You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1133 lines
44 KiB
1133 lines
44 KiB
From 901159da45695da24a5206125910f02fc50169ce Mon Sep 17 00:00:00 2001
|
|
From: Efraim Flashner <efraim@flashner.co.il>
|
|
Date: Thu, 23 Apr 2020 15:50:37 +0300
|
|
Subject: [PATCH] add keras metrics
|
|
|
|
---
|
|
keras/backend/tensorflow_backend.py | 12 +
|
|
keras/metrics.py | 584 ++++++++++++++++++++++++++++
|
|
keras/utils/__init__.py | 2 +
|
|
keras/utils/losses_utils.py | 177 +++++++++
|
|
keras/utils/metrics_utils.py | 278 +++++++++++++
|
|
5 files changed, 1053 insertions(+)
|
|
create mode 100644 keras/utils/losses_utils.py
|
|
create mode 100644 keras/utils/metrics_utils.py
|
|
|
|
diff --git a/keras/backend/tensorflow_backend.py b/keras/backend/tensorflow_backend.py
|
|
index bcb8be0..a2870f5 100644
|
|
--- a/keras/backend/tensorflow_backend.py
|
|
+++ b/keras/backend/tensorflow_backend.py
|
|
@@ -4453,3 +4453,15 @@ def local_conv2d(inputs, kernel, kernel_size, strides, output_shape, data_format
|
|
else:
|
|
output = permute_dimensions(output, (2, 0, 1, 3))
|
|
return output
|
|
+
|
|
+#get_graph = tf_keras_backend.get_graph
|
|
+
|
|
+#def is_symbolic(x):
|
|
+# return isinstance(x, tf.Tensor) and hasattr(x, 'op')
|
|
+
|
|
+def size(x, name=None):
|
|
+# if is_symbolic(x):
|
|
+# with get_graph().as_default():
|
|
+# return tf.size(x)
|
|
+ return tf.size(x, name=name)
|
|
+
|
|
diff --git a/keras/metrics.py b/keras/metrics.py
|
|
index 8e3df1f..8f57910 100644
|
|
--- a/keras/metrics.py
|
|
+++ b/keras/metrics.py
|
|
@@ -4,8 +4,12 @@ from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
+import abc
|
|
import six
|
|
+import types
|
|
+
|
|
from . import backend as K
|
|
+from .engine.base_layer import Layer
|
|
from .losses import mean_squared_error
|
|
from .losses import mean_absolute_error
|
|
from .losses import mean_absolute_percentage_error
|
|
@@ -19,10 +23,201 @@ from .losses import binary_crossentropy
|
|
from .losses import kullback_leibler_divergence
|
|
from .losses import poisson
|
|
from .losses import cosine_proximity
|
|
+from .utils import losses_utils
|
|
+from .utils import metrics_utils
|
|
from .utils.generic_utils import deserialize_keras_object
|
|
from .utils.generic_utils import serialize_keras_object
|
|
|
|
|
|
+@six.add_metaclass(abc.ABCMeta)
|
|
+class Metric(Layer):
|
|
+ """Encapsulates metric logic and state.
|
|
+
|
|
+ Standalone usage:
|
|
+ ```python
|
|
+ m = SomeMetric(...)
|
|
+ for input in ...:
|
|
+ m.update_state(input)
|
|
+ m.result()
|
|
+ ```
|
|
+
|
|
+ Usage with the `compile` API:
|
|
+ ```python
|
|
+ model.compile(optimizer='rmsprop',
|
|
+ loss=keras.losses.categorical_crossentropy,
|
|
+ metrics=[keras.metrics.CategoricalAccuracy()])
|
|
+ ```
|
|
+
|
|
+ To be implemented by subclasses:
|
|
+ * `__init__()`: All state variables should be created in this method by
|
|
+ calling `self.add_weight()` like: `self.var = self.add_weight(...)`
|
|
+ * `update_state()`: Has all updates to the state variables like:
|
|
+ self.var.assign_add(...).
|
|
+ * `result()`: Computes and returns a value for the metric
|
|
+ from the state variables.
|
|
+ """
|
|
+
|
|
+ def __init__(self, name=None, dtype=None, **kwargs):
|
|
+ super(Metric, self).__init__(name=name, dtype=dtype, **kwargs)
|
|
+ self.stateful = True # All metric layers are stateful.
|
|
+ self.built = True
|
|
+ self.dtype = K.floatx() if dtype is None else dtype
|
|
+
|
|
+ def __new__(cls, *args, **kwargs):
|
|
+ obj = super(Metric, cls).__new__(cls)
|
|
+ update_state_fn = obj.update_state
|
|
+
|
|
+ obj.update_state = types.MethodType(
|
|
+ metrics_utils.update_state_wrapper(update_state_fn), obj)
|
|
+ return obj
|
|
+
|
|
+ def __call__(self, *args, **kwargs):
|
|
+ """Accumulates statistics and then computes metric result value."""
|
|
+ update_op = self.update_state(*args, **kwargs)
|
|
+ return self.result()
|
|
+
|
|
+ def get_config(self):
|
|
+ """Returns the serializable config of the metric."""
|
|
+ return {'name': self.name, 'dtype': self.dtype}
|
|
+
|
|
+ def reset_states(self):
|
|
+ """Resets all of the metric state variables.
|
|
+ This function is called between epochs/steps,
|
|
+ when a metric is evaluated during training.
|
|
+ """
|
|
+ K.batch_set_value([(v, 0) for v in self.weights])
|
|
+
|
|
+ @abc.abstractmethod
|
|
+ def update_state(self, *args, **kwargs):
|
|
+ """Accumulates statistics for the metric. """
|
|
+ raise NotImplementedError('Must be implemented in subclasses.')
|
|
+
|
|
+ @abc.abstractmethod
|
|
+ def result(self):
|
|
+ """Computes and returns the metric value tensor.
|
|
+ Result computation is an idempotent operation that simply calculates the
|
|
+ metric value using the state variables.
|
|
+ """
|
|
+ raise NotImplementedError('Must be implemented in subclasses.')
|
|
+
|
|
+ # For use by subclasses #
|
|
+ def add_weight(self,
|
|
+ name,
|
|
+ shape=(),
|
|
+ initializer=None,
|
|
+ dtype=None):
|
|
+ """Adds state variable. Only for use by subclasses."""
|
|
+ return super(Metric, self).add_weight(
|
|
+ name=name,
|
|
+ shape=shape,
|
|
+ dtype=self.dtype if dtype is None else dtype,
|
|
+ trainable=False,
|
|
+ initializer=initializer)
|
|
+
|
|
+ # End: For use by subclasses ###
|
|
+
|
|
+
|
|
+class Reduce(Metric):
|
|
+ """Encapsulates metrics that perform a reduce operation on the values."""
|
|
+
|
|
+ def __init__(self, reduction, name, dtype=None):
|
|
+ """Creates a `Reduce` instance.
|
|
+ # Arguments
|
|
+ reduction: a metrics `Reduction` enum value.
|
|
+ name: string name of the metric instance.
|
|
+ dtype: (Optional) data type of the metric result.
