX_sub.matrix);
gsl_blas_dgemv(CblasTrans, 1.0, &X_sub.matrix, y, 0.0, &Xty_sub.vector);
time_Omega+=(clock()-time_start)/(double(CLOCKS_PER_SEC)*60.0);
return;
}
void BSLMM::SetXgamma (const gsl_matrix *X, const gsl_matrix *X_old,
const gsl_matrix *XtX_old, const gsl_vector *Xty_old,
const gsl_vector *y, const vector &rank_old,
const vector &rank_new, gsl_matrix *X_new,
gsl_matrix *XtX_new, gsl_vector *Xty_new) {
double d;
// rank_old and rank_new are sorted already inside PorposeGamma
// calculate vectors rank_remove and rank_add.
// make sure that v_size is larger than repeat.
size_t v_size=20;
vector rank_remove(v_size), rank_add(v_size),
rank_union(s_max+v_size);
vector::iterator it;
it=set_difference(rank_old.begin(), rank_old.end(), rank_new.begin(),
rank_new.end(), rank_remove.begin());
rank_remove.resize(it-rank_remove.begin());
it=set_difference (rank_new.begin(), rank_new.end(), rank_old.begin(),
rank_old.end(), rank_add.begin());
rank_add.resize(it-rank_add.begin());
it=set_union (rank_new.begin(), rank_new.end(), rank_old.begin(),
rank_old.end(), rank_union.begin());
rank_union.resize(it-rank_union.begin());
// Map rank_remove and rank_add.
map mapRank2in_remove, mapRank2in_add;
for (size_t i=0; isize1, rank_old.size());
gsl_matrix_const_view XtXold_sub=
gsl_matrix_const_submatrix(XtX_old, 0, 0, rank_old.size(),
rank_old.size());
gsl_vector_const_view Xtyold_sub=
gsl_vector_const_subvector(Xty_old, 0, rank_old.size());
gsl_matrix_view Xnew_sub=
gsl_matrix_submatrix(X_new, 0, 0, X_new->size1, rank_new.size());
gsl_matrix_view XtXnew_sub=
gsl_matrix_submatrix(XtX_new, 0, 0, rank_new.size(), rank_new.size());
gsl_vector_view Xtynew_sub=
gsl_vector_subvector(Xty_new, 0, rank_new.size());
// Get X_new and calculate XtX_new.
if (rank_remove.size()==0 && rank_add.size()==0) {
gsl_matrix_memcpy(&Xnew_sub.matrix, &Xold_sub.matrix);
gsl_matrix_memcpy(&XtXnew_sub.matrix, &XtXold_sub.matrix);
gsl_vector_memcpy(&Xtynew_sub.vector, &Xtyold_sub.vector);
} else {
size_t i_old, j_old, i_new, j_new, i_add, j_add, i_flag, j_flag;
if (rank_add.size()==0) {
i_old=0; i_new=0;
for (size_t i=0; isize1, rank_add.size() );
gsl_matrix *XtX_aa=gsl_matrix_alloc(X_add->size2, X_add->size2);
gsl_matrix *XtX_ao=gsl_matrix_alloc(X_add->size2, X_old->size2);
gsl_vector *Xty_add=gsl_vector_alloc(X_add->size2);
// Get X_add.
SetXgamma (X_add, X, rank_add);
// Get t(X_add)X_add and t(X_add)X_temp.
clock_t time_start=clock();
// Somehow the lapack_dgemm does not work here.
gsl_blas_dgemm (CblasTrans, CblasNoTrans, 1.0, X_add, X_add,
0.0, XtX_aa);
gsl_blas_dgemm (CblasTrans, CblasNoTrans, 1.0, X_add, X_old,
0.0, XtX_ao);
gsl_blas_dgemv(CblasTrans, 1.0, X_add, y, 0.0, Xty_add);
time_Omega+=(clock()-time_start)/(double(CLOCKS_PER_SEC)*60.0);
// Save to X_new, XtX_new and Xty_new.
i_old=0; i_new=0; i_add=0;
for (size_t i=0; isize1, s_size);
gsl_matrix_const_view XtX_sub=
gsl_matrix_const_submatrix (XtX, 0, 0, s_size, s_size);
gsl_vector_const_view Xty_sub=
gsl_vector_const_subvector (Xty, 0, s_size);
gsl_matrix *Omega=gsl_matrix_alloc (s_size, s_size);
gsl_matrix *M_temp=gsl_matrix_alloc (s_size, s_size);
gsl_vector *beta_hat=gsl_vector_alloc (s_size);
gsl_vector *Xty_temp=gsl_vector_alloc (s_size);
gsl_vector_memcpy (Xty_temp, &Xty_sub.vector);
// Calculate Omega.
gsl_matrix_memcpy (Omega, &XtX_sub.matrix);
gsl_matrix_scale (Omega, sigma_a2);
gsl_matrix_set_identity (M_temp);
gsl_matrix_add (Omega, M_temp);
// Calculate beta_hat.
logdet_O=CholeskySolve(Omega, Xty_temp, beta_hat);
gsl_vector_scale (beta_hat, sigma_a2);
gsl_blas_ddot (Xty_temp, beta_hat, &d);
P_yy-=d;
// Sample tau.
double tau=1.0;
if (a_mode==11) {
tau = gsl_ran_gamma (gsl_r, (double)ni_test/2.0, 2.0/P_yy);
}
// Sample beta.
for (size_t i=0; i > beta_g;
for (size_t i=0; i rank_new, rank_old;
vector > pos_loglr;
time_start=clock();
MatrixCalcLmLR (X, z, pos_loglr);
time_Proposal=(clock()-time_start)/(double(CLOCKS_PER_SEC)*60.0);
stable_sort (pos_loglr.begin(), pos_loglr.end(), comp_lr);
for (size_t i=0; itm_hour%24*3600+
ptm->tm_min*60+ptm->tm_sec);
}
gsl_r = gsl_rng_alloc(gslType);
gsl_rng_set(gsl_r, randseed);
double *p_gamma = new double[ns_test];
CalcPgamma (p_gamma);
gsl_t=gsl_ran_discrete_preproc (ns_test, p_gamma);
// Initial parameters.
InitialMCMC (X, z, rank_old, cHyp_old, pos_loglr);
cHyp_initial=cHyp_old;
if (cHyp_old.n_gamma==0) {
logPost_old=CalcPosterior (ztz, cHyp_old);
}
else {
SetXgamma (Xgamma_old, X, rank_old);
CalcXtX (Xgamma_old, z, rank_old.size(), XtX_old, Xtz_old);
logPost_old=CalcPosterior (Xgamma_old, XtX_old, Xtz_old, ztz,
rank_old.size(), Xb_old, beta_old,
cHyp_old);
}
// Calculate centered z_hat, and pve.
if (a_mode==13) {
if (cHyp_old.n_gamma==0) {
CalcCC_PVEnZ (z_hat, cHyp_old);
}
else {
CalcCC_PVEnZ (Xb_old, z_hat, cHyp_old);
}
}
// Start MCMC.
int accept;
size_t total_step=w_step+s_step;
size_t w=0, w_col, pos;
size_t repeat=0;
for (size_t t=0; t0 ||
log(gsl_rng_uniform(gsl_r))