Metadata-Version: 2.2 Name: google-genai Version: 0.6.0 Summary: GenAI Python SDK Author-email: Google LLC License: Apache-2.0 Project-URL: Homepage, https://github.com/googleapis/python-genai Classifier: Intended Audience :: Developers Classifier: License :: OSI Approved :: Apache Software License Classifier: Operating System :: OS Independent Classifier: Programming Language :: Python Classifier: Programming Language :: Python :: 3 Classifier: Programming Language :: Python :: 3.9 Classifier: Programming Language :: Python :: 3.10 Classifier: Programming Language :: Python :: 3.11 Classifier: Programming Language :: Python :: 3.12 Classifier: Programming Language :: Python :: 3.13 Classifier: Topic :: Internet Classifier: Topic :: Software Development :: Libraries :: Python Modules Requires-Python: >=3.9 Description-Content-Type: text/markdown License-File: LICENSE Requires-Dist: google-auth<3.0.0dev,>=2.14.1 Requires-Dist: pillow<12.0.0,>=10.0.0 Requires-Dist: pydantic<3.0.0dev,>=2.0.0 Requires-Dist: requests<3.0.0dev,>=2.28.1 Requires-Dist: websockets<15.0dev,>=13.0 # Google Gen AI SDK [![PyPI version](https://img.shields.io/pypi/v/google-genai.svg)](https://pypi.org/project/google-genai/) -------- **Documentation:** https://googleapis.github.io/python-genai/ ----- Google Gen AI Python SDK provides an interface for developers to integrate Google's generative models into their Python applications. It supports the [Gemini Developer API](https://ai.google.dev/gemini-api/docs) and [Vertex AI](https://cloud.google.com/vertex-ai/generative-ai/docs/learn/overview) APIs. This is an early release. API is subject to change. Please do not use this SDK in production environments at this stage. ## Installation ```cmd pip install google-genai ``` ## Imports ```python from google import genai from google.genai import types ``` ## Create a client Please run one of the following code blocks to create a client for different services ([Gemini Developer API](https://ai.google.dev/gemini-api/docs) or [Vertex AI](https://cloud.google.com/vertex-ai/generative-ai/docs/learn/overview)). ```python # Only run this block for Gemini Developer API client = genai.Client(api_key="GEMINI_API_KEY") ``` ```python # Only run this block for Vertex AI API client = genai.Client( vertexai=True, project="your-project-id", location="us-central1" ) ``` ## Types Parameter types can be specified as either dictionaries(`TypedDict`) or [Pydantic Models](https://pydantic.readthedocs.io/en/stable/model.html). Pydantic model types are available in the `types` module. ## Models The `client.models` modules exposes model inferencing and model getters. ### Generate Content #### with text content ```python response = client.models.generate_content( model="gemini-2.0-flash-exp", contents="What is your name?" ) print(response.text) ``` #### with uploaded file (Google AI only) download the file in console. ```cmd !wget -q https://storage.googleapis.com/generativeai-downloads/data/a11.txt ``` python code. ```python file = client.files.upload(path="a11.text") response = client.models.generate_content( model="gemini-2.0-flash-exp", contents=["Summarize this file", file] ) print(response.text) ``` ### System Instructions and Other Configs ```python response = client.models.generate_content( model="gemini-2.0-flash-exp", contents="high", config=types.GenerateContentConfig( system_instruction="I say high, you say low", temperature=0.3, ), ) print(response.text) ``` ### Typed Config All API methods support Pydantic types for parameters as well as dictionaries. You can get the type from `google.genai.types`. ```python response = client.models.generate_content( model="gemini-2.0-flash-exp", contents=types.Part.from_text("Why is the sky blue?"), config=types.GenerateContentConfig( temperature=0, top_p=0.95, top_k=20, candidate_count=1, seed=5, max_output_tokens=100, stop_sequences=["STOP!"], presence_penalty=0.0, frequency_penalty=0.0, ), ) response ``` ### List Base Models To retrieve tuned models, see [list tuned models](#list-tuned-models). ```python for model in