Metadata-Version: 2.4 Name: vecs Version: 0.4.5 Summary: pgvector client Home-page: https://github.com/supabase/vecs Author: Oliver Rice License: MIT Classifier: Development Status :: 4 - Beta Classifier: Natural Language :: English Classifier: Operating System :: OS Independent Classifier: Programming Language :: Python Classifier: Programming Language :: Python :: 3 Classifier: Programming Language :: Python :: 3.8 Classifier: Programming Language :: Python :: 3.9 Classifier: Programming Language :: Python :: 3.10 Classifier: Programming Language :: Python :: 3.11 Classifier: Programming Language :: Python :: 3.12 Description-Content-Type: text/markdown License-File: LICENSE Requires-Dist: pgvector==0.3.* Requires-Dist: sqlalchemy==2.* Requires-Dist: psycopg2-binary==2.9.* Requires-Dist: flupy==1.* Requires-Dist: deprecated==1.2.* Provides-Extra: dev Requires-Dist: pytest; extra == "dev" Requires-Dist: parse; extra == "dev" Requires-Dist: numpy; extra == "dev" Requires-Dist: pytest-cov; extra == "dev" Provides-Extra: docs Requires-Dist: mkdocs; extra == "docs" Requires-Dist: pygments; extra == "docs" Requires-Dist: pymdown-extensions; extra == "docs" Requires-Dist: pymarkdown; extra == "docs" Requires-Dist: mike; extra == "docs" Provides-Extra: text-embedding Requires-Dist: sentence-transformers==2.*; extra == "text-embedding" Dynamic: author Dynamic: classifier Dynamic: description Dynamic: description-content-type Dynamic: home-page Dynamic: license Dynamic: license-file Dynamic: provides-extra Dynamic: requires-dist Dynamic: summary # vecs

Python version test status Pre-commit Status

PyPI version License Download count

--- **Documentation**: https://supabase.github.io/vecs/latest/ **Source Code**: https://github.com/supabase/vecs --- `vecs` is a python client for managing and querying vector stores in PostgreSQL with the [pgvector extension](https://github.com/pgvector/pgvector). This guide will help you get started with using vecs. If you don't have a Postgres database with the pgvector ready, see [hosting](https://supabase.github.io/vecs/hosting/) for easy options. ## Installation Requires: - Python 3.7+ You can install vecs using pip: ```sh pip install vecs ``` ## Usage Visit the [quickstart guide](https://supabase.github.io/vecs/latest/api) for more complete info. ```python import vecs DB_CONNECTION = "postgresql://:@:/" # create vector store client vx = vecs.create_client(DB_CONNECTION) # create a collection of vectors with 3 dimensions docs = vx.get_or_create_collection(name="docs", dimension=3) # add records to the *docs* collection docs.upsert( records=[ ( "vec0", # the vector's identifier [0.1, 0.2, 0.3], # the vector. list or np.array {"year": 1973} # associated metadata ), ( "vec1", [0.7, 0.8, 0.9], {"year": 2012} ) ] ) # index the collection for fast search performance docs.create_index() # query the collection filtering metadata for "year" = 2012 docs.query( data=[0.4,0.5,0.6], # required limit=1, # number of records to return filters={"year": {"$eq": 2012}}, # metadata filters ) # Returns: ["vec1"] ```