about summary refs log tree commit diff
path: root/.venv/lib/python3.12/site-packages/core/agent/base.py
blob: 84aae3f23648774cbdd3aa6a3b8d66ed99e091aa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
import asyncio
import json
import logging
import re
from abc import ABCMeta
from typing import AsyncGenerator, Optional, Tuple

from core.base import AsyncSyncMeta, LLMChatCompletion, Message, syncable
from core.base.agent import Agent, Conversation
from core.utils import (
    CitationTracker,
    SearchResultsCollector,
    SSEFormatter,
    convert_nonserializable_objects,
    dump_obj,
    find_new_citation_spans,
)

logger = logging.getLogger()


class CombinedMeta(AsyncSyncMeta, ABCMeta):
    pass


def sync_wrapper(async_gen):
    loop = asyncio.get_event_loop()

    def wrapper():
        try:
            while True:
                try:
                    yield loop.run_until_complete(async_gen.__anext__())
                except StopAsyncIteration:
                    break
        finally:
            loop.run_until_complete(async_gen.aclose())

    return wrapper()


class R2RAgent(Agent, metaclass=CombinedMeta):
    def __init__(self, *args, **kwargs):
        self.search_results_collector = SearchResultsCollector()
        super().__init__(*args, **kwargs)
        self._reset()

    async def _generate_llm_summary(self, iterations_count: int) -> str:
        """
        Generate a summary of the conversation using the LLM when max iterations are exceeded.

        Args:
            iterations_count: The number of iterations that were completed

        Returns:
            A string containing the LLM-generated summary
        """
        try:
            # Get all messages in the conversation
            all_messages = await self.conversation.get_messages()

            # Create a prompt for the LLM to summarize
            summary_prompt = {
                "role": "user",
                "content": (
                    f"The conversation has reached the maximum limit of {iterations_count} iterations "
                    f"without completing the task. Please provide a concise summary of: "
                    f"1) The key information you've gathered that's relevant to the original query, "
                    f"2) What you've attempted so far and why it's incomplete, and "
                    f"3) A specific recommendation for how to proceed. "
                    f"Keep your summary brief (3-4 sentences total) and focused on the most valuable insights. If it is possible to answer the original user query, then do so now instead."
                    f"Start with '⚠️ **Maximum iterations exceeded**'"
                ),
            }

            # Create a new message list with just the conversation history and summary request
            summary_messages = all_messages + [summary_prompt]

            # Get a completion for the summary
            generation_config = self.get_generation_config(summary_prompt)
            response = await self.llm_provider.aget_completion(
                summary_messages,
                generation_config,
            )

            return response.choices[0].message.content
        except Exception as e:
            logger.error(f"Error generating LLM summary: {str(e)}")
            # Fall back to basic summary if LLM generation fails
            return (
                "⚠️ **Maximum iterations exceeded**\n\n"
                "The agent reached the maximum iteration limit without completing the task. "
                "Consider breaking your request into smaller steps or refining your query."
            )

    def _reset(self):
        self._completed = False
        self.conversation = Conversation()

    @syncable
    async def arun(
        self,
        messages: list[Message],
        system_instruction: Optional[str] = None,
        *args,
        **kwargs,
    ) -> list[dict]:
        self._reset()
        await self._setup(system_instruction)

        if messages:
            for message in messages:
                await self.conversation.add_message(message)
        iterations_count = 0
        while (
            not self._completed
            and iterations_count < self.config.max_iterations
        ):
            iterations_count += 1
            messages_list = await self.conversation.get_messages()
            generation_config = self.get_generation_config(messages_list[-1])
            response = await self.llm_provider.aget_completion(
                messages_list,
                generation_config,
            )
            logger.debug(f"R2RAgent response: {response}")
            await self.process_llm_response(response, *args, **kwargs)

        if not self._completed:
            # Generate a summary of the conversation using the LLM
            summary = await self._generate_llm_summary(iterations_count)
            await self.conversation.add_message(
                Message(role="assistant", content=summary)
            )

        # Return final content
        all_messages: list[dict] = await self.conversation.get_messages()
        all_messages.reverse()

        output_messages = []
        for message_2 in all_messages:
            if (
                # message_2.get("content")
                message_2.get("content") != messages[-1].content
            ):
                output_messages.append(message_2)
            else:
                break
        output_messages.reverse()

        return output_messages

    async def process_llm_response(
        self, response: LLMChatCompletion, *args, **kwargs
    ) -> None:
        if not self._completed:
            message = response.choices[0].message
            finish_reason = response.choices[0].finish_reason

            if finish_reason == "stop":
                self._completed = True

            # Determine which provider we're using
            using_anthropic = (
                "anthropic" in self.rag_generation_config.model.lower()
            )

            # OPENAI HANDLING
            if not using_anthropic:
                if message.tool_calls:
                    assistant_msg = Message(
                        role="assistant",
                        content="",
                        tool_calls=[msg.dict() for msg in message.tool_calls],
                    )
                    await self.conversation.add_message(assistant_msg)

                    # If there are multiple tool_calls, call them sequentially here
                    for tool_call in message.tool_calls:
                        await self.handle_function_or_tool_call(
                            tool_call.function.name,
                            tool_call.function.arguments,
                            tool_id=tool_call.id,
                            *args,
                            **kwargs,
                        )
                else:
                    await self.conversation.add_message(
                        Message(role="assistant", content=message.content)
                    )
                    self._completed = True

            else:
                # First handle thinking blocks if present
                if (
                    hasattr(message, "structured_content")
                    and message.structured_content
                ):
                    # Check if structured_content contains any tool_use blocks
                    has_tool_use = any(
                        block.get("type") == "tool_use"
                        for block in message.structured_content
                    )

                    if not has_tool_use and message.tool_calls:
                        # If it has thinking but no tool_use, add a separate message with structured_content
                        assistant_msg = Message(
                            role="assistant",
                            structured_content=message.structured_content,  # Use structured_content field
                        )
                        await self.conversation.add_message(assistant_msg)

                        # Add explicit tool_use blocks in a separate message
                        tool_uses = []
                        for tool_call in message.tool_calls:
                            # Safely parse arguments if they're a string
                            try:
                                if isinstance(
                                    tool_call.function.arguments, str
                                ):
                                    input_args = json.loads(
                                        tool_call.function.arguments
                                    )
                                else:
                                    input_args = tool_call.function.arguments
                            except json.JSONDecodeError:
                                logger.error(
                                    f"Failed to parse tool arguments: {tool_call.function.arguments}"
                                )
                                input_args = {
                                    "_raw": tool_call.function.arguments
                                }

                            tool_uses.append(
                                {
                                    "type": "tool_use",
                                    "id": tool_call.id,
                                    "name": tool_call.function.name,
                                    "input": input_args,
                                }
                            )

                        # Add tool_use blocks as a separate assistant message with structured content
                        if tool_uses:
                            await self.conversation.add_message(
                                Message(
                                    role="assistant",
                                    structured_content=tool_uses,
                                    content="",
                                )
                            )
                    else:
                        # If it already has tool_use or no tool_calls, preserve original structure
                        assistant_msg = Message(
                            role="assistant",
                            structured_content=message.structured_content,
                        )
                        await self.conversation.add_message(assistant_msg)

                elif message.content:
                    # For regular text content
                    await self.conversation.add_message(
                        Message(role="assistant", content=message.content)
                    )

                    # If there are tool calls, add them as structured content
                    if message.tool_calls:
                        tool_uses = []
                        for tool_call in message.tool_calls:
                            # Same safe parsing as above
                            try:
                                if isinstance(
                                    tool_call.function.arguments, str
                                ):
                                    input_args = json.loads(
                                        tool_call.function.arguments
                                    )
                                else:
                                    input_args = tool_call.function.arguments
                            except json.JSONDecodeError:
                                logger.error(
                                    f"Failed to parse tool arguments: {tool_call.function.arguments}"
                                )
                                input_args = {
                                    "_raw": tool_call.function.arguments
                                }

                            tool_uses.append(
                                {
                                    "type": "tool_use",
                                    "id": tool_call.id,
                                    "name": tool_call.function.name,
                                    "input": input_args,
                                }
                            )

                        await self.conversation.add_message(
                            Message(
                                role="assistant", structured_content=tool_uses
                            )
                        )

                # NEW CASE: Handle tool_calls with no content or structured_content
                elif message.tool_calls:
                    # Create tool_uses for the message with only tool_calls
                    tool_uses = []
                    for tool_call in message.tool_calls:
                        try:
                            if isinstance(tool_call.function.arguments, str):
                                input_args = json.loads(
                                    tool_call.function.arguments
                                )
                            else:
                                input_args = tool_call.function.arguments
                        except json.JSONDecodeError:
                            logger.error(
                                f"Failed to parse tool arguments: {tool_call.function.arguments}"
                            )
                            input_args = {"_raw": tool_call.function.arguments}

                        tool_uses.append(
                            {
                                "type": "tool_use",
                                "id": tool_call.id,
                                "name": tool_call.function.name,
                                "input": input_args,
                            }
                        )

                    # Add tool_use blocks as a message before processing tools
                    if tool_uses:
                        await self.conversation.add_message(
                            Message(
                                role="assistant",
                                structured_content=tool_uses,
                            )
                        )

                # Process the tool calls
                if message.tool_calls:
                    for tool_call in message.tool_calls:
                        await self.handle_function_or_tool_call(
                            tool_call.function.name,
                            tool_call.function.arguments,
                            tool_id=tool_call.id,
                            *args,
                            **kwargs,
                        )


class R2RStreamingAgent(R2RAgent):
    """
    Base class for all streaming agents with core streaming functionality.
    Supports emitting messages, tool calls, and results as SSE events.
    """

    # These two regexes will detect bracket references and then find short IDs.
    BRACKET_PATTERN = re.compile(r"\[([^\]]+)\]")
    SHORT_ID_PATTERN = re.compile(
        r"[A-Za-z0-9]{7,8}"
    )  # 7-8 chars, for example

    def __init__(self, *args, **kwargs):
        # Force streaming on
        if hasattr(kwargs.get("config", {}), "stream"):
            kwargs["config"].stream = True
        super().__init__(*args, **kwargs)

    async def arun(
        self,
        system_instruction: str | None = None,
        messages: list[Message] | None = None,
        *args,
        **kwargs,
    ) -> AsyncGenerator[str, None]:
        """
        Main streaming entrypoint: returns an async generator of SSE lines.
        """
        self._reset()
        await self._setup(system_instruction)

        if messages:
            for m in messages:
                await self.conversation.add_message(m)

        # Initialize citation tracker for this run
        citation_tracker = CitationTracker()

        # Dictionary to store citation payloads by ID
        citation_payloads = {}

        # Track all citations emitted during streaming for final persistence
        self.streaming_citations: list[dict] = []

        async def sse_generator() -> AsyncGenerator[str, None]:
            pending_tool_calls = {}
            partial_text_buffer = ""
            iterations_count = 0

            try:
                # Keep streaming until we complete
                while (
                    not self._completed
                    and iterations_count < self.config.max_iterations
                ):
                    iterations_count += 1
                    # 1) Get current messages
                    msg_list = await self.conversation.get_messages()
                    gen_cfg = self.get_generation_config(
                        msg_list[-1], stream=True
                    )

                    accumulated_thinking = ""
                    thinking_signatures = {}  # Map thinking content to signatures

                    # 2) Start streaming from LLM
                    llm_stream = self.llm_provider.aget_completion_stream(
                        msg_list, gen_cfg
                    )
                    async for chunk in llm_stream:
                        delta = chunk.choices[0].delta
                        finish_reason = chunk.choices[0].finish_reason

                        if hasattr(delta, "thinking") and delta.thinking:
                            # Accumulate thinking for later use in messages
                            accumulated_thinking += delta.thinking

                            # Emit SSE "thinking" event
                            async for (
                                line
                            ) in SSEFormatter.yield_thinking_event(
                                delta.thinking
                            ):
                                yield line

                        # Add this new handler for thinking signatures
                        if hasattr(delta, "thinking_signature"):
                            thinking_signatures[accumulated_thinking] = (
                                delta.thinking_signature
                            )
                            accumulated_thinking = ""

                        # 3) If new text, accumulate it
                        if delta.content:
                            partial_text_buffer += delta.content

                            # (a) Now emit the newly streamed text as a "message" event
                            async for line in SSEFormatter.yield_message_event(
                                delta.content
                            ):
                                yield line

                            # (b) Find new citation spans in the accumulated text
                            new_citation_spans = find_new_citation_spans(
                                partial_text_buffer, citation_tracker
                            )

                            # Process each new citation span
                            for cid, spans in new_citation_spans.items():
                                for span in spans:
                                    # Check if this is the first time we've seen this citation ID
                                    is_new_citation = (
                                        citation_tracker.is_new_citation(cid)
                                    )

                                    # Get payload if it's a new citation
                                    payload = None
                                    if is_new_citation:
                                        source_obj = self.search_results_collector.find_by_short_id(
                                            cid
                                        )
                                        if source_obj:
                                            # Store payload for reuse
                                            payload = dump_obj(source_obj)
                                            citation_payloads[cid] = payload

                                    # Create citation event payload
                                    citation_data = {
                                        "id": cid,
                                        "object": "citation",
                                        "is_new": is_new_citation,
                                        "span": {
                                            "start": span[0],
                                            "end": span[1],
                                        },
                                    }

                                    # Only include full payload for new citations
                                    if is_new_citation and payload:
                                        citation_data["payload"] = payload

                                    # Add to streaming citations for final answer
                                    self.streaming_citations.append(
                                        citation_data
                                    )

                                    # Emit the citation event
                                    async for (
                                        line
                                    ) in SSEFormatter.yield_citation_event(
                                        citation_data
                                    ):
                                        yield line

                        if delta.tool_calls:
                            for tc in delta.tool_calls:
                                idx = tc.index
                                if idx not in pending_tool_calls:
                                    pending_tool_calls[idx] = {
                                        "id": tc.id,
                                        "name": tc.function.name or "",
                                        "arguments": tc.function.arguments
                                        or "",
                                    }
                                else:
                                    # Accumulate partial name/arguments
                                    if tc.function.name:
                                        pending_tool_calls[idx]["name"] = (
                                            tc.function.name
                                        )
                                    if tc.function.arguments:
                                        pending_tool_calls[idx][
                                            "arguments"
                                        ] += tc.function.arguments

                        # 5) If the stream signals we should handle "tool_calls"
                        if finish_reason == "tool_calls":
                            # Handle thinking if present
                            await self._handle_thinking(
                                thinking_signatures, accumulated_thinking
                            )

                            calls_list = []
                            for idx in sorted(pending_tool_calls.keys()):
                                cinfo = pending_tool_calls[idx]
                                calls_list.append(
                                    {
                                        "tool_call_id": cinfo["id"]
                                        or f"call_{idx}",
                                        "name": cinfo["name"],
                                        "arguments": cinfo["arguments"],
                                    }
                                )

                            # (a) Emit SSE "tool_call" events
                            for c in calls_list:
                                tc_data = self._create_tool_call_data(c)
                                async for (
                                    line
                                ) in SSEFormatter.yield_tool_call_event(
                                    tc_data
                                ):
                                    yield line

                            # (b) Add an assistant message capturing these calls
                            await self._add_tool_calls_message(
                                calls_list, partial_text_buffer
                            )

                            # (c) Execute each tool call in parallel
                            await asyncio.gather(
                                *[
                                    self.handle_function_or_tool_call(
                                        c["name"],
                                        c["arguments"],
                                        tool_id=c["tool_call_id"],
                                    )
                                    for c in calls_list
                                ]
                            )

                            # Reset buffer & calls
                            pending_tool_calls.clear()
                            partial_text_buffer = ""

                        elif finish_reason == "stop":
                            # Handle thinking if present
                            await self._handle_thinking(
                                thinking_signatures, accumulated_thinking
                            )

                            # 6) The LLM is done. If we have any leftover partial text,
                            #    finalize it in the conversation
                            if partial_text_buffer:
                                # Create the final message with metadata including citations
                                final_message = Message(
                                    role="assistant",
                                    content=partial_text_buffer,
                                    metadata={
                                        "citations": self.streaming_citations
                                    },
                                )

                                # Add it to the conversation
                                await self.conversation.add_message(
                                    final_message
                                )

                            # (a) Prepare final answer with optimized citations
                            consolidated_citations = []
                            # Group citations by ID with all their spans
                            for (
                                cid,
                                spans,
                            ) in citation_tracker.get_all_spans().items():
                                if cid in citation_payloads:
                                    consolidated_citations.append(
                                        {
                                            "id": cid,
                                            "object": "citation",
                                            "spans": [
                                                {"start": s[0], "end": s[1]}
                                                for s in spans
                                            ],
                                            "payload": citation_payloads[cid],
                                        }
                                    )

                            # Create final answer payload
                            final_evt_payload = {
                                "id": "msg_final",
                                "object": "agent.final_answer",
                                "generated_answer": partial_text_buffer,
                                "citations": consolidated_citations,
                            }

                            # Emit final answer event
                            async for (
                                line
                            ) in SSEFormatter.yield_final_answer_event(
                                final_evt_payload
                            ):
                                yield line

                            # (b) Signal the end of the SSE stream
                            yield SSEFormatter.yield_done_event()
                            self._completed = True
                            break

                # If we exit the while loop due to hitting max iterations
                if not self._completed:
                    # Generate a summary using the LLM
                    summary = await self._generate_llm_summary(
                        iterations_count
                    )

                    # Send the summary as a message event
                    async for line in SSEFormatter.yield_message_event(
                        summary
                    ):
                        yield line

                    # Add summary to conversation with citations metadata
                    await self.conversation.add_message(
                        Message(
                            role="assistant",
                            content=summary,
                            metadata={"citations": self.streaming_citations},
                        )
                    )

                    # Create and emit a final answer payload with the summary
                    final_evt_payload = {
                        "id": "msg_final",
                        "object": "agent.final_answer",
                        "generated_answer": summary,
                        "citations": consolidated_citations,
                    }

                    async for line in SSEFormatter.yield_final_answer_event(
                        final_evt_payload
                    ):
                        yield line

                    # Signal the end of the SSE stream
                    yield SSEFormatter.yield_done_event()
                    self._completed = True

            except Exception as e:
                logger.error(f"Error in streaming agent: {str(e)}")
                # Emit error event for client
                async for line in SSEFormatter.yield_error_event(
                    f"Agent error: {str(e)}"
                ):
                    yield line
                # Send done event to close the stream
                yield SSEFormatter.yield_done_event()

        # Finally, we return the async generator
        async for line in sse_generator():
            yield line

    async def _handle_thinking(
        self, thinking_signatures, accumulated_thinking
    ):
        """Process any accumulated thinking content"""
        if accumulated_thinking:
            structured_content = [
                {
                    "type": "thinking",
                    "thinking": accumulated_thinking,
                    # Anthropic will validate this in their API
                    "signature": "placeholder_signature",
                }
            ]

            assistant_msg = Message(
                role="assistant",
                structured_content=structured_content,
            )
            await self.conversation.add_message(assistant_msg)

        elif thinking_signatures:
            for (
                accumulated_thinking,
                thinking_signature,
            ) in thinking_signatures.items():
                structured_content = [
                    {
                        "type": "thinking",
                        "thinking": accumulated_thinking,
                        # Anthropic will validate this in their API
                        "signature": thinking_signature,
                    }
                ]

                assistant_msg = Message(
                    role="assistant",
                    structured_content=structured_content,
                )
                await self.conversation.add_message(assistant_msg)

    async def _add_tool_calls_message(self, calls_list, partial_text_buffer):
        """Add a message with tool calls to the conversation"""
        assistant_msg = Message(
            role="assistant",
            content=partial_text_buffer or "",
            tool_calls=[
                {
                    "id": c["tool_call_id"],
                    "type": "function",
                    "function": {
                        "name": c["name"],
                        "arguments": c["arguments"],
                    },
                }
                for c in calls_list
            ],
        )
        await self.conversation.add_message(assistant_msg)

    def _create_tool_call_data(self, call_info):
        """Create tool call data structure from call info"""
        return {
            "tool_call_id": call_info["tool_call_id"],
            "name": call_info["name"],
            "arguments": call_info["arguments"],
        }

    def _create_citation_payload(self, short_id, payload):
        """Create citation payload for a short ID"""
        # This will be overridden in RAG subclasses
        # check if as_dict is on payload
        if hasattr(payload, "as_dict"):
            payload = payload.as_dict()
        if hasattr(payload, "dict"):
            payload = payload.dict
        if hasattr(payload, "to_dict"):
            payload = payload.to_dict()

        return {
            "id": f"{short_id}",
            "object": "citation",
            "payload": dump_obj(payload),  # Will be populated in RAG agents
        }

    def _create_final_answer_payload(self, answer_text, citations):
        """Create the final answer payload"""
        # This will be extended in RAG subclasses
        return {
            "id": "msg_final",
            "object": "agent.final_answer",
            "generated_answer": answer_text,
            "citations": citations,
        }


class R2RXMLStreamingAgent(R2RStreamingAgent):
    """
    A streaming agent that parses XML-formatted responses with special handling for:
     - <think> or <Thought> blocks for chain-of-thought reasoning
     - <Action>, <ToolCalls>, <ToolCall> blocks for tool execution
    """