|
|
+ """
|
|
+ super(Reduce, self).__init__(name=name, dtype=dtype)
|
|
+ self.reduction = reduction
|
|
+ self.total = self.add_weight('total', initializer='zeros')
|
|
+ if reduction in [metrics_utils.Reduction.SUM_OVER_BATCH_SIZE,
|
|
+ metrics_utils.Reduction.WEIGHTED_MEAN]:
|
|
+ self.count = self.add_weight('count', initializer='zeros')
|
|
+
|
|
+ def update_state(self, values, sample_weight=None):
|
|
+ """Accumulates statistics for computing the reduction metric.
|
|
+ For example, if `values` is [1, 3, 5, 7] and reduction=SUM_OVER_BATCH_SIZE,
|
|
+ then the value of `result()` is 4. If the `sample_weight` is specified as
|
|
+ [1, 1, 0, 0] then value of `result()` would be 2.
|
|
+ # Arguments
|
|
+ values: Per-example value.
|
|
+ sample_weight: Optional weighting of each example. Defaults to 1.
|
|
+ """
|
|
+ values = K.cast(values, self.dtype)
|
|
+ if sample_weight is not None:
|
|
+ sample_weight = K.cast(sample_weight, self.dtype)
|
|
+ # Update dimensions of weights to match with values if possible.
|
|
+ values, _, sample_weight = losses_utils.squeeze_or_expand_dimensions(
|
|
+ values, sample_weight=sample_weight)
|
|
+
|
|
+ # Broadcast weights if possible.
|
|
+ sample_weight = losses_utils.broadcast_weights(sample_weight, values)
|
|
+ values = values * sample_weight
|
|
+
|
|
+ value_sum = K.sum(values)
|
|
+ update_total_op = K.update_add(self.total, value_sum)
|
|
+
|
|
+ # Exit early if the reduction doesn't have a denominator.
|
|
+ if self.reduction == metrics_utils.Reduction.SUM:
|
|
+ return update_total_op
|
|
+
|
|
+ # Update `count` for reductions that require a denominator.
|
|
+ if self.reduction == metrics_utils.Reduction.SUM_OVER_BATCH_SIZE:
|
|
+ num_values = K.cast(K.size(values), self.dtype)
|
|
+ elif self.reduction == metrics_utils.Reduction.WEIGHTED_MEAN:
|
|
+ if sample_weight is None:
|
|
+ num_values = K.cast(K.size(values), self.dtype)
|
|
+ else:
|
|
+ num_values = K.sum(sample_weight)
|
|
+ else:
|
|
+ raise NotImplementedError(
|
|
+ 'reduction [%s] not implemented' % self.reduction)
|
|
+
|
|
+ with K.control_dependencies([update_total_op]):
|
|
+ return K.update_add(self.count, num_values)
|
|
+
|
|
+ def result(self):
|
|
+ if self.reduction == metrics_utils.Reduction.SUM:
|
|
+ return self.total
|
|
+ elif self.reduction in [
|
|
+ metrics_utils.Reduction.WEIGHTED_MEAN,
|
|
+ metrics_utils.Reduction.SUM_OVER_BATCH_SIZE
|
|
+ ]:
|
|
+ return self.total / self.count
|
|
+ else:
|
|
+ raise NotImplementedError(
|
|
+ 'reduction [%s] not implemented' % self.reduction)
|
|
+
|
|
+
|
|
+class Sum(Reduce):
|
|
+ """Computes the (weighted) sum of the given values.
|
|
+
|
|
+ For example, if values is [1, 3, 5, 7] then the sum is 16.
|
|
+ If the weights were specified as [1, 1, 0, 0] then the sum would be 4.
|
|
+
|
|
+ This metric creates one variable, `total`, that is used to compute the sum of
|
|
+ `values`. This is ultimately returned as `sum`.
|
|
+ If `sample_weight` is `None`, weights default to 1. Use `sample_weight` of 0
|
|
+ to mask values.
|
|
+
|
|
+ Standalone usage:
|
|
+ ```python
|
|
+ m = keras.metrics.Sum()
|
|
+ m.update_state([1, 3, 5, 7])
|
|
+ m.result()
|
|
+ ```
|
|
+ """
|
|
+
|
|
+ def __init__(self, name='sum', dtype=None):
|
|
+ """Creates a `Sum` instance.
|
|
+ # Arguments
|
|
+ name: (Optional) string name of the metric instance.
|
|
+ dtype: (Optional) data type of the metric result.
|
|
+ """
|
|
+ super(Sum, self).__init__(reduction=metrics_utils.Reduction.SUM,
|
|
+ name=name, dtype=dtype)
|
|
+
|
|
+
|
|
def binary_accuracy(y_true, y_pred):
|
|
return K.mean(K.equal(y_true, K.round(y_pred)), axis=-1)
|
|
|
|
@@ -49,6 +244,395 @@ def sparse_top_k_categorical_accuracy(y_true, y_pred, k=5):
|
|
return K.mean(K.in_top_k(y_pred, K.cast(K.flatten(y_true), 'int32'), k),
|
|
axis=-1)
|
|
|
|
+class SensitivitySpecificityBase(Metric):
|
|
+ """Abstract base class for computing sensitivity and specificity.
|
|
+
|
|
+ For additional information about specificity and sensitivity, see the
|
|
+ following: https://en.wikipedia.org/wiki/Sensitivity_and_specificity
|
|
+ """
|
|
+
|
|
+ def __init__(self, value, num_thresholds=200, name=None, dtype=None):
|
|
+ super(SensitivitySpecificityBase, self).__init__(name=name, dtype=dtype)
|
|
+ if num_thresholds <= 0:
|
|
+ raise ValueError('`num_thresholds` must be > 0.')
|
|
+ self.value = value
|
|
+ self.true_positives = self.add_weight(
|
|
+ 'true_positives',
|
|
+ shape=(num_thresholds,),
|
|
+ initializer='zeros')
|
|
+ self.true_negatives = self.add_weight(
|
|
+ 'true_negatives',
|
|
+ shape=(num_thresholds,),
|
|
+ initializer='zeros')
|
|
+ self.false_positives = self.add_weight(
|
|
+ 'false_positives',
|
|
+ shape=(num_thresholds,),
|
|
+ initializer='zeros')
|
|
+ self.false_negatives = self.add_weight(
|
|
+ 'false_negatives',
|
|
+ shape=(num_thresholds,),
|
|
+ initializer='zeros')
|
|
+
|
|
+ # Compute `num_thresholds` thresholds in [0, 1]
|
|
+ if num_thresholds == 1:
|
|
+ self.thresholds = [0.5]
|
|
+ else:
|
|
+ thresholds = [(i + 1) * 1.0 / (num_thresholds - 1)
|
|
+ for i in range(num_thresholds - 2)]
|
|
+ self.thresholds = [0.0] + thresholds + [1.0]
|
|
+
|
|
+ def update_state(self, y_true, y_pred, sample_weight=None):
|
|
+ return metrics_utils.update_confusion_matrix_variables(
|
|
+ {
|
|
+ metrics_utils.ConfusionMatrix.TRUE_POSITIVES: self.true_positives,
|
|
+ metrics_utils.ConfusionMatrix.TRUE_NEGATIVES: self.true_negatives,
|
|
+ metrics_utils.ConfusionMatrix.FALSE_POSITIVES: self.false_positives,
|
|
+ metrics_utils.ConfusionMatrix.FALSE_NEGATIVES: self.false_negatives,
|
|
+ },
|
|
+ y_true,
|
|
+ y_pred,
|
|
+ thresholds=self.thresholds,
|
|
+ sample_weight=sample_weight)
|
|
+
|
|
+ def reset_states(self):
|
|
+ num_thresholds = len(self.thresholds)
|
|
+ K.batch_set_value(
|
|
+ [(v, np.zeros((num_thresholds,))) for v in self.variables])
|
|
+
|
|
+
|
|
+class SensitivityAtSpecificity(SensitivitySpecificityBase):
|
|
+ """Computes the sensitivity at a given specificity.
|
|
+
|
|
+ `Sensitivity` measures the proportion of actual positives that are correctly
|
|
+ identified as such (tp / (tp + fn)).
|
|
+ `Specificity` measures the proportion of actual negatives that are correctly
|
|
+ identified as such (tn / (tn + fp)).
|
|
+
|
|
+ This metric creates four local variables, `true_positives`, `true_negatives`,
|
|
+ `false_positives` and `false_negatives` that are used to compute the
|
|
+ sensitivity at the given specificity. The threshold for the given specificity
|
|
+ value is computed and used to evaluate the corresponding sensitivity.
|
|
+
|
|
+ If `sample_weight` is `None`, weights default to 1.
|
|
+ Use `sample_weight` of 0 to mask values.
|
|
+
|
|
+ For additional information about specificity and sensitivity, see the
|
|
+ following: https://en.wikipedia.org/wiki/Sensitivity_and_specificity
|
|
+
|
|
+ Usage with the compile API:
|
|
+
|
|
+ ```python
|
|
+ model = keras.Model(inputs, outputs)
|
|
+ model.compile(
|
|
+ 'sgd',
|
|
+ loss='mse',
|
|
+ metrics=[keras.metrics.SensitivityAtSpecificity()])
|
|
+ ```
|
|
+
|
|
+ # Arguments
|
|
+ specificity: A scalar value in range `[0, 1]`.
|
|
+ num_thresholds: (Optional) Defaults to 200. The number of thresholds to
|
|
+ use for matching the given specificity.
|
|
+ name: (Optional) string name of the metric instance.
|
|
+ dtype: (Optional) data type of the metric result.
|
|
+ """
|
|
+
|
|
+ def __init__(self, specificity, num_thresholds=200, name=None, dtype=None):
|
|
+ if specificity < 0 or specificity > 1:
|
|
+ raise ValueError('`specificity` must be in the range [0, 1].')
|
|
+ self.specificity = specificity
|
|
+ self.num_thresholds = num_thresholds
|
|
+ super(SensitivityAtSpecificity, self).__init__(
|
|
+ specificity, num_thresholds=num_thresholds, name=name, dtype=dtype)
|
|
+
|
|
+ def result(self):
|
|
+ # Calculate specificities at all the thresholds.
|
|
+ specificities = K.switch(
|
|
+ K.greater(self.true_negatives + self.false_positives, 0),
|
|
+ (self.true_negatives / (self.true_negatives + self.false_positives)),
|
|
+ K.zeros_like(self.thresholds))
|
|
+
|
|
+ # Find the index of the threshold where the specificity is closest to the
|
|
+ # given specificity.
|
|
+ min_index = K.argmin(
|
|
+ K.abs(specificities - self.value), axis=0)
|
|
+ min_index = K.cast(min_index, 'int32')
|
|
+
|
|
+ # Compute sensitivity at that index.
|
|
+ return K.switch(
|
|
+ K.greater((self.true_positives[min_index] +
|
|
+ self.false_negatives[min_index]), 0),
|
|
+ (self.true_positives[min_index] /
|
|
+ (self.true_positives[min_index] + self.false_negatives[min_index])),
|
|
+ K.zeros_like(self.true_positives[min_index]))
|
|
+
|
|
+ def get_config(self):
|
|
+ config = {
|
|
+ 'num_thresholds': self.num_thresholds,
|
|
+ 'specificity': self.specificity
|
|
+ }
|
|
+ base_config = super(SensitivityAtSpecificity, self).get_config()
|
|
+ return dict(list(base_config.items()) + list(config.items()))
|
|
+
|
|
+
|
|
+class AUC(Metric):
|
|
+ """Computes the approximate AUC (Area under the curve) via a Riemann sum.
|
|
+
|
|
+ This metric creates four local variables, `true_positives`, `true_negatives`,
|
|
+ `false_positives` and `false_negatives` that are used to compute the AUC.
|
|
+ To discretize the AUC curve, a linearly spaced set of thresholds is used to
|
|
+ compute pairs of recall and precision values. The area under the ROC-curve is
|
|
+ therefore computed using the height of the recall values by the false positive
|
|
+ rate, while the area under the PR-curve is the computed using the height of
|
|
+ the precision values by the recall.
|
|
+
|
|
+ This value is ultimately returned as `auc`, an idempotent operation that
|
|
+ computes the area under a discretized curve of precision versus recall values
|
|
+ (computed using the aforementioned variables). The `num_thresholds` variable
|
|
+ controls the degree of discretization with larger numbers of thresholds more
|
|
+ closely approximating the true AUC. The quality of the approximation may vary
|
|
+ dramatically depending on `num_thresholds`. The `thresholds` parameter can be
|
|
+ used to manually specify thresholds which split the predictions more evenly.
|
|
+
|
|
+ For best results, `predictions` should be distributed approximately uniformly
|
|
+ in the range [0, 1] and not peaked around 0 or 1. The quality of the AUC
|
|
+ approximation may be poor if this is not the case. Setting `summation_method`
|
|
+ to 'minoring' or 'majoring' can help quantify the error in the approximation
|
|
+ by providing lower or upper bound estimate of the AUC.
|
|
+
|
|
+ If `sample_weight` is `None`, weights default to 1.
|
|
+ Use `sample_weight` of 0 to mask values.
|
|
+
|
|
+ Usage with the compile API:
|
|
+
|
|
+ ```python
|
|
+ model = keras.Model(inputs, outputs)
|
|
+ model.compile('sgd', loss='mse', metrics=[keras.metrics.AUC()])
|
|
+ ```
|
|
+
|
|
+ # Arguments
|
|
+ num_thresholds: (Optional) Defaults to 200. The number of thresholds to
|
|
+ use when discretizing the roc curve. Values must be > 1.
|
|
+ curve: (Optional) Specifies the name of the curve to be computed, 'ROC'
|
|
+ [default] or 'PR' for the Precision-Recall-curve.
|
|
+ summation_method: (Optional) Specifies the Riemann summation method used
|
|
+ (https://en.wikipedia.org/wiki/Riemann_sum): 'interpolation' [default],
|
|
+ applies mid-point summation scheme for `ROC`. For PR-AUC, interpolates
|
|
+ (true/false) positives but not the ratio that is precision (see Davis
|
|
+ & Goadrich 2006 for details); 'minoring' that applies left summation
|
|
+ for increasing intervals and right summation for decreasing intervals;
|
|
+ 'majoring' that does the opposite.
|
|
+ name: (Optional) string name of the metric instance.
|
|
+ dtype: (Optional) data type of the metric result.
|
|
+ thresholds: (Optional) A list of floating point values to use as the
|
|
+ thresholds for discretizing the curve. If set, the `num_thresholds`
|
|
+ parameter is ignored. Values should be in [0, 1]. Endpoint thresholds
|
|
+ equal to {-epsilon, 1+epsilon} for a small positive epsilon value will
|
|
+ be automatically included with these to correctly handle predictions
|
|
+ equal to exactly 0 or 1.
|
|
+ """
|
|
+
|
|
+ def __init__(self,
|
|
+ num_thresholds=200,
|
|
+ curve='ROC',
|
|
+ summation_method='interpolation',
|
|
+ name=None,
|
|
+ dtype=None,
|
|
+ thresholds=None):
|
|
+ # Validate configurations.
|
|
+ if (isinstance(curve, metrics_utils.AUCCurve) and
|
|
+ curve not in list(metrics_utils.AUCCurve)):
|
|
+ raise ValueError('Invalid curve: "{}". Valid options are: "{}"'.format(
|
|
+ curve, list(metrics_utils.AUCCurve)))
|
|
+ if isinstance(
|
|
+ summation_method,
|
|
+ metrics_utils.AUCSummationMethod) and summation_method not in list(
|
|
+ metrics_utils.AUCSummationMethod):
|
|
+ raise ValueError(
|
|
+ 'Invalid summation method: "{}". Valid options are: "{}"'.format(
|
|
+ summation_method, list(metrics_utils.AUCSummationMethod)))
|
|
+
|
|
+ # Update properties.
|
|
+ if thresholds is not None:
|
|
+ # If specified, use the supplied thresholds.
|
|
+ self.num_thresholds = len(thresholds) + 2
|
|
+ thresholds = sorted(thresholds)
|
|
+ else:
|
|
+ if num_thresholds <= 1:
|
|
+ raise ValueError('`num_thresholds` must be > 1.')
|
|
+
|
|
+ # Otherwise, linearly interpolate (num_thresholds - 2) thresholds in
|
|
+ # (0, 1).
|
|
+ self.num_thresholds = num_thresholds
|
|
+ thresholds = [(i + 1) * 1.0 / (num_thresholds - 1)
|
|
+ for i in range(num_thresholds - 2)]
|
|
+
|
|
+ # Add an endpoint "threshold" below zero and above one for either
|
|
+ # threshold method to account for floating point imprecisions.
|
|
+ self.thresholds = [0.0 - K.epsilon()] + thresholds + [1.0 + K.epsilon()]
|
|
+
|
|
+ if isinstance(curve, metrics_utils.AUCCurve):
|
|
+ self.curve = curve
|
|
+ else:
|
|
+ self.curve = metrics_utils.AUCCurve.from_str(curve)
|
|
+ if isinstance(summation_method, metrics_utils.AUCSummationMethod):
|
|
+ self.summation_method = summation_method
|
|
+ else:
|
|
+ self.summation_method = metrics_utils.AUCSummationMethod.from_str(
|
|
+ summation_method)
|
|
+ super(AUC, self).__init__(name=name, dtype=dtype)
|
|
+
|
|
+ # Create metric variables
|
|
+ self.true_positives = self.add_weight(
|
|
+ 'true_positives',
|
|
+ shape=(self.num_thresholds,),
|
|
+ initializer='zeros')
|
|
+ self.true_negatives = self.add_weight(
|
|
+ 'true_negatives',
|
|
+ shape=(self.num_thresholds,),
|
|
+ initializer='zeros')
|
|
+ self.false_positives = self.add_weight(
|
|
+ 'false_positives',
|
|
+ shape=(self.num_thresholds,),
|
|
+ initializer='zeros')
|
|
+ self.false_negatives = self.add_weight(
|
|
+ 'false_negatives',
|
|
+ shape=(self.num_thresholds,),
|
|
+ initializer='zeros')
|
|
+
|
|
+ def update_state(self, y_true, y_pred, sample_weight=None):
|
|
+ return metrics_utils.update_confusion_matrix_variables({
|
|
+ metrics_utils.ConfusionMatrix.TRUE_POSITIVES: self.true_positives,
|
|
+ metrics_utils.ConfusionMatrix.TRUE_NEGATIVES: self.true_negatives,
|
|
+ metrics_utils.ConfusionMatrix.FALSE_POSITIVES: self.false_positives,
|
|
+ metrics_utils.ConfusionMatrix.FALSE_NEGATIVES: self.false_negatives,
|
|
+ }, y_true, y_pred, self.thresholds, sample_weight=sample_weight)
|
|
+
|
|
+ def interpolate_pr_auc(self):
|
|
+ """Interpolation formula inspired by section 4 of Davis & Goadrich 2006.
|
|
+
|
|
+ https://www.biostat.wisc.edu/~page/rocpr.pdf
|
|
+
|
|
+ Note here we derive & use a closed formula not present in the paper
|
|
+ as follows:
|
|
+
|
|
+ Precision = TP / (TP + FP) = TP / P
|
|
+
|
|
+ Modeling all of TP (true positive), FP (false positive) and their sum
|
|
+ P = TP + FP (predicted positive) as varying linearly within each interval
|
|
+ [A, B] between successive thresholds, we get
|
|
+
|
|
+ Precision slope = dTP / dP
|
|
+ = (TP_B - TP_A) / (P_B - P_A)
|
|
+ = (TP - TP_A) / (P - P_A)
|
|
+ Precision = (TP_A + slope * (P - P_A)) / P
|
|
+
|
|
+ The area within the interval is (slope / total_pos_weight) times
|
|
+
|
|
+ int_A^B{Precision.dP} = int_A^B{(TP_A + slope * (P - P_A)) * dP / P}
|
|
+ int_A^B{Precision.dP} = int_A^B{slope * dP + intercept * dP / P}
|
|
+
|
|
+ where intercept = TP_A - slope * P_A = TP_B - slope * P_B, resulting in
|
|
+
|
|
+ int_A^B{Precision.dP} = TP_B - TP_A + intercept * log(P_B / P_A)
|
|
+
|
|
+ Bringing back the factor (slope / total_pos_weight) we'd put aside, we get
|
|
+
|
|
+ slope * [dTP + intercept * log(P_B / P_A)] / total_pos_weight
|
|
+
|
|
+ where dTP == TP_B - TP_A.
|
|
+
|
|
+ Note that when P_A == 0 the above calculation simplifies into
|
|
+
|
|
+ int_A^B{Precision.dTP} = int_A^B{slope * dTP} = slope * (TP_B - TP_A)
|
|
+
|
|
+ which is really equivalent to imputing constant precision throughout the
|
|
+ first bucket having >0 true positives.