client.models.list(config={'query_base':True}): print(model) ``` ```python pager = client.models.list(config={"page_size": 10, 'query_base':True}) print(pager.page_size) print(pager[0]) pager.next_page() print(pager[0]) ``` #### Async ```python async for job in await client.aio.models.list(config={'query_base':True}): print(job) ``` ```python async_pager = await client.aio.models.list(config={"page_size": 10, 'query_base':True}) print(async_pager.page_size) print(async_pager[0]) await async_pager.next_page() print(async_pager[0]) ``` ### Safety Settings ```python response = client.models.generate_content( model="gemini-2.0-flash-exp", contents="Say something bad.", config=types.GenerateContentConfig( safety_settings=[ types.SafetySetting( category="HARM_CATEGORY_HATE_SPEECH", threshold="BLOCK_ONLY_HIGH", ) ] ), ) print(response.text) ``` ### Function Calling #### Automatic Python function Support You can pass a Python function directly and it will be automatically called and responded. ```python def get_current_weather(location: str) -> str: """Returns the current weather. Args: location: The city and state, e.g. San Francisco, CA """ return "sunny" response = client.models.generate_content( model="gemini-2.0-flash-exp", contents="What is the weather like in Boston?", config=types.GenerateContentConfig(tools=[get_current_weather]), ) print(response.text) ``` #### Manually declare and invoke a function for function calling If you don't want to use the automatic function support, you can manually declare the function and invoke it. The following example shows how to declare a function and pass it as a tool. Then you will receive a function call part in the response. ```python function = types.FunctionDeclaration( name="get_current_weather", description="Get the current weather in a given location", parameters=types.FunctionParameters( type="OBJECT", properties={ "location": types.ParameterType( type="STRING", description="The city and state, e.g. San Francisco, CA", ), }, required=["location"], ), ) tool = types.Tool(function_declarations=[function]) response = client.models.generate_content( model="gemini-2.0-flash-exp", contents="What is the weather like in Boston?", config=types.GenerateContentConfig(tools=[tool]), ) print(response.function_calls[0]) ``` After you receive the function call part from the model, you can invoke the function and get the function response. And then you can pass the function response to the model. The following example shows how to do it for a simple function invocation. ```python user_prompt_content = types.Content( role="user", parts=[types.Part.from_text("What is the weather like in Boston?")], ) function_call_content = response.candidates[0].content function_call_part = function_call_content.parts[0] try: function_result = get_current_weather( **function_call_part.function_call.args ) function_response = {"result": function_result} except ( Exception ) as e: # instead of raising the exception, you can let the model handle it function_response = {"error": str(e)} function_response_part = types.Part.from_function_response( name=function_call_part.function_call.name, response=function_response, ) function_response_content = types.Content( role="tool", parts=[function_response_part] ) response = client.models.generate_content( model="gemini-2.0-flash-exp", contents=[ user_prompt_content, function_call_content, function_response_content, ], config=types.GenerateContentConfig( tools=[tool], ), ) print(response.text) ``` ### JSON Response Schema #### Pydantic Model Schema support Schemas can be provided as Pydantic Models. ```python from pydantic import BaseModel class CountryInfo(BaseModel): name: str population: int capital: str continent: str gdp: int official_language: str total_area_sq_mi: int response = client.models.generate_content( model="gemini-2.0-flash-exp", contents="Give me information for the United States.", config=types.GenerateContentConfig( response_mime_type="application/json", response_schema=CountryInfo, ), ) print(response.text) ``` ```python response = client.models.generate_content( model="gemini-2.0-flash-exp", contents="Give