    # We treat <think> or <Thought> as the same token boundaries
    THOUGHT_OPEN = re.compile(r"<(Thought|think)>", re.IGNORECASE)
    THOUGHT_CLOSE = re.compile(r"</(Thought|think)>", re.IGNORECASE)

    # Regexes to parse out <Action>, <ToolCalls>, <ToolCall>, <Name>, <Parameters>, <Response>
    ACTION_PATTERN = re.compile(
        r"<Action>(.*?)</Action>", re.IGNORECASE | re.DOTALL
    )
    TOOLCALLS_PATTERN = re.compile(
        r"<ToolCalls>(.*?)</ToolCalls>", re.IGNORECASE | re.DOTALL
    )
    TOOLCALL_PATTERN = re.compile(
        r"<ToolCall>(.*?)</ToolCall>", re.IGNORECASE | re.DOTALL
    )
    NAME_PATTERN = re.compile(r"<Name>(.*?)</Name>", re.IGNORECASE | re.DOTALL)
    PARAMS_PATTERN = re.compile(
        r"<Parameters>(.*?)</Parameters>", re.IGNORECASE | re.DOTALL
    )
    RESPONSE_PATTERN = re.compile(
        r"<Response>(.*?)</Response>", re.IGNORECASE | re.DOTALL
    )

    async def arun(
        self,
        system_instruction: str | None = None,
        messages: list[Message] | None = None,
        *args,
        **kwargs,
    ) -> AsyncGenerator[str, None]:
        """
        Main streaming entrypoint: returns an async generator of SSE lines.
        """
        self._reset()
        await self._setup(system_instruction)

        if messages:
            for m in messages:
                await self.conversation.add_message(m)

        # Initialize citation tracker for this run
        citation_tracker = CitationTracker()

        # Dictionary to store citation payloads by ID
        citation_payloads = {}

        # Track all citations emitted during streaming for final persistence
        self.streaming_citations: list[dict] = []

        async def sse_generator() -> AsyncGenerator[str, None]:
            iterations_count = 0

            try:
                # Keep streaming until we complete
                while (
                    not self._completed
                    and iterations_count < self.config.max_iterations
                ):
                    iterations_count += 1
                    # 1) Get current messages
                    msg_list = await self.conversation.get_messages()
                    gen_cfg = self.get_generation_config(
                        msg_list[-1], stream=True
                    )

                    # 2) Start streaming from LLM
                    llm_stream = self.llm_provider.aget_completion_stream(
                        msg_list, gen_cfg
                    )

                    # Create state variables for each iteration
                    iteration_buffer = ""
                    yielded_first_event = False
                    in_action_block = False
                    is_thinking = False
                    accumulated_thinking = ""
                    thinking_signatures = {}

                    async for chunk in llm_stream:
                        delta = chunk.choices[0].delta
                        finish_reason = chunk.choices[0].finish_reason

                        # Handle thinking if present
                        if hasattr(delta, "thinking") and delta.thinking:
                            # Accumulate thinking for later use in messages
                            accumulated_thinking += delta.thinking

                            # Emit SSE "thinking" event
                            async for (
                                line
                            ) in SSEFormatter.yield_thinking_event(
                                delta.thinking
                            ):
                                yield line

                        # Add this new handler for thinking signatures
                        if hasattr(delta, "thinking_signature"):
                            thinking_signatures[accumulated_thinking] = (
                                delta.thinking_signature
                            )
                            accumulated_thinking = ""

                        # 3) If new text, accumulate it
                        if delta.content:
                            iteration_buffer += delta.content

                            # Check if we have accumulated enough text for a `<Thought>` block
                            if len(iteration_buffer) < len("<Thought>"):
                                continue

                            # Check if we have yielded the first event
                            if not yielded_first_event:
                                # Emit the first chunk
                                if self.THOUGHT_OPEN.findall(iteration_buffer):
                                    is_thinking = True
                                    async for (
                                        line
                                    ) in SSEFormatter.yield_thinking_event(
                                        iteration_buffer
                                    ):
                                        yield line
                                else:
                                    async for (
                                        line
                                    ) in SSEFormatter.yield_message_event(
                                        iteration_buffer
                                    ):
                                        yield line

                                # Mark as yielded
                                yielded_first_event = True
                                continue

                            # Check if we are in a thinking block
                            if is_thinking:
                                # Still thinking, so keep yielding thinking events
                                if not self.THOUGHT_CLOSE.findall(
                                    iteration_buffer
                                ):
                                    # Emit SSE "thinking" event
                                    async for (
                                        line
                                    ) in SSEFormatter.yield_thinking_event(
                                        delta.content
                                    ):
                                        yield line

