From 4a52a71956a8d46fcb7294ac71734504bb09bcc2 Mon Sep 17 00:00:00 2001 From: S. Solomon Darnell Date: Fri, 28 Mar 2025 21:52:21 -0500 Subject: two version of R2R are here --- .venv/lib/python3.12/site-packages/rsa/key.py | 858 ++++++++++++++++++++++++++ 1 file changed, 858 insertions(+) create mode 100644 .venv/lib/python3.12/site-packages/rsa/key.py (limited to '.venv/lib/python3.12/site-packages/rsa/key.py') diff --git a/.venv/lib/python3.12/site-packages/rsa/key.py b/.venv/lib/python3.12/site-packages/rsa/key.py new file mode 100644 index 00000000..b6b17f91 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/rsa/key.py @@ -0,0 +1,858 @@ +# Copyright 2011 Sybren A. Stüvel +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# https://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +"""RSA key generation code. + +Create new keys with the newkeys() function. It will give you a PublicKey and a +PrivateKey object. + +Loading and saving keys requires the pyasn1 module. This module is imported as +late as possible, such that other functionality will remain working in absence +of pyasn1. + +.. note:: + + Storing public and private keys via the `pickle` module is possible. + However, it is insecure to load a key from an untrusted source. + The pickle module is not secure against erroneous or maliciously + constructed data. Never unpickle data received from an untrusted + or unauthenticated source. + +""" + +import threading +import typing +import warnings + +import rsa.prime +import rsa.pem +import rsa.common +import rsa.randnum +import rsa.core + + +DEFAULT_EXPONENT = 65537 + + +T = typing.TypeVar("T", bound="AbstractKey") + + +class AbstractKey: + """Abstract superclass for private and public keys.""" + + __slots__ = ("n", "e", "blindfac", "blindfac_inverse", "mutex") + + def __init__(self, n: int, e: int) -> None: + self.n = n + self.e = e + + # These will be computed properly on the first call to blind(). + self.blindfac = self.blindfac_inverse = -1 + + # Used to protect updates to the blinding factor in multi-threaded + # environments. + self.mutex = threading.Lock() + + @classmethod + def _load_pkcs1_pem(cls: typing.Type[T], keyfile: bytes) -> T: + """Loads a key in PKCS#1 PEM format, implement in a subclass. + + :param keyfile: contents of a PEM-encoded file that contains + the public key. + :type keyfile: bytes + + :return: the loaded key + :rtype: AbstractKey + """ + + @classmethod + def _load_pkcs1_der(cls: typing.Type[T], keyfile: bytes) -> T: + """Loads a key in PKCS#1 PEM format, implement in a subclass. + + :param keyfile: contents of a DER-encoded file that contains + the public key. + :type keyfile: bytes + + :return: the loaded key + :rtype: AbstractKey + """ + + def _save_pkcs1_pem(self) -> bytes: + """Saves the key in PKCS#1 PEM format, implement in a subclass. + + :returns: the PEM-encoded key. + :rtype: bytes + """ + + def _save_pkcs1_der(self) -> bytes: + """Saves the key in PKCS#1 DER format, implement in a subclass. + + :returns: the DER-encoded key. + :rtype: bytes + """ + + @classmethod + def load_pkcs1(cls: typing.Type[T], keyfile: bytes, format: str = "PEM") -> T: + """Loads a key in PKCS#1 DER or PEM format. + + :param keyfile: contents of a DER- or PEM-encoded file that contains + the key. + :type keyfile: bytes + :param format: the format of the file to load; 'PEM' or 'DER' + :type format: str + + :return: the loaded key + :rtype: AbstractKey + """ + + methods = { + "PEM": cls._load_pkcs1_pem, + "DER": cls._load_pkcs1_der, + } + + method = cls._assert_format_exists(format, methods) + return method(keyfile) + + @staticmethod + def _assert_format_exists( + file_format: str, methods: typing.Mapping[str, typing.Callable] + ) -> typing.Callable: + """Checks whether the given file format exists in 'methods'.""" + + try: + return methods[file_format] + except KeyError as ex: + formats = ", ".join(sorted(methods.keys())) + raise ValueError( + "Unsupported format: %r, try one of %s" % (file_format, formats) + ) from ex + + def save_pkcs1(self, format: str = "PEM") -> bytes: + """Saves the key in PKCS#1 DER or PEM format. + + :param format: the format to save; 'PEM' or 'DER' + :type format: str + :returns: the DER- or PEM-encoded key. + :rtype: bytes + """ + + methods = { + "PEM": self._save_pkcs1_pem, + "DER": self._save_pkcs1_der, + } + + method = self._assert_format_exists(format, methods) + return method() + + def blind(self, message: int) -> typing.Tuple[int, int]: + """Performs blinding on the message. + + :param message: the message, as integer, to blind. + :param r: the random number to blind with. + :return: tuple (the blinded message, the inverse of the used blinding factor) + + The blinding is such that message = unblind(decrypt(blind(encrypt(message))). + + See https://en.wikipedia.org/wiