from __future__ import annotations import base64 import hashlib import json import os import tempfile import uuid import requests def read_file(blobpath: str) -> bytes: if not blobpath.startswith("http://") and not blobpath.startswith("https://"): try: import blobfile except ImportError as e: raise ImportError( "blobfile is not installed. Please install it by running `pip install blobfile`." ) from e with blobfile.BlobFile(blobpath, "rb") as f: return f.read() # avoiding blobfile for public files helps avoid auth issues, like MFA prompts resp = requests.get(blobpath) resp.raise_for_status() return resp.content def check_hash(data: bytes, expected_hash: str) -> bool: actual_hash = hashlib.sha256(data).hexdigest() return actual_hash == expected_hash def read_file_cached(blobpath: str, expected_hash: str | None = None) -> bytes: user_specified_cache = True if "TIKTOKEN_CACHE_DIR" in os.environ: cache_dir = os.environ["TIKTOKEN_CACHE_DIR"] elif "DATA_GYM_CACHE_DIR" in os.environ: cache_dir = os.environ["DATA_GYM_CACHE_DIR"] else: cache_dir = os.path.join(tempfile.gettempdir(), "data-gym-cache") user_specified_cache = False if cache_dir == "": # disable caching return read_file(blobpath) cache_key = hashlib.sha1(blobpath.encode()).hexdigest() cache_path = os.path.join(cache_dir, cache_key) if os.path.exists(cache_path): with open(cache_path, "rb") as f: data = f.read() if expected_hash is None or check_hash(data, expected_hash): return data # the cached file does not match the hash, remove it and re-fetch try: os.remove(cache_path) except OSError: pass contents = read_file(blobpath) if expected_hash and not check_hash(contents, expected_hash): raise ValueError( f"Hash mismatch for data downloaded from {blobpath} (expected {expected_hash}). " f"This may indicate a corrupted download. Please try again." ) try: os.makedirs(cache_dir, exist_ok=True) tmp_filename = cache_path + "." + str(uuid.uuid4()) + ".tmp" with open(tmp_filename, "wb") as f: f.write(contents) os.rename(tmp_filename, cache_path) except OSError: # don't raise if we can't write to the default cache, e.g. issue #75 if user_specified_cache: raise return contents def data_gym_to_mergeable_bpe_ranks( vocab_bpe_file: str, encoder_json_file: str, vocab_bpe_hash: str | None = None, encoder_json_hash: str | None = None, ) -> dict[bytes, int]: # NB: do not add caching to this function rank_to_intbyte = [b for b in range(2**8) if chr(b).isprintable() and chr(b) != " "] data_gym_byte_to_byte = {chr(b): b for b in rank_to_intbyte} n = 0 for b in range(2**8): if b not in rank_to_intbyte: rank_to_intbyte.append(b) data_gym_byte_to_byte[chr(2**8 + n)] = b n += 1 assert len(rank_to_intbyte) == 2**8 # vocab_bpe contains the merges along with associated ranks vocab_bpe_contents = read_file_cached(vocab_bpe_file, vocab_bpe_hash).decode() bpe_merges = [tuple(merge_str.split()) for merge_str in vocab_bpe_contents.split("\n")[1:-1]] def decode_data_gym(value: str) -> bytes: return bytes(data_gym_byte_to_byte[b] for b in value) # add the single byte tokens bpe_ranks = {bytes([b]): i for i, b in enumerate(rank_to_intbyte)} # add the merged tokens n = len(bpe_ranks) for first, second in bpe_merges: bpe_ranks[decode_data_gym(first) + decode_data_gym(second)] = n n += 1 # check that the encoder file matches the merges file # this sanity check is important since tiktoken assumes that ranks are ordered the same # as merge priority encoder_json = json.loads(read_file_cached(encoder_json_file, encoder_json_hash)) encoder_json_loaded = {decode_data_gym(k): v for k, v in encoder_json.items()} # drop these two special tokens if present, since they're not mergeable bpe tokens encoder_json_loaded.pop(b"<|endoftext|>", None) encoder_json_loaded.pop(b"<|startoftext|>", None) assert bpe_ranks == encoder_json_loaded return bpe_ranks def dump_tiktoken_bpe(bpe_ranks: dict[bytes, int], tiktoken_bpe_file: str) -> None: try: import blobfile except ImportError as e: raise ImportError( "blobfile is not installed. Please install it by running `pip install blobfile`." ) from e with blobfile.BlobFile(tiktoken_bpe_file, "wb") as f: for token, rank in sorted(bpe_ranks.items(), key=lambda x: x[1]): f.write(base64.b64encode(token) + b" " + str(rank).encode() + b"\n") def load_tiktoken_bpe(tiktoken_bpe_file: str, expected_hash: str | None = None) -> dict[bytes, int]: # NB: do not add caching to this function contents = read_file_cached(tiktoken_bpe_file, expected_hash) return { base64.b64decode(token): int(rank) for token, rank in (line.split() for line in contents.splitlines() if line) }