|
|
+
|
|
+ # Returns
|
|
+ pr_auc: an approximation of the area under the P-R curve.
|
|
+ """
|
|
+ dtp = self.true_positives[:self.num_thresholds -
|
|
+ 1] - self.true_positives[1:]
|
|
+ p = self.true_positives + self.false_positives
|
|
+ dp = p[:self.num_thresholds - 1] - p[1:]
|
|
+
|
|
+ prec_slope = dtp / K.maximum(dp, 0)
|
|
+ intercept = self.true_positives[1:] - (prec_slope * p[1:])
|
|
+
|
|
+ # Logical and
|
|
+ pMin = K.expand_dims(p[:self.num_thresholds - 1] > 0, 0)
|
|
+ pMax = K.expand_dims(p[1:] > 0, 0)
|
|
+ are_different = K.concatenate([pMin, pMax], axis=0)
|
|
+ switch_condition = K.all(are_different, axis=0)
|
|
+
|
|
+ safe_p_ratio = K.switch(
|
|
+ switch_condition,
|
|
+ p[:self.num_thresholds - 1] / K.maximum(p[1:], 0),
|
|
+ K.ones_like(p[1:]))
|
|
+
|
|
+ numer = prec_slope * (dtp + intercept * K.log(safe_p_ratio))
|
|
+ denom = K.maximum(self.true_positives[1:] + self.false_negatives[1:], 0)
|
|
+ return K.sum((numer / denom))
|
|
+
|
|
+ def result(self):
|
|
+ if (self.curve == metrics_utils.AUCCurve.PR and
|
|
+ (self.summation_method ==
|
|
+ metrics_utils.AUCSummationMethod.INTERPOLATION)):
|
|
+ # This use case is different and is handled separately.
|
|
+ return self.interpolate_pr_auc()
|
|
+
|
|
+ # Set `x` and `y` values for the curves based on `curve` config.
|
|
+ recall = K.switch(
|
|
+ K.greater((self.true_positives), 0),
|
|
+ (self.true_positives /
|
|
+ (self.true_positives + self.false_negatives)),
|
|
+ K.zeros_like(self.true_positives))
|
|
+ if self.curve == metrics_utils.AUCCurve.ROC:
|
|
+ fp_rate = K.switch(
|
|
+ K.greater((self.false_positives), 0),
|
|
+ (self.false_positives /
|
|
+ (self.false_positives + self.true_negatives)),
|
|
+ K.zeros_like(self.false_positives))
|
|
+ x = fp_rate
|
|
+ y = recall
|
|
+ else: # curve == 'PR'.
|
|
+ precision = K.switch(
|
|
+ K.greater((self.true_positives), 0),
|
|
+ (self.true_positives / (self.true_positives + self.false_positives)),
|
|
+ K.zeros_like(self.true_positives))
|
|
+ x = recall
|
|
+ y = precision
|
|
+
|
|
+ # Find the rectangle heights based on `summation_method`.
|
|
+ if self.summation_method == metrics_utils.AUCSummationMethod.INTERPOLATION:
|
|
+ # Note: the case ('PR', 'interpolation') has been handled above.
|
|
+ heights = (y[:self.num_thresholds - 1] + y[1:]) / 2.
|
|
+ elif self.summation_method == metrics_utils.AUCSummationMethod.MINORING:
|
|
+ heights = K.minimum(y[:self.num_thresholds - 1], y[1:])
|
|
+ else: # self.summation_method = metrics_utils.AUCSummationMethod.MAJORING:
|
|
+ heights = K.maximum(y[:self.num_thresholds - 1], y[1:])
|
|
+
|
|
+ # Sum up the areas of all the rectangles.
|
|
+ return K.sum((x[:self.num_thresholds - 1] - x[1:]) * heights)
|
|
+
|
|
+ def reset_states(self):
|
|
+ K.batch_set_value(
|
|
+ [(v, np.zeros((self.num_thresholds,))) for v in self.variables])
|
|
+
|
|
+ def get_config(self):
|
|
+ config = {
|
|
+ 'num_thresholds': self.num_thresholds,
|
|
+ 'curve': self.curve.value,
|
|
+ 'summation_method': self.summation_method.value,
|
|
+ # We remove the endpoint thresholds as an inverse of how the thresholds
|
|
+ # were initialized. This ensures that a metric initialized from this
|
|
+ # config has the same thresholds.
|
|
+ 'thresholds': self.thresholds[1:-1],
|
|
+ }
|
|
+ base_config = super(AUC, self).get_config()
|
|
+ return dict(list(base_config.items()) + list(config.items()))
|
|
+
|
|
|
|
# Aliases
|
|
|
|
diff --git a/keras/utils/__init__.py b/keras/utils/__init__.py
|
|
index 8cc39d5..65af329 100644
|
|
--- a/keras/utils/__init__.py
|
|
+++ b/keras/utils/__init__.py
|
|
@@ -4,6 +4,8 @@ from . import generic_utils
|
|
from . import data_utils
|
|
from . import io_utils
|
|
from . import conv_utils
|
|
+from . import losses_utils
|
|
+from . import metrics_utils
|
|
|
|
# Globally-importable utils.
|
|
from .io_utils import HDF5Matrix
|
|
diff --git a/keras/utils/losses_utils.py b/keras/utils/losses_utils.py
|
|
new file mode 100644
|
|
index 0000000..617ebb7
|
|
--- /dev/null
|
|
+++ b/keras/utils/losses_utils.py
|
|
@@ -0,0 +1,177 @@
|
|
+"""Utilities related to losses."""
|
|
+from __future__ import absolute_import
|
|
+from __future__ import division
|
|
+from __future__ import print_function
|
|
+
|
|
+import numpy as np
|
|
+
|
|
+from .. import backend as K
|
|
+
|
|
+
|
|
+class Reduction(object):
|
|
+ """Types of loss reduction.
|
|
+
|
|
+ Contains the following values:
|
|
+
|
|
+ * `NONE`: Un-reduced weighted losses with the same shape as input. When this
|
|
+ reduction type used with built-in Keras training loops like
|
|
+ `fit`/`evaluate`, the unreduced vector loss is passed to the optimizer but
|
|
+ the reported loss will be a scalar value.
|
|
+ * `SUM`: Scalar sum of weighted losses.
|
|
+ * `SUM_OVER_BATCH_SIZE`: Scalar `SUM` divided by number of elements in losses.
|
|
+ """
|
|
+
|
|
+ NONE = 'none'
|
|
+ SUM = 'sum'
|
|
+ SUM_OVER_BATCH_SIZE = 'sum_over_batch_size'
|
|
+
|
|
+ @classmethod
|
|
+ def all(cls):
|
|
+ return (cls.NONE, cls.SUM, cls.SUM_OVER_BATCH_SIZE)
|
|
+
|
|
+ @classmethod
|
|
+ def validate(cls, key):
|
|
+ if key not in cls.all():
|
|
+ raise ValueError('Invalid Reduction Key %s.' % key)
|
|
+
|
|
+
|
|
+def squeeze_or_expand_dimensions(y_pred, y_true=None, sample_weight=None):
|
|
+ """Squeeze or expand last dimension if needed.
