From 4a52a71956a8d46fcb7294ac71734504bb09bcc2 Mon Sep 17 00:00:00 2001 From: S. Solomon Darnell Date: Fri, 28 Mar 2025 21:52:21 -0500 Subject: two version of R2R are here --- .venv/lib/python3.12/site-packages/rsa/prime.py | 198 ++++++++++++++++++++++++ 1 file changed, 198 insertions(+) create mode 100644 .venv/lib/python3.12/site-packages/rsa/prime.py (limited to '.venv/lib/python3.12/site-packages/rsa/prime.py') diff --git a/.venv/lib/python3.12/site-packages/rsa/prime.py b/.venv/lib/python3.12/site-packages/rsa/prime.py new file mode 100644 index 00000000..481c4d77 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/rsa/prime.py @@ -0,0 +1,198 @@ +# Copyright 2011 Sybren A. Stüvel +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# https://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +"""Numerical functions related to primes. + +Implementation based on the book Algorithm Design by Michael T. Goodrich and +Roberto Tamassia, 2002. +""" + +import rsa.common +import rsa.randnum + +__all__ = ["getprime", "are_relatively_prime"] + + +def gcd(p: int, q: int) -> int: + """Returns the greatest common divisor of p and q + + >>> gcd(48, 180) + 12 + """ + + while q != 0: + (p, q) = (q, p % q) + return p + + +def get_primality_testing_rounds(number: int) -> int: + """Returns minimum number of rounds for Miller-Rabing primality testing, + based on number bitsize. + + According to NIST FIPS 186-4, Appendix C, Table C.3, minimum number of + rounds of M-R testing, using an error probability of 2 ** (-100), for + different p, q bitsizes are: + * p, q bitsize: 512; rounds: 7 + * p, q bitsize: 1024; rounds: 4 + * p, q bitsize: 1536; rounds: 3 + See: http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf + """ + + # Calculate number bitsize. + bitsize = rsa.common.bit_size(number) + # Set number of rounds. + if bitsize >= 1536: + return 3 + if bitsize >= 1024: + return 4 + if bitsize >= 512: + return 7 + # For smaller bitsizes, set arbitrary number of rounds. + return 10 + + +def miller_rabin_primality_testing(n: int, k: int) -> bool: + """Calculates whether n is composite (which is always correct) or prime + (which theoretically is incorrect with error probability 4**-k), by + applying Miller-Rabin primality testing. + + For reference and implementation example, see: + https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test + + :param n: Integer to be tested for primality. + :type n: int + :param k: Number of rounds (witnesses) of Miller-Rabin testing. + :type k: int + :return: False if the number is composite, True if it's probably prime. + :rtype: bool + """ + + # prevent potential infinite loop when d = 0 + if n < 2: + return False + + # Decompose (n - 1) to write it as (2 ** r) * d + # While d is even, divide it by 2 and increase the exponent. + d = n - 1 + r = 0 + + while not (d & 1): + r += 1 + d >>= 1 + + # Test k witnesses. + for _ in range(k): + # Generate random integer a, where 2 <= a <= (n - 2) + a = rsa.randnum.randint(n - 3) + 1 + + x = pow(a, d, n) + if x == 1 or x == n - 1: + continue + + for _ in range(r - 1): + x = pow(x, 2, n) + if x == 1: + # n is composite. + return False + if x == n - 1: + # Exit inner loop and continue with next witness. + break + else: + # If loop doesn't break, n is composite. + return False + + return True + + +def is_prime(number: int) -> bool: + """Returns True if the number is prime, and False otherwise. + + >>> is_prime(2) + True + >>> is_prime(42) + False + >>> is_prime(41) + True + """ + + # Check for small numbers. + if number < 10: + return number in {2, 3, 5, 7} + + # Check for even numbers. + if not (number & 1): + return False + + # Calculate minimum number of rounds. + k = get_primality_testing_rounds(number) + + # Run primality testing with (minimum + 1) rounds. + return miller_rabin_primality_testing(number, k + 1) + + +def getprime(nbits: int) -> int: + """Returns a prime number that can be stored in 'nbits' bits. + + >>> p = getprime(128) + >>> is_prime(p-1) + False + >>> is_prime(p) + True + >>> is_prime(p+1) + False + + >>> from rsa import common + >>> common.bit_size(p) == 128 + True + """ + + assert nbits > 3 # the loop will hang on too small numbers + + while True: + integer = rsa.randnum.read_random_odd_int(nbits) + + # Test for primeness + if is_prime(integer): + return integer + + # Retry if not prime + + +def are_relatively_prime(a: int, b: int) -> bool: + """Returns True if a and b are relatively prime, and False if they + are not. + + >>> are_relatively_prime(2, 3) + True + >>> are_relatively_prime(2, 4) + False + """ + + d = gcd(a, b) + return d == 1 + + +if __name__ == "__main__": + print("Running doctests 1000x or until failure") + import doctest + + for count in range(1000): + (failures, tests) = doctest.testmod() + if failures: + break + + if count % 100 == 0 and count: + print("%i times" % count) + + print("Doctests done") -- cgit v1.2.3