me information for the United States.", config=types.GenerateContentConfig( response_mime_type="application/json", response_schema={ "required": [ "name", "population", "capital", "continent", "gdp", "official_language", "total_area_sq_mi", ], "properties": { "name": {"type": "STRING"}, "population": {"type": "INTEGER"}, "capital": {"type": "STRING"}, "continent": {"type": "STRING"}, "gdp": {"type": "INTEGER"}, "official_language": {"type": "STRING"}, "total_area_sq_mi": {"type": "INTEGER"}, }, "type": "OBJECT", }, ), ) print(response.text) ``` ### Streaming #### Streaming for text content ```python for chunk in client.models.generate_content_stream( model="gemini-2.0-flash-exp", contents="Tell me a story in 300 words." ): print(chunk.text, end="") ``` #### Streaming for image content If your image is stored in [Google Cloud Storage](https://cloud.google.com/storage), you can use the `from_uri` class method to create a `Part` object. ```python for chunk in client.models.generate_content_stream( model="gemini-2.0-flash-exp", contents=[ "What is this image about?", types.Part.from_uri( file_uri="gs://generativeai-downloads/images/scones.jpg", mime_type="image/jpeg", ), ], ): print(chunk.text, end="") ``` If your image is stored in your local file system, you can read it in as bytes data and use the `from_bytes` class method to create a `Part` object. ```python YOUR_IMAGE_PATH = "your_image_path" YOUR_IMAGE_MIME_TYPE = "your_image_mime_type" with open(YOUR_IMAGE_PATH, "rb") as f: image_bytes = f.read() for chunk in client.models.generate_content_stream( model="gemini-2.0-flash-exp", contents=[ "What is this image about?", types.Part.from_bytes(data=image_bytes, mime_type=YOUR_IMAGE_MIME_TYPE), ], ): print(chunk.text, end="") ``` ### Async `client.aio` exposes all the analogous [`async` methods](https://docs.python.org/3/library/asyncio.html) that are available on `client` For example, `client.aio.models.generate_content` is the `async` version of `client.models.generate_content` ```python response = await client.aio.models.generate_content( model="gemini-2.0-flash-exp", contents="Tell me a story in 300 words." ) print(response.text) ``` ### Streaming ```python async for response in client.aio.models.generate_content_stream( model="gemini-2.0-flash-exp", contents="Tell me a story in 300 words." ): print(response.text, end="") ``` ### Count Tokens and Compute Tokens ```python response = client.models.count_tokens( model="gemini-2.0-flash-exp", contents="What is your name?", ) print(response) ``` #### Compute Tokens Compute tokens is only supported in Vertex AI. ```python response = client.models.compute_tokens( model="gemini-2.0-flash-exp", contents="What is your name?", ) print(response) ``` ##### Async ```python response = await client.aio.models.count_tokens( model="gemini-2.0-flash-exp", contents="What is your name?", ) print(response) ``` ### Embed Content ```python response = client.models.embed_content( model="text-embedding-004", contents="What is your name?", ) print(response) ``` ```python # multiple contents with config response = client.models.embed_content( model="text-embedding-004", contents=["What is your name?", "What is your age?"], config=types.EmbedContentConfig(output_dimensionality=10), ) print(response) ``` ### Imagen #### Generate Image Support for generate image in Gemini Developer API is behind an allowlist ```python # Generate Image response1 = client.models.generate_image( model="imagen-3.0-generate-001", prompt="An umbrella in the foreground, and a rainy night sky in the background", config=types.GenerateImageConfig( negative_prompt="human", number_of_images=1, include_rai_reason=True, output_mime_type="image/jpeg", ), ) response1.generated_images[0].image.show() ``` #### Upscale Image Upscale image is only supported in Vertex AI. ```python # Upscale the generated image from above response2 = client.models.upscale_image( model="imagen-3.0-generate-001", image=response1.generated_images[0].image, upscale_factor="x2", config=types.UpscaleImageConfig( include_rai_reason=True, output_mime_type="image/jpeg", ), ) response2.generated_images[0].image.show() ``` #### Edit