|
|
+
|
|
+ 1. Squeezes last dim of `y_pred` or `y_true` if their rank differs by 1.
|
|
+ 2. Squeezes or expands last dim of `sample_weight` if its rank differs by 1
|
|
+ from the new rank of `y_pred`.
|
|
+ If `sample_weight` is scalar, it is kept scalar.
|
|
+
|
|
+ # Arguments
|
|
+ y_pred: Predicted values, a `Tensor` of arbitrary dimensions.
|
|
+ y_true: Optional label `Tensor` whose dimensions match `y_pred`.
|
|
+ sample_weight: Optional weight scalar or `Tensor` whose dimensions match
|
|
+ `y_pred`.
|
|
+
|
|
+ # Returns
|
|
+ Tuple of `y_pred`, `y_true` and `sample_weight`. Each of them possibly has
|
|
+ the last dimension squeezed, `sample_weight` could be extended by one
|
|
+ dimension.
|
|
+ """
|
|
+ if y_true is not None:
|
|
+ y_pred_rank = K.ndim(y_pred)
|
|
+ y_pred_shape = K.int_shape(y_pred)
|
|
+ y_true_rank = K.ndim(y_true)
|
|
+ y_true_shape = K.int_shape(y_true)
|
|
+
|
|
+ if (y_pred_rank - y_true_rank == 1) and (y_pred_shape[-1] == 1):
|
|
+ y_pred = K.squeeze(y_pred, -1)
|
|
+ elif (y_true_rank - y_pred_rank == 1) and (y_true_shape[-1] == 1):
|
|
+ y_true = K.squeeze(y_true, -1)
|
|
+
|
|
+ if sample_weight is None:
|
|
+ return y_pred, y_true
|
|
+
|
|
+ y_pred_rank = K.ndim(y_pred)
|
|
+ weights_rank = K.ndim(sample_weight)
|
|
+ if weights_rank != 0:
|
|
+ if weights_rank - y_pred_rank == 1:
|
|
+ sample_weight = K.squeeze(sample_weight, -1)
|
|
+ elif y_pred_rank - weights_rank == 1:
|
|
+ sample_weight = K.expand_dims(sample_weight, -1)
|
|
+ return y_pred, y_true, sample_weight
|
|
+
|
|
+
|
|
+def _num_elements(losses):
|
|
+ """Computes the number of elements in `losses` tensor."""
|
|
+ with K.name_scope('num_elements') as scope:
|
|
+ return K.cast(K.size(losses, name=scope), losses.dtype)
|
|
+
|
|
+
|
|
+def reduce_weighted_loss(weighted_losses, reduction=Reduction.SUM_OVER_BATCH_SIZE):
|
|
+ """Reduces the individual weighted loss measurements."""
|
|
+ if reduction == Reduction.NONE:
|
|
+ loss = weighted_losses
|
|
+ else:
|
|
+ loss = K.sum(weighted_losses)
|
|
+ if reduction == Reduction.SUM_OVER_BATCH_SIZE:
|
|
+ loss = loss / _num_elements(weighted_losses)
|
|
+ return loss
|
|
+
|
|
+
|
|
+def broadcast_weights(values, sample_weight):
|
|
+ # Broadcast weights if possible.
|
|
+ weights_shape = K.int_shape(sample_weight)
|
|
+ values_shape = K.int_shape(values)
|
|
+
|
|
+ if values_shape != weights_shape:
|
|
+ weights_rank = K.ndim(sample_weight)
|
|
+ values_rank = K.ndim(values)
|
|
+
|
|
+ # Raise error if ndim of weights is > values.
|
|
+ if weights_rank > values_rank:
|
|
+ raise ValueError(
|
|
+ 'Incompatible shapes: `values` {} vs `sample_weight` {}'.format(
|
|
+ values_shape, weights_shape))
|
|
+
|
|
+ # Expand dim of weights to match ndim of values, if required.
|
|
+ for i in range(weights_rank, values_rank):
|
|
+ sample_weight = K.expand_dims(sample_weight, axis=i)
|
|
+
|
|
+ if weights_shape is not None and values_shape is not None:
|
|
+ for i in range(weights_rank):
|
|
+ if (weights_shape[i] is not None and
|
|
+ values_shape[i] is not None and
|
|
+ weights_shape[i] != values_shape[i]):
|
|
+ # Cannot be broadcasted.
|
|
+ if weights_shape[i] != 1:
|
|
+ raise ValueError(
|
|
+ 'Incompatible shapes: `values` {} vs '
|
|
+ '`sample_weight` {}'.format(
|
|
+ values_shape, weights_shape))
|
|
+ sample_weight = K.repeat_elements(
|
|
+ sample_weight, values_shape[i], axis=i)
|
|
+ return sample_weight
|
|
+
|
|
+
|
|
+def compute_weighted_loss(losses,
|
|
+ sample_weight=None,
|
|
+ reduction=Reduction.SUM_OVER_BATCH_SIZE,
|
|
+ name=None):
|
|
+ """Computes the weighted loss.
|
|
+
|
|
+ # Arguments
|
|
+ losses: `Tensor` of shape `[batch_size, d1, ... dN]`.
|
|
+ sample_weight: Optional `Tensor` whose rank is either 0, or the same rank as
|
|
+ ` losses`, or be broadcastable to `losses`.
|
|
+ reduction: (Optional) Type of Reduction to apply to loss.
|
|
+ Default value is `SUM_OVER_BATCH_SIZE`.
|
|
+ name: Optional name for the op.
|
|
+
|
|
+ # Raises
|
|
+ ValueError: If the shape of `sample_weight` is not compatible with `losses`.
|
|
+
|
|
+ # Returns
|
|
+ Weighted loss `Tensor` of the same type as `losses`. If `reduction` is
|
|
+ `NONE`, this has the same shape as `losses`; otherwise, it is scalar.
|
|
+ """
|
|
+ Reduction.validate(reduction)
|
|
+ if sample_weight is None:
|
|
+ sample_weight = 1.0
|
|
+ with K.name_scope(name or 'weighted_loss'):
|
|
+ input_dtype = K.dtype(losses)
|
|
+ losses = K.cast(losses, K.floatx())
|
|
+ sample_weight = K.cast(sample_weight, K.floatx())
|
|
+
|
|
+ # Update dimensions of `sample_weight` to match with `losses` if possible.
|
|
+ losses, _, sample_weight = squeeze_or_expand_dimensions(
|
|
+ losses, None, sample_weight)
|
|
+
|
|
+ # Broadcast weights if possible.
|
|
+ sample_weight = broadcast_weights(losses, sample_weight)
|
|
+
|
|
+ # Apply weights to losses.
|
|
+ weighted_losses = sample_weight * losses
|
|
+
|
|
+ # Apply reduction function to the individual weighted losses.
|
|
+ loss = reduce_weighted_loss(weighted_losses, reduction)
|
|
+ # Convert the result back to the input type.