                                    continue
                                # Done thinking, so emit the last thinking event
                                else:
                                    is_thinking = False
                                    thought_text = delta.content.split(
                                        "</Thought>"
                                    )[0].split("</think>")[0]
                                    async for (
                                        line
                                    ) in SSEFormatter.yield_thinking_event(
                                        thought_text
                                    ):
                                        yield line
                                    post_thought_text = delta.content.split(
                                        "</Thought>"
                                    )[-1].split("</think>")[-1]
                                    delta.content = post_thought_text

                            # (b) Find new citation spans in the accumulated text
                            new_citation_spans = find_new_citation_spans(
                                iteration_buffer, citation_tracker
                            )

                            # Process each new citation span
                            for cid, spans in new_citation_spans.items():
                                for span in spans:
                                    # Check if this is the first time we've seen this citation ID
                                    is_new_citation = (
                                        citation_tracker.is_new_citation(cid)
                                    )

                                    # Get payload if it's a new citation
                                    payload = None
                                    if is_new_citation:
                                        source_obj = self.search_results_collector.find_by_short_id(
                                            cid
                                        )
                                        if source_obj:
                                            # Store payload for reuse
                                            payload = dump_obj(source_obj)
                                            citation_payloads[cid] = payload

                                    # Create citation event payload
                                    citation_data = {
                                        "id": cid,
                                        "object": "citation",
                                        "is_new": is_new_citation,
                                        "span": {
                                            "start": span[0],
                                            "end": span[1],
                                        },
                                    }

                                    # Only include full payload for new citations
                                    if is_new_citation and payload:
                                        citation_data["payload"] = payload

                                    # Add to streaming citations for final answer
                                    self.streaming_citations.append(
                                        citation_data
                                    )

                                    # Emit the citation event
                                    async for (
                                        line
                                    ) in SSEFormatter.yield_citation_event(
                                        citation_data
                                    ):
                                        yield line

                            # Now prepare to emit the newly streamed text as a "message" event
                            if (
                                iteration_buffer.count("<")
                                and not in_action_block
                            ):
                                in_action_block = True

                            if (
                                in_action_block
                                and len(
                                    self.ACTION_PATTERN.findall(
                                        iteration_buffer
                                    )
                                )
                                < 2
                            ):
                                continue

                            elif in_action_block:
                                in_action_block = False
                                # Emit the post action block text, if it is there
                                post_action_text = iteration_buffer.split(
                                    "</Action>"
                                )[-1]
                                if post_action_text:
                                    async for (
                                        line
                                    ) in SSEFormatter.yield_message_event(
                                        post_action_text
                                    ):
                                        yield line

                            else:
                                async for (
                                    line
                                ) in SSEFormatter.yield_message_event(
                                    delta.content
                                ):
                                    yield line

                        elif finish_reason == "stop":
                            break

                    # Process any accumulated thinking
                    await self._handle_thinking(
                        thinking_signatures, accumulated_thinking
                    )

                    # 6) The LLM is done. If we have any leftover partial text,
                    #    finalize it in the conversation
                    if iteration_buffer:
                        # Create the final message with metadata including citations
                        final_message = Message(
                            role="assistant",
                            content=iteration_buffer,
                            metadata={"citations": self.streaming_citations},
                        )

                        # Add it to the conversation
                        await self.conversation.add_message(final_message)

                    # --- 4) Process any <Action>/<ToolCalls> blocks, or mark completed
                    action_matches = self.ACTION_PATTERN.findall(
                        iteration_buffer
                    )

                    if len(action_matches) > 0:
                        # Process each ToolCall
                        xml_toolcalls = "<ToolCalls>"

                        for action_block in action_matches:
                            tool_calls_text = []
                            # Look for ToolCalls wrapper, or use the raw action block
                            calls_wrapper = self.TOOLCALLS_PATTERN.findall(
                                action_block
                            )
                            if calls_wrapper:
                                for tw in calls_wrapper:
                                    tool_calls_text.append(tw)
                            else:
                                tool_calls_text.append(action_block)

                            for calls_region in tool_calls_text:
                                calls_found = self.TOOLCALL_PATTERN.findall(
                                    calls_region
                                )
                                for tc_block in calls_found:
                                    tool_name, tool_params = (
                                        self._parse_single_tool_call(tc_block)
                                    )
                                    if tool_name:
                                        # Emit SSE event for tool call
                                        tool_call_id = (
                                            f"call_{abs(hash(tc_block))}"
                                        )
                                        call_evt_data = {
                                            "tool_call_id": tool_call_id,
                                            "name": tool_name,
                                            "arguments": json.dumps(
                                                tool_params
                                            ),
                                        }
                                        async for line in (
                                            SSEFormatter.yield_tool_call_event(
                                                call_evt_data
                                            )
                                        ):
                                            yield line

                                        try:
                                            tool_result = await self.handle_function_or_tool_call(
                                                tool_name,
                                                json.dumps(tool_params),
                                                tool_id=tool_call_id,
                                                save_messages=False,
                                            )
                                            result_content = tool_result.llm_formatted_result
                                        except Exception as e:
                                            result_content = f"Error in tool '{tool_name}': {str(e)}"

                                        xml_toolcalls += (
                                            f"<ToolCall>"
                                            f"<Name>{tool_name}</Name>"
                                            f"<Parameters>{json.dumps(tool_params)}</Parameters>"
                                            f"<Result>{result_content}</Result>"
                                            f"</ToolCall>"
                                        )

