"""Abstractions for the LLM model.""" import json from enum import Enum from typing import TYPE_CHECKING, Any, ClassVar, Optional from openai.types.chat import ChatCompletionChunk from pydantic import BaseModel, Field from .base import R2RSerializable if TYPE_CHECKING: from .search import AggregateSearchResult from typing_extensions import Literal class Function(BaseModel): arguments: str """ The arguments to call the function with, as generated by the model in JSON format. Note that the model does not always generate valid JSON, and may hallucinate parameters not defined by your function schema. Validate the arguments in your code before calling your function. """ name: str """The name of the function to call.""" class ChatCompletionMessageToolCall(BaseModel): id: str """The ID of the tool call.""" function: Function """The function that the model called.""" type: Literal["function"] """The type of the tool. Currently, only `function` is supported.""" class FunctionCall(BaseModel): arguments: str """ The arguments to call the function with, as generated by the model in JSON format. Note that the model does not always generate valid JSON, and may hallucinate parameters not defined by your function schema. Validate the arguments in your code before calling your function. """ name: str """The name of the function to call.""" class ChatCompletionMessage(BaseModel): content: Optional[str] = None """The contents of the message.""" refusal: Optional[str] = None """The refusal message generated by the model.""" role: Literal["assistant"] """The role of the author of this message.""" # audio: Optional[ChatCompletionAudio] = None """ If the audio output modality is requested, this object contains data about the audio response from the model. [Learn more](https://platform.openai.com/docs/guides/audio). """ function_call: Optional[FunctionCall] = None """Deprecated and replaced by `tool_calls`. The name and arguments of a function that should be called, as generated by the model. """ tool_calls: Optional[list[ChatCompletionMessageToolCall]] = None """The tool calls generated by the model, such as function calls.""" structured_content: Optional[list[dict]] = None class Choice(BaseModel): finish_reason: Literal[ "stop", "length", "tool_calls", "content_filter", "function_call", "max_tokens", ] """The reason the model stopped generating tokens. This will be `stop` if the model hit a natural stop point or a provided stop sequence, `length` if the maximum number of tokens specified in the request was reached, `content_filter` if content was omitted due to a flag from our content filters, `tool_calls` if the model called a tool, or `function_call` (deprecated) if the model called a function. """ index: int """The index of the choice in the list of choices.""" # logprobs: Optional[ChoiceLogprobs] = None """Log probability information for the choice.""" message: ChatCompletionMessage """A chat completion message generated by the model.""" class LLMChatCompletion(BaseModel): id: str """A unique identifier for the chat completion.""" choices: list[Choice] """A list of chat completion choices. Can be more than one if `n` is greater than 1. """ created: int """The Unix timestamp (in seconds) of when the chat completion was created.""" model: str """The model used for the chat completion.""" object: Literal["chat.completion"] """The object type, which is always `chat.completion`.""" service_tier: Optional[Literal["scale", "default"]] = None """The service tier used for processing the request.""" system_fingerprint: Optional[str] = None """This fingerprint represents the backend configuration that the model runs with. Can be used in conjunction with the `seed` request parameter to understand when backend changes have been made that might impact determinism. """ usage: Optional[Any] = None """Usage statistics for the completion request.""" LLMChatCompletionChunk = ChatCompletionChunk class RAGCompletion: completion: LLMChatCompletion search_results: "AggregateSearchResult" def __init__( self, completion: LLMChatCompletion, search_results: "AggregateSearchResult", ): self.completion = completion self.search_results = search_results class GenerationConfig(R2RSerializable): _defaults: ClassVar[dict] = { "model": None, "temperature": 0.1, "top_p": 1.0, "max_tokens_to_sample": 1024, "stream": False, "functions": None, "tools": None, "add_generation_kwargs": None, "api_base": None, "response_format": None, "extended_thinking": False, "thinking_budget": None, "reasoning_effort": None, } model: Optional[str] = Field( default_factory=lambda: GenerationConfig._defaults["model"] ) temperature: float = Field( default_factory=lambda: GenerationConfig._defaults["temperature"] ) top_p: Optional[float] = Field( default_factory=lambda: GenerationConfig._defaults["top_p"], ) max_tokens_to_sample: int = Field( default_factory=lambda: GenerationConfig._defaults[ "max_tokens_to_sample" ], ) stream: bool = Field( default_factory=lambda: GenerationConfig._defaults["stream"] ) functions: Optional[list[dict]] = Field( default_factory=lambda: GenerationConfig._defaults["functions"] ) tools: Optional[list[dict]] = Field( default_factory=lambda: GenerationConfig._defaults["tools"] ) add_generation_kwargs: Optional[dict] = Field( default_factory=lambda: GenerationConfig._defaults[ "add_generation_kwargs" ], ) api_base: Optional[str] = Field( default_factory=lambda: GenerationConfig._defaults["api_base"], ) response_format: Optional[dict | BaseModel] = None extended_thinking: bool = Field( default=False, description="Flag to enable extended thinking mode (for Anthropic providers)", ) thinking_budget: Optional[int] = Field( default=None, description=( "Token budget for internal reasoning when extended thinking mode is enabled. " "Must be less than max_tokens_to_sample." ), ) reasoning_effort: Optional[str] = Field( default=None, description=( "Effort level for internal reasoning when extended thinking mode is enabled, `low`, `medium`, or `high`." "Only applicable to OpenAI providers." ), ) @classmethod def set_default(cls, **kwargs): for key, value in kwargs.items(): if key in cls._defaults: cls._defaults[key] = value else: raise AttributeError( f"No default attribute '{key}' in GenerationConfig" ) def __init__(self, **data): # Handle max_tokens mapping to max_tokens_to_sample if "max_tokens" in data: # Only set max_tokens_to_sample if it's not already provided if "max_tokens_to_sample" not in data: data["max_tokens_to_sample"] = data.pop("max_tokens") else: # If both are provided, max_tokens_to_sample takes precedence data.pop("max_tokens") if ( "response_format" in data and isinstance(data["response_format"], type) and issubclass(data["response_format"], BaseModel) ): model_class = data["response_format"] data["response_format"] = { "type": "json_schema", "json_schema": { "name": model_class.__name__, "schema": model_class.model_json_schema(), }, } model = data.pop("model", None) if model is not None: super().__init__(model=model, **data) else: super().__init__(**data) def __str__(self): return json.dumps(self.to_dict()) class Config: populate_by_name = True json_schema_extra = { "example": { "model": "openai/gpt-4o", "temperature": 0.1, "top_p": 1.0, "max_tokens_to_sample": 1024, "stream": False, "functions": None, "tools": None, "add_generation_kwargs": None, "api_base": None, } } class MessageType(Enum): SYSTEM = "system" USER = "user" ASSISTANT = "assistant" FUNCTION = "function" TOOL = "tool" def __str__(self): return self.value class Message(R2RSerializable): role: MessageType | str content: Optional[Any] = None name: Optional[str] = None function_call: Optional[dict[str, Any]] = None tool_calls: Optional[list[dict[str, Any]]] = None tool_call_id: Optional[str] = None metadata: Optional[dict[str, Any]] = None structured_content: Optional[list[dict]] = None image_url: Optional[str] = None # For URL-based images image_data: Optional[dict[str, str]] = ( None # For base64 {media_type, data} ) class Config: populate_by_name = True json_schema_extra = { "example": { "role": "user", "content": "This is a test message.", "name": None, "function_call": None, "tool_calls": None, } }