Browse Source

gnu: Add python-scikit-rebate.

* gnu/packages/machine-learning.scm (python-scikit-rebate): New variable.
gn-latest-20200428
Roel Janssen 1 year ago
parent
commit
639ae3f20b
No known key found for this signature in database GPG Key ID: CBD0CD5138C19AFC
  1. 29
      gnu/packages/machine-learning.scm

29
gnu/packages/machine-learning.scm

@ -867,6 +867,35 @@ data analysis.")
(base32
"08zbzi8yx5wdlxfx9jap61vg1malc9ajf576w7a0liv6jvvrxlpj")))))))
(define-public python-scikit-rebate
(package
(name "python-scikit-rebate")
(version "0.6")
(source (origin
(method url-fetch)
(uri (pypi-uri "skrebate" version))
(sha256
(base32
"1h7qs9gjxpzqabzhb8rmpv3jpmi5iq41kqdibg48299h94iikiw7"))))
(build-system python-build-system)
;; Pandas is only needed to run the tests.
(native-inputs
`(("python-pandas" ,python-pandas)))
(propagated-inputs
`(("python-numpy" ,python-numpy)
("python-scipy" ,python-scipy)
("python-scikit-learn" ,python-scikit-learn)
("python-joblib" ,python-joblib)))
(home-page "https://epistasislab.github.io/scikit-rebate/")
(synopsis "Relief-based feature selection algorithms for Python")
(description "Scikit-rebate is a scikit-learn-compatible Python
implementation of ReBATE, a suite of Relief-based feature selection algorithms
for Machine Learning. These algorithms excel at identifying features that are
predictive of the outcome in supervised learning problems, and are especially
good at identifying feature interactions that are normally overlooked by
standard feature selection algorithms.")
(license license:expat)))
(define-public python-autograd
(let* ((commit "442205dfefe407beffb33550846434baa90c4de7")
(revision "0")

Loading…
Cancel
Save