                                        # Emit SSE tool result for non-result tools
                                        result_data = {
                                            "tool_call_id": tool_call_id,
                                            "role": "tool",
                                            "content": json.dumps(
                                                convert_nonserializable_objects(
                                                    result_content
                                                )
                                            ),
                                        }
                                        async for line in SSEFormatter.yield_tool_result_event(
                                            result_data
                                        ):
                                            yield line

                        xml_toolcalls += "</ToolCalls>"
                        pre_action_text = iteration_buffer[
                            : iteration_buffer.find(action_block)
                        ]
                        post_action_text = iteration_buffer[
                            iteration_buffer.find(action_block)
                            + len(action_block) :
                        ]
                        iteration_text = (
                            pre_action_text + xml_toolcalls + post_action_text
                        )

                        # Update the conversation with tool results
                        await self.conversation.add_message(
                            Message(
                                role="assistant",
                                content=iteration_text,
                                metadata={
                                    "citations": self.streaming_citations
                                },
                            )
                        )
                    else:
                        # (a) Prepare final answer with optimized citations
                        consolidated_citations = []
                        # Group citations by ID with all their spans
                        for (
                            cid,
                            spans,
                        ) in citation_tracker.get_all_spans().items():
                            if cid in citation_payloads:
                                consolidated_citations.append(
                                    {
                                        "id": cid,
                                        "object": "citation",
                                        "spans": [
                                            {"start": s[0], "end": s[1]}
                                            for s in spans
                                        ],
                                        "payload": citation_payloads[cid],
                                    }
                                )

                        # Create final answer payload
                        final_evt_payload = {
                            "id": "msg_final",
                            "object": "agent.final_answer",
                            "generated_answer": iteration_buffer,
                            "citations": consolidated_citations,
                        }

                        # Emit final answer event
                        async for (
                            line
                        ) in SSEFormatter.yield_final_answer_event(
                            final_evt_payload
                        ):
                            yield line

                        # (b) Signal the end of the SSE stream
                        yield SSEFormatter.yield_done_event()
                        self._completed = True

                # If we exit the while loop due to hitting max iterations
                if not self._completed:
                    # Generate a summary using the LLM
                    summary = await self._generate_llm_summary(
                        iterations_count
                    )

                    # Send the summary as a message event
                    async for line in SSEFormatter.yield_message_event(
                        summary
                    ):
                        yield line

                    # Add summary to conversation with citations metadata
                    await self.conversation.add_message(
                        Message(
                            role="assistant",
                            content=summary,
                            metadata={"citations": self.streaming_citations},
                        )
                    )

                    # Create and emit a final answer payload with the summary
                    final_evt_payload = {
                        "id": "msg_final",
                        "object": "agent.final_answer",
                        "generated_answer": summary,
                        "citations": consolidated_citations,
                    }

                    async for line in SSEFormatter.yield_final_answer_event(
                        final_evt_payload
                    ):
                        yield line

                    # Signal the end of the SSE stream
                    yield SSEFormatter.yield_done_event()
                    self._completed = True

            except Exception as e:
                logger.error(f"Error in streaming agent: {str(e)}")
                # Emit error event for client
                async for line in SSEFormatter.yield_error_event(
                    f"Agent error: {str(e)}"
                ):
                    yield line
                # Send done event to close the stream
                yield SSEFormatter.yield_done_event()

        # Finally, we return the async generator
        async for line in sse_generator():
            yield line

    def _parse_single_tool_call(
        self, toolcall_text: str
    ) -> Tuple[Optional[str], dict]:
        """
        Parse a ToolCall block to extract the name and parameters.

        Args:
            toolcall_text: The text content of a ToolCall block

        Returns:
            Tuple of (tool_name, tool_parameters)
        """
        name_match = self.NAME_PATTERN.search(toolcall_text)
        if not name_match:
            return None, {}
        tool_name = name_match.group(1).strip()

        params_match = self.PARAMS_PATTERN.search(toolcall_text)
        if not params_match:
            return tool_name, {}

        raw_params = params_match.group(1).strip()
        try:
            # Handle potential JSON parsing issues
            # First try direct parsing
            tool_params = json.loads(raw_params)
        except json.JSONDecodeError:
            # If that fails, try to clean up the JSON string
            try:
                # Replace escaped quotes that might cause issues
                cleaned_params = raw_params.replace('\\"', '"')
                # Try again with the cleaned string
                tool_params = json.loads(cleaned_params)
            except json.JSONDecodeError:
                # If all else fails, treat as a plain string value
                tool_params = {"value": raw_params}

        return tool_name, tool_params


class R2RXMLToolsAgent(R2RAgent):
    """
    A non-streaming agent that:
     - parses <think> or <Thought> blocks as chain-of-thought
     - filters out XML tags related to tool calls and actions
     - processes <Action><ToolCalls><ToolCall> blocks
     - properly extracts citations when they appear in the text
    """

    # We treat <think> or <Thought> as the same token boundaries
    THOUGHT_OPEN = re.compile(r"<(Thought|think)>", re.IGNORECASE)
    THOUGHT_CLOSE = re.compile(r"</(Thought|think)>", re.IGNORECASE)

