# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. from __future__ import annotations from typing import List from typing_extensions import Literal import httpx from .... import _legacy_response from ...._types import NOT_GIVEN, Body, Query, Headers, NotGiven from ...._utils import ( maybe_transform, async_maybe_transform, ) from ...._compat import cached_property from ...._resource import SyncAPIResource, AsyncAPIResource from ...._response import to_streamed_response_wrapper, async_to_streamed_response_wrapper from ...._base_client import make_request_options from ....types.beta.realtime import transcription_session_create_params from ....types.beta.realtime.transcription_session import TranscriptionSession __all__ = ["TranscriptionSessions", "AsyncTranscriptionSessions"] class TranscriptionSessions(SyncAPIResource): @cached_property def with_raw_response(self) -> TranscriptionSessionsWithRawResponse: """ This property can be used as a prefix for any HTTP method call to return the raw response object instead of the parsed content. For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers """ return TranscriptionSessionsWithRawResponse(self) @cached_property def with_streaming_response(self) -> TranscriptionSessionsWithStreamingResponse: """ An alternative to `.with_raw_response` that doesn't eagerly read the response body. For more information, see https://www.github.com/openai/openai-python#with_streaming_response """ return TranscriptionSessionsWithStreamingResponse(self) def create( self, *, include: List[str] | NotGiven = NOT_GIVEN, input_audio_format: Literal["pcm16", "g711_ulaw", "g711_alaw"] | NotGiven = NOT_GIVEN, input_audio_noise_reduction: transcription_session_create_params.InputAudioNoiseReduction | NotGiven = NOT_GIVEN, input_audio_transcription: transcription_session_create_params.InputAudioTranscription | NotGiven = NOT_GIVEN, modalities: List[Literal["text", "audio"]] | NotGiven = NOT_GIVEN, turn_detection: transcription_session_create_params.TurnDetection | NotGiven = NOT_GIVEN, # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. # The extra values given here take precedence over values defined on the client or passed to this method. extra_headers: Headers | None = None, extra_query: Query | None = None, extra_body: Body | None = None, timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, ) -> TranscriptionSession: """ Create an ephemeral API token for use in client-side applications with the Realtime API specifically for realtime transcriptions. Can be configured with the same session parameters as the `transcription_session.update` client event. It responds with a session object, plus a `client_secret` key which contains a usable ephemeral API token that can be used to authenticate browser clients for the Realtime API. Args: include: The set of items to include in the transcription. Current available items are: - `item.input_audio_transcription.logprobs` input_audio_format: The format of input audio. Options are `pcm16`, `g711_ulaw`, or `g711_alaw`. For `pcm16`, input audio must be 16-bit PCM at a 24kHz sample rate, single channel (mono), and little-endian byte order. input_audio_noise_reduction: Configuration for input audio noise reduction. This can be set to `null` to turn off. Noise reduction filters audio added to the input audio buffer before it is sent to VAD and the model. Filtering the audio can improve VAD and turn detection accuracy (reducing false positives) and model performance by improving perception of the input audio. input_audio_transcription: Configuration for input audio transcription. The client can optionally set the language and prompt for transcription, these offer additional guidance to the transcription service. modalities: The set of modalities the model can respond with. To disable audio, set this to ["text"]. turn_detection: Configuration for turn detection, ether Server VAD or Semantic VAD. This can be set to `null` to turn off, in which case the client must manually trigger model response. Server VAD means that the model will detect the start and end of speech based on audio volume and respond at the end of user speech. Semantic VAD is more advanced and uses a turn detection model (in conjuction with VAD) to semantically estimate whether the user has finished speaking, then dynamically sets a timeout based on this probability. For example, if user audio trails off with "uhhm", the model will score a low probability of turn end and wait longer for the user to continue speaking. This can be useful for more natural conversations, but may have a higher latency. extra_headers: Send extra headers extra_query: Add additional query parameters to the request extra_body: Add additional JSON properties to the request timeout: Override the client-level default timeout for this request, in seconds """ extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} return self._post( "/realtime/transcription_sessions", body=maybe_transform( { "include": include, "input_audio_format": input_audio_format, "input_audio_noise_reduction": input_audio_noise_reduction, "input_audio_transcription": input_audio_transcription, "modalities": modalities, "turn_detection": turn_detection, }, transcription_session_create_params.TranscriptionSessionCreateParams, ), options=make_request_options( extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout ), cast_to=TranscriptionSession, ) class AsyncTranscriptionSessions(AsyncAPIResource): @cached_property def with_raw_response(self) -> AsyncTranscriptionSessionsWithRawResponse: """ This property can