Image Edit image uses a separate model from generate and upscale. Edit image is only supported in Vertex AI. ```python # Edit the generated image from above from google.genai.types import RawReferenceImage, MaskReferenceImage raw_ref_image = RawReferenceImage( reference_id=1, reference_image=response1.generated_images[0].image, ) # Model computes a mask of the background mask_ref_image = MaskReferenceImage( reference_id=2, config=types.MaskReferenceConfig( mask_mode="MASK_MODE_BACKGROUND", mask_dilation=0, ), ) response3 = client.models.edit_image( model="imagen-3.0-capability-001", prompt="Sunlight and clear sky", reference_images=[raw_ref_image, mask_ref_image], config=types.EditImageConfig( edit_mode="EDIT_MODE_INPAINT_INSERTION", number_of_images=1, negative_prompt="human", include_rai_reason=True, output_mime_type="image/jpeg", ), ) response3.generated_images[0].image.show() ``` ## Chats Create a chat session to start a multi-turn conversations with the model. ### Send Message ```python chat = client.chats.create(model="gemini-2.0-flash-exp") response = chat.send_message("tell me a story") print(response.text) ``` ### Streaming ```python chat = client.chats.create(model="gemini-2.0-flash-exp") for chunk in chat.send_message_stream("tell me a story"): print(chunk.text) ``` ### Async ```python chat = client.aio.chats.create(model="gemini-2.0-flash-exp") response = await chat.send_message("tell me a story") print(response.text) ``` ### Async Streaming ```python chat = client.aio.chats.create(model="gemini-2.0-flash-exp") async for chunk in chat.send_message_stream("tell me a story"): print(chunk.text) ``` ## Files Files are only supported in Gemini Developer API. ```cmd !gsutil cp gs://cloud-samples-data/generative-ai/pdf/2312.11805v3.pdf . !gsutil cp gs://cloud-samples-data/generative-ai/pdf/2403.05530.pdf . ``` ### Upload ```python file1 = client.files.upload(path="2312.11805v3.pdf") file2 = client.files.upload(path="2403.05530.pdf") print(file1) print(file2) ``` ### Delete ```python file3 = client.files.upload(path="2312.11805v3.pdf") client.files.delete(name=file3.name) ``` ## Caches `client.caches` contains the control plane APIs for cached content ### Create ```python if client.vertexai: file_uris = [ "gs://cloud-samples-data/generative-ai/pdf/2312.11805v3.pdf", "gs://cloud-samples-data/generative-ai/pdf/2403.05530.pdf", ] else: file_uris = [file1.uri, file2.uri] cached_content = client.caches.create( model="gemini-1.5-pro-002", config=types.CreateCachedContentConfig( contents=[ types.Content( role="user", parts=[ types.Part.from_uri( file_uri=file_uris[0], mime_type="application/pdf" ), types.Part.from_uri( file_uri=file_uris[1], mime_type="application/pdf", ), ], ) ], system_instruction="What is the sum of the two pdfs?", display_name="test cache", ttl="3600s", ), ) ``` ### Get ```python cached_content = client.caches.get(name=cached_content.name) ``` ### Generate Content ```python response = client.models.generate_content( model="gemini-1.5-pro-002", contents="Summarize the pdfs", config=types.GenerateContentConfig( cached_content=cached_content.name, ), ) print(response.text) ``` ## Tunings `client.tunings` contains tuning job APIs and supports supervised fine tuning through `tune` and distillation through `distill` ### Tune - Vertex AI supports tuning from GCS source - Gemini Developer API supports tuning from inline examples ```python if client.vertexai: model = "gemini-1.5-pro-002" training_dataset = types.TuningDataset( gcs_uri="gs://cloud-samples-data/ai-platform/generative_ai/gemini-1_5/text/sft_train_data.jsonl", ) else: model = "models/gemini-1.0-pro-001" training_dataset = types.TuningDataset( examples=[ types.TuningExample( text_input=f"Input text {i}", output=f"Output text {i}", ) for i in range(5) ], ) ``` ```python tuning_job = client.tunings.tune( base_model=model, training_dataset=training_dataset, config=types.CreateTuningJobConfig( epoch_count=1, tuned_model_display_name="test_dataset_examples model" ), ) print(tuning_job) ``` ### Get Tuning Job ```python