|
|
+ loss = K.cast(loss, input_dtype)
|
|
+ return loss
|
|
+
|
|
diff --git a/keras/utils/metrics_utils.py b/keras/utils/metrics_utils.py
|
|
new file mode 100644
|
|
index 0000000..e6a5bb0
|
|
--- /dev/null
|
|
+++ b/keras/utils/metrics_utils.py
|
|
@@ -0,0 +1,278 @@
|
|
+"""Utilities related to metrics."""
|
|
+from __future__ import absolute_import
|
|
+from __future__ import division
|
|
+from __future__ import print_function
|
|
+
|
|
+from enum import Enum
|
|
+
|
|
+from .. import backend as K
|
|
+from . import losses_utils
|
|
+
|
|
+NEG_INF = -1e10
|
|
+
|
|
+class Reduction(object):
|
|
+ """Types of metrics reduction.
|
|
+ Contains the following values:
|
|
+ * `SUM`: Scalar sum of weighted values.
|
|
+ * `SUM_OVER_BATCH_SIZE`: Scalar `SUM` of weighted values divided by
|
|
+ number of elements in values.
|
|
+ * `WEIGHTED_MEAN`: Scalar sum of weighted values divided by sum of weights.
|
|
+ """
|
|
+
|
|
+ SUM = 'sum'
|
|
+ SUM_OVER_BATCH_SIZE = 'sum_over_batch_size'
|
|
+ WEIGHTED_MEAN = 'weighted_mean'
|
|
+
|
|
+
|
|
+def update_state_wrapper(update_state_fn):
|
|
+ """Decorator to wrap metric `update_state()` with `add_update()`.
|
|
+ # Arguments
|
|
+ update_state_fn: function that accumulates metric statistics.
|
|
+ # Returns
|
|
+ Decorated function that wraps `update_state_fn()` with `add_update()`.
|
|
+ """
|
|
+ def decorated(metric_obj, *args, **kwargs):
|
|
+ """Decorated function with `add_update()`."""
|
|
+
|
|
+ update_op = update_state_fn(*args, **kwargs)
|
|
+ metric_obj.add_update(update_op)
|
|
+ return update_op
|
|
+
|
|
+ return decorated
|
|
+
|
|
+def result_wrapper(result_fn):
|
|
+ """Decorator to wrap metric `result()` with identity op.
|
|
+ Wrapping result in identity so that control dependency between
|
|
+ update_op from `update_state` and result works in case result returns
|
|
+ a tensor.
|
|
+ # Arguments
|
|
+ result_fn: function that computes the metric result.
|
|
+ # Returns
|
|
+ Decorated function that wraps `result()` with identity op.
|
|
+ """
|
|
+ def decorated(metric_obj, *args, **kwargs):
|
|
+ result_t = K.identity(result_fn(*args, **kwargs))
|
|
+ metric_obj._call_result = result_t
|
|
+ result_t._is_metric = True
|
|
+ return result_t
|
|
+ return decorated
|
|
+
|
|
+
|
|
+def to_list(x):
|
|
+ if isinstance(x, list):
|
|
+ return x
|
|
+ return [x]
|
|
+
|
|
+
|
|
+def assert_thresholds_range(thresholds):
|
|
+ if thresholds is not None:
|
|
+ invalid_thresholds = [t for t in thresholds if t is None or t < 0 or t > 1]
|
|
+ if invalid_thresholds:
|
|
+ raise ValueError(
|
|
+ 'Threshold values must be in [0, 1]. Invalid values: {}'.format(
|
|
+ invalid_thresholds))
|
|
+
|
|
+
|
|
+def parse_init_thresholds(thresholds, default_threshold=0.5):
|
|
+ if thresholds is not None:
|
|
+ assert_thresholds_range(to_list(thresholds))
|
|
+ thresholds = to_list(default_threshold if thresholds is None else thresholds)
|
|
+ return thresholds
|
|
+
|
|
+class ConfusionMatrix(Enum):
|
|
+ TRUE_POSITIVES = 'tp'
|
|
+ FALSE_POSITIVES = 'fp'
|
|
+ TRUE_NEGATIVES = 'tn'
|
|
+ FALSE_NEGATIVES = 'fn'
|
|
+
|
|
+class AUCCurve(Enum):
|
|
+ """Type of AUC Curve (ROC or PR)."""
|
|
+ ROC = 'ROC'
|
|
+ PR = 'PR'
|
|
+
|
|
+ @staticmethod
|
|
+ def from_str(key):
|
|
+ if key in ('pr', 'PR'):
|
|
+ return AUCCurve.PR
|
|
+ elif key in ('roc', 'ROC'):
|
|
+ return AUCCurve.ROC
|
|
+ else:
|
|
+ raise ValueError('Invalid AUC curve value "%s".' % key)
|
|
+
|
|
+
|
|
+class AUCSummationMethod(Enum):
|
|
+ """Type of AUC summation method.
|
|
+
|
|
+ https://en.wikipedia.org/wiki/Riemann_sum)
|
|
+
|
|
+ Contains the following values:
|
|
+ * 'interpolation': Applies mid-point summation scheme for `ROC` curve. For
|
|
+ `PR` curve, interpolates (true/false) positives but not the ratio that is
|
|
+ precision (see Davis & Goadrich 2006 for details).
|
|
+ * 'minoring': Applies left summation for increasing intervals and right
|
|
+ summation for decreasing intervals.
|
|
+ * 'majoring': Applies right summation for increasing intervals and left
|
|
+ summation for decreasing intervals.
|
|
+ """
|
|
+ INTERPOLATION = 'interpolation'
|
|
+ MAJORING = 'majoring'
|
|
+ MINORING = 'minoring'
|
|
+
|
|
+ @staticmethod
|
|
+ def from_str(key):
|
|
+ if key in ('interpolation', 'Interpolation'):
|
|
+ return AUCSummationMethod.INTERPOLATION
|
|
+ elif key in ('majoring', 'Majoring'):
|
|
+ return AUCSummationMethod.MAJORING
|
|
+ elif key in ('minoring', 'Minoring'):
|
|
+ return AUCSummationMethod.MINORING
|
|
+ else:
|
|
+ raise ValueError('Invalid AUC summation method value "%s".' % key)
|
|
+
|
|
+def weighted_assign_add(label, pred, weights, var):
|
|
+ # Logical and
|
|
+ label = K.expand_dims(label, 0)
|
|
+ pred = K.expand_dims(pred, 0)
|
|
+ are_different = K.concatenate([label, pred], axis=0)
|
|
+ label_and_pred = K.all(are_different, axis=0)
|
|
+ label_and_pred = K.cast(label_and_pred, dtype=K.floatx())
|
|
+ if weights is not None:
|
|
+ label_and_pred *= weights
|
|
+ return var.assign_add(K.sum(label_and_pred, 1))
|
|
+
|
|
+def update_confusion_matrix_variables(variables_to_update,
|
|
+ y_true,
|
|
+ y_pred,
|
|
+ thresholds,
|
|
+ top_k=None,
|
|
+ class_id=None,
|
|
+ sample_weight=None):
|
|
+ """Returns op to update the given confusion matrix variables.