be used as a prefix for any HTTP method call to return the raw response object instead of the parsed content. For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers """ return AsyncTranscriptionSessionsWithRawResponse(self) @cached_property def with_streaming_response(self) -> AsyncTranscriptionSessionsWithStreamingResponse: """ An alternative to `.with_raw_response` that doesn't eagerly read the response body. For more information, see https://www.github.com/openai/openai-python#with_streaming_response """ return AsyncTranscriptionSessionsWithStreamingResponse(self) async def create( self, *, include: List[str] | NotGiven = NOT_GIVEN, input_audio_format: Literal["pcm16", "g711_ulaw", "g711_alaw"] | NotGiven = NOT_GIVEN, input_audio_noise_reduction: transcription_session_create_params.InputAudioNoiseReduction | NotGiven = NOT_GIVEN, input_audio_transcription: transcription_session_create_params.InputAudioTranscription | NotGiven = NOT_GIVEN, modalities: List[Literal["text", "audio"]] | NotGiven = NOT_GIVEN, turn_detection: transcription_session_create_params.TurnDetection | NotGiven = NOT_GIVEN, # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. # The extra values given here take precedence over values defined on the client or passed to this method. extra_headers: Headers | None = None, extra_query: Query | None = None, extra_body: Body | None = None, timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, ) -> TranscriptionSession: """ Create an ephemeral API token for use in client-side applications with the Realtime API specifically for realtime transcriptions. Can be configured with the same session parameters as the `transcription_session.update` client event. It responds with a session object, plus a `client_secret` key which contains a usable ephemeral API token that can be used to authenticate browser clients for the Realtime API. Args: include: The set of items to include in the transcription. Current available items are: - `item.input_audio_transcription.logprobs` input_audio_format: The format of input audio. Options are `pcm16`, `g711_ulaw`, or `g711_alaw`. For `pcm16`, input audio must be 16-bit PCM at a 24kHz sample rate, single channel (mono), and little-endian byte order. input_audio_noise_reduction: Configuration for input audio noise reduction. This can be set to `null` to turn off. Noise reduction filters audio added to the input audio buffer before it is sent to VAD and the model. Filtering the audio can improve VAD and turn detection accuracy (reducing false positives) and model performance by improving perception of the input audio. input_audio_transcription: Configuration for input audio transcription. The client can optionally set the language and prompt for transcription, these offer additional guidance to the transcription service. modalities: The set of modalities the model can respond with. To disable audio, set this to ["text"]. turn_detection: Configuration for turn detection, ether Server VAD or Semantic VAD. This can be set to `null` to turn off, in which case the client must manually trigger model response. Server VAD means that the model will detect the start and end of speech based on audio volume and respond at the end of user speech. Semantic VAD is more advanced and uses a turn detection model (in conjuction with VAD) to semantically estimate whether the user has finished speaking, then dynamically sets a timeout based on this probability. For example, if user audio trails off with "uhhm", the model will score a low probability of turn end and wait longer for the user to continue speaking. This can be useful for more natural conversations, but may have a higher latency. extra_headers: Send extra headers extra_query: Add additional query parameters to the request extra_body: Add additional JSON properties to the request timeout: Override the client-level default timeout for this request, in seconds """ extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} return await self._post( "/realtime/transcription_sessions", body=await async_maybe_transform( { "include": include, "input_audio_format": input_audio_format, "input_audio_noise_reduction": input_audio_noise_reduction, "input_audio_transcription": input_audio_transcription, "modalities": modalities, "turn_detection": turn_detection, }, transcription_session_create_params.TranscriptionSessionCreateParams, ), options=make_request_options( extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout ), cast_to=TranscriptionSession, ) class TranscriptionSessionsWithRawResponse: def __init__(self, transcription_sessions: TranscriptionSessions) -> None: self._transcription_sessions = transcription_sessions self.create = _legacy_response.to_raw_response_wrapper( transcription_sessions.create, ) class AsyncTranscriptionSessionsWithRawResponse: def __init__(self, transcription_sessions: AsyncTranscriptionSessions) -> None: self._transcription_sessions = transcription_sessions self.create = _legacy_response.async_to_raw_response_wrapper( transcription_sessions.create, ) class TranscriptionSessionsWithStreamingResponse: def __init__(self, transcription_sessions: TranscriptionSessions) -> None: self._transcription_sessions = transcription_sessions self.create = to_streamed_response_wrapper( transcription_sessions.create, ) class AsyncTranscriptionSessionsWithStreamingResponse: def __init__(self, transcription_sessions: AsyncTranscriptionSessions) -> None: self._transcription_sessions = transcription_sessions self.create = async_to_streamed_response_wrapper( transcription_sessions.create, )