tuning_job = client.tunings.get(name=tuning_job.name) print(tuning_job) ``` ```python import time running_states = set( [ "JOB_STATE_PENDING", "JOB_STATE_RUNNING", ] ) while tuning_job.state in running_states: print(tuning_job.state) tuning_job = client.tunings.get(name=tuning_job.name) time.sleep(10) ``` #### Use Tuned Model ```python response = client.models.generate_content( model=tuning_job.tuned_model.endpoint, contents="What is your name?", ) print(response.text) ``` ### Get Tuned Model ```python tuned_model = client.models.get(model=tuning_job.tuned_model.model) print(tuned_model) ``` ### List Tuned Models To retrieve base models, see [list base models](#list-base-models). ```python for model in client.models.list(config={"page_size": 10}): print(model) ``` ```python pager = client.models.list(config={"page_size": 10}) print(pager.page_size) print(pager[0]) pager.next_page() print(pager[0]) ``` #### Async ```python async for job in await client.aio.models.list(config={"page_size": 10}): print(job) ``` ```python async_pager = await client.aio.models.list(config={"page_size": 10}) print(async_pager.page_size) print(async_pager[0]) await async_pager.next_page() print(async_pager[0]) ``` ### Update Tuned Model ```python model = pager[0] model = client.models.update( model=model.name, config=types.UpdateModelConfig( display_name="my tuned model", description="my tuned model description" ), ) print(model) ``` ### Distillation Only supported in Vertex AI. Requires allowlist. ```python distillation_job = client.tunings.distill( student_model="gemma-2b-1.1-it", teacher_model="gemini-1.5-pro-002", training_dataset=genai.types.DistillationDataset( gcs_uri="gs://cloud-samples-data/ai-platform/generative_ai/gemini-1_5/text/sft_train_data.jsonl", ), config=genai.types.CreateDistillationJobConfig( epoch_count=1, pipeline_root_directory=("gs://my-bucket"), ), ) print(distillation_job) ``` ```python completed_states = set( [ "JOB_STATE_SUCCEEDED", "JOB_STATE_FAILED", "JOB_STATE_CANCELLED", "JOB_STATE_PAUSED", ] ) while distillation_job.state not in completed_states: print(distillation_job.state) distillation_job = client.tunings.get(name=distillation_job.name) time.sleep(10) print(distillation_job) ``` ### List Tuning Jobs ```python for job in client.tunings.list(config={"page_size": 10}): print(job) ``` ```python pager = client.tunings.list(config={"page_size": 10}) print(pager.page_size) print(pager[0]) pager.next_page() print(pager[0]) ``` #### Async ```python async for job in await client.aio.tunings.list(config={"page_size": 10}): print(job) ``` ```python async_pager = await client.aio.tunings.list(config={"page_size": 10}) print(async_pager.page_size) print(async_pager[0]) await async_pager.next_page() print(async_pager[0]) ``` ## Batch Prediction Only supported in Vertex AI. ### Create ```python # Specify model and source file only, destination and job display name will be auto-populated job = client.batches.create( model="gemini-1.5-flash-002", src="bq://my-project.my-dataset.my-table", ) job ``` ```python # Get a job by name job = client.batches.get(name=job.name) job.state ``` ```python completed_states = set( [ "JOB_STATE_SUCCEEDED", "JOB_STATE_FAILED", "JOB_STATE_CANCELLED", "JOB_STATE_PAUSED", ] ) while job.state not in completed_states: print(job.state) job = client.batches.get(name=job.name) time.sleep(30) job ``` ### List ```python for job in client.batches.list(config=types.ListBatchJobConfig(page_size=10)): print(job) ``` ```python pager = client.batches.list(config=types.ListBatchJobConfig(page_size=10)) print(pager.page_size) print(pager[0]) pager.next_page() print(pager[0]) ``` #### Async ```python async for job in await client.aio.batches.list( config=types.ListBatchJobConfig(page_size=10) ): print(job) ``` ```python async_pager = await client.aio.batches.list( config=types.ListBatchJobConfig(page_size=10) ) print(async_pager.page_size) print(async_pager[0]) await async_pager.next_page() print(async_pager[0]) ``` ### Delete ```python # Delete the job resource delete_job = client.batches.delete(name=job.name) delete_job ```