    # Regexes to parse out <Action>, <ToolCalls>, <ToolCall>, <Name>, <Parameters>, <Response>
    ACTION_PATTERN = re.compile(
        r"<Action>(.*?)</Action>", re.IGNORECASE | re.DOTALL
    )
    TOOLCALLS_PATTERN = re.compile(
        r"<ToolCalls>(.*?)</ToolCalls>", re.IGNORECASE | re.DOTALL
    )
    TOOLCALL_PATTERN = re.compile(
        r"<ToolCall>(.*?)</ToolCall>", re.IGNORECASE | re.DOTALL
    )
    NAME_PATTERN = re.compile(r"<Name>(.*?)</Name>", re.IGNORECASE | re.DOTALL)
    PARAMS_PATTERN = re.compile(
        r"<Parameters>(.*?)</Parameters>", re.IGNORECASE | re.DOTALL
    )
    RESPONSE_PATTERN = re.compile(
        r"<Response>(.*?)</Response>", re.IGNORECASE | re.DOTALL
    )

    async def process_llm_response(self, response, *args, **kwargs):
        """
        Override the base process_llm_response to handle XML structured responses
        including thoughts and tool calls.
        """
        if self._completed:
            return

        message = response.choices[0].message
        finish_reason = response.choices[0].finish_reason

        if not message.content:
            # If there's no content, let the parent class handle the normal tool_calls flow
            return await super().process_llm_response(
                response, *args, **kwargs
            )

        # Get the response content
        content = message.content

        # HACK for gemini
        content = content.replace("```action", "")
        content = content.replace("```tool_code", "")
        content = content.replace("```", "")

        if (
            not content.startswith("<")
            and "deepseek" in self.rag_generation_config.model
        ):  # HACK - fix issues with adding `<think>` to the beginning
            content = "<think>" + content

        # Process any tool calls in the content
        action_matches = self.ACTION_PATTERN.findall(content)
        if action_matches:
            xml_toolcalls = "<ToolCalls>"
            for action_block in action_matches:
                tool_calls_text = []
                # Look for ToolCalls wrapper, or use the raw action block
                calls_wrapper = self.TOOLCALLS_PATTERN.findall(action_block)
                if calls_wrapper:
                    for tw in calls_wrapper:
                        tool_calls_text.append(tw)
                else:
                    tool_calls_text.append(action_block)

                # Process each ToolCall
                for calls_region in tool_calls_text:
                    calls_found = self.TOOLCALL_PATTERN.findall(calls_region)
                    for tc_block in calls_found:
                        tool_name, tool_params = self._parse_single_tool_call(
                            tc_block
                        )
                        if tool_name:
                            tool_call_id = f"call_{abs(hash(tc_block))}"
                            try:
                                tool_result = (
                                    await self.handle_function_or_tool_call(
                                        tool_name,
                                        json.dumps(tool_params),
                                        tool_id=tool_call_id,
                                        save_messages=False,
                                    )
                                )

                                # Add tool result to XML
                                xml_toolcalls += (
                                    f"<ToolCall>"
                                    f"<Name>{tool_name}</Name>"
                                    f"<Parameters>{json.dumps(tool_params)}</Parameters>"
                                    f"<Result>{tool_result.llm_formatted_result}</Result>"
                                    f"</ToolCall>"
                                )

                            except Exception as e:
                                logger.error(f"Error in tool call: {str(e)}")
                                # Add error to XML
                                xml_toolcalls += (
                                    f"<ToolCall>"
                                    f"<Name>{tool_name}</Name>"
                                    f"<Parameters>{json.dumps(tool_params)}</Parameters>"
                                    f"<Result>Error: {str(e)}</Result>"
                                    f"</ToolCall>"
                                )

            xml_toolcalls += "</ToolCalls>"
            pre_action_text = content[: content.find(action_block)]
            post_action_text = content[
                content.find(action_block) + len(action_block) :
            ]
            iteration_text = pre_action_text + xml_toolcalls + post_action_text

            # Create the assistant message
            await self.conversation.add_message(
                Message(role="assistant", content=iteration_text)
            )
        else:
            # Create an assistant message with the content as-is
            await self.conversation.add_message(
                Message(role="assistant", content=content)
            )

        # Only mark as completed if the finish_reason is "stop" or there are no action calls
        # This allows the agent to continue the conversation when tool calls are processed
        if finish_reason == "stop":
            self._completed = True

    def _parse_single_tool_call(
        self, toolcall_text: str
    ) -> Tuple[Optional[str], dict]:
        """
        Parse a ToolCall block to extract the name and parameters.

        Args:
            toolcall_text: The text content of a ToolCall block

        Returns:
            Tuple of (tool_name, tool_parameters)
        """
        name_match = self.NAME_PATTERN.search(toolcall_text)
        if not name_match:
            return None, {}
        tool_name = name_match.group(1).strip()

        params_match = self.PARAMS_PATTERN.search(toolcall_text)
        if not params_match:
            return tool_name, {}

        raw_params = params_match.group(1).strip()
        try:
            # Handle potential JSON parsing issues
            # First try direct parsing
            tool_params = json.loads(raw_params)
        except json.JSONDecodeError:
            # If that fails, try to clean up the JSON string
            try:
                # Replace escaped quotes that might cause issues
                cleaned_params = raw_params.replace('\\"', '"')
                # Try again with the cleaned string
                tool_params = json.loads(cleaned_params)
            except json.JSONDecodeError:
                # If all else fails, treat as a plain string value
                tool_params = {"value": raw_params}

        return tool_name, tool_params