|
|
+ For every pair of values in y_true and y_pred:
|
|
+ true_positive: y_true == True and y_pred > thresholds
|
|
+ false_negatives: y_true == True and y_pred <= thresholds
|
|
+ true_negatives: y_true == False and y_pred <= thresholds
|
|
+ false_positive: y_true == False and y_pred > thresholds
|
|
+ The results will be weighted and added together. When multiple thresholds are
|
|
+ provided, we will repeat the same for every threshold.
|
|
+ For estimation of these metrics over a stream of data, the function creates an
|
|
+ `update_op` operation that updates the given variables.
|
|
+ If `sample_weight` is `None`, weights default to 1.
|
|
+ Use weights of 0 to mask values.
|
|
+ # Arguments
|
|
+ variables_to_update: Dictionary with 'tp', 'fn', 'tn', 'fp' as valid keys
|
|
+ and corresponding variables to update as values.
|
|
+ y_true: A `Tensor` whose shape matches `y_pred`. Will be cast to `bool`.
|
|
+ y_pred: A floating point `Tensor` of arbitrary shape and whose values are in
|
|
+ the range `[0, 1]`.
|
|
+ thresholds: A float value or a python list or tuple of float thresholds in
|
|
+ `[0, 1]`, or NEG_INF (used when top_k is set).
|
|
+ top_k: Optional int, indicates that the positive labels should be limited to
|
|
+ the top k predictions.
|
|
+ class_id: Optional int, limits the prediction and labels to the class
|
|
+ specified by this argument.
|
|
+ sample_weight: Optional `Tensor` whose rank is either 0, or the same rank as
|
|
+ `y_true`, and must be broadcastable to `y_true` (i.e., all dimensions must
|
|
+ be either `1`, or the same as the corresponding `y_true` dimension).
|
|
+ # Returns
|
|
+ Update ops.
|
|
+ # Raises
|
|
+ ValueError: If `y_pred` and `y_true` have mismatched shapes, or if
|
|
+ `sample_weight` is not `None` and its shape doesn't match `y_pred`, or if
|
|
+ `variables_to_update` contains invalid keys.
|
|
+ """
|
|
+ if variables_to_update is None:
|
|
+ return
|
|
+ y_true = K.cast(y_true, dtype=K.floatx())
|
|
+ y_pred = K.cast(y_pred, dtype=K.floatx())
|
|
+ if sample_weight is not None:
|
|
+ sample_weight = K.cast(sample_weight, dtype=K.floatx())
|
|
+
|
|
+ if not any(key
|
|
+ for key in variables_to_update
|
|
+ if key in list(ConfusionMatrix)):
|
|
+ raise ValueError(
|
|
+ 'Please provide at least one valid confusion matrix '
|
|
+ 'variable to update. Valid variable key options are: "{}". '
|
|
+ 'Received: "{}"'.format(
|
|
+ list(ConfusionMatrix), variables_to_update.keys()))
|
|
+
|
|
+ invalid_keys = [
|
|
+ key for key in variables_to_update if key not in list(ConfusionMatrix)
|
|
+ ]
|
|
+ if invalid_keys:
|
|
+ raise ValueError(
|
|
+ 'Invalid keys: {}. Valid variable key options are: "{}"'.format(
|
|
+ invalid_keys, list(ConfusionMatrix)))
|
|
+
|
|
+ if sample_weight is None:
|
|
+ y_pred, y_true = losses_utils.squeeze_or_expand_dimensions(
|
|
+ y_pred, y_true=y_true)
|
|
+ else:
|
|
+ y_pred, y_true, sample_weight = (
|
|
+ losses_utils.squeeze_or_expand_dimensions(
|
|
+ y_pred, y_true=y_true, sample_weight=sample_weight))
|
|
+
|
|
+ if top_k is not None:
|
|
+ y_pred = _filter_top_k(y_pred, top_k)
|
|
+ if class_id is not None:
|
|
+ y_true = y_true[..., class_id]
|
|
+ y_pred = y_pred[..., class_id]
|
|
+
|
|
+ thresholds = to_list(thresholds)
|
|
+ num_thresholds = len(thresholds)
|
|
+ num_predictions = K.size(y_pred)
|
|
+
|
|
+ # Reshape predictions and labels.
|
|
+ predictions_2d = K.reshape(y_pred, [1, -1])
|
|
+ labels_2d = K.reshape(
|
|
+ K.cast(y_true, dtype='bool'), [1, -1])
|
|
+
|
|
+ # Tile the thresholds for every prediction.
|
|
+ thresh_tiled = K.tile(
|
|
+ K.expand_dims(K.constant(thresholds), 1),
|
|
+ K.stack([1, num_predictions]))
|
|
+
|
|
+ # Tile the predictions for every threshold.
|
|
+ preds_tiled = K.tile(predictions_2d, [num_thresholds, 1])
|
|
+
|
|
+ # Compare predictions and threshold.
|
|
+ pred_is_pos = K.greater(preds_tiled, thresh_tiled)
|
|
+ pred_is_neg = K.greater(thresh_tiled, preds_tiled)
|
|
+
|
|
+ # Tile labels by number of thresholds
|
|
+ label_is_pos = K.tile(labels_2d, [num_thresholds, 1])
|
|
+
|
|
+ if sample_weight is not None:
|
|
+ weights = losses_utils.broadcast_weights(
|
|
+ y_pred, K.cast(sample_weight, dtype=K.floatx()))
|
|
+ weights_tiled = K.tile(
|
|
+ K.reshape(weights, [1, -1]), [num_thresholds, 1])
|
|
+ else:
|
|
+ weights_tiled = None
|
|
+
|
|
+ update_ops = []
|
|
+ loop_vars = {
|
|
+ ConfusionMatrix.TRUE_POSITIVES: (label_is_pos, pred_is_pos),
|
|
+ }
|
|
+ update_tn = ConfusionMatrix.TRUE_NEGATIVES in variables_to_update
|
|
+ update_fp = ConfusionMatrix.FALSE_POSITIVES in variables_to_update
|
|
+ update_fn = ConfusionMatrix.FALSE_NEGATIVES in variables_to_update
|
|
+
|
|
+ if update_fn or update_tn:
|
|
+ loop_vars[ConfusionMatrix.FALSE_NEGATIVES] = (label_is_pos, pred_is_neg)
|
|
+
|
|
+ if update_fp or update_tn:
|
|
+ label_is_neg = K.equal(
|
|
+ label_is_pos, K.zeros_like(label_is_pos, dtype=label_is_pos.dtype))
|
|
+ loop_vars[ConfusionMatrix.FALSE_POSITIVES] = (label_is_neg, pred_is_pos)
|
|
+ if update_tn:
|
|
+ loop_vars[ConfusionMatrix.TRUE_NEGATIVES] = (label_is_neg, pred_is_neg)
|
|
+
|
|
+ for matrix_cond, (label, pred) in loop_vars.items():
|
|
+ if matrix_cond in variables_to_update:
|
|
+ update_ops.append(
|
|
+ weighted_assign_add(label, pred, weights_tiled,
|
|
+ variables_to_update[matrix_cond]))
|
|
+ return update_ops
|
|
+
|
|
--
|
|
2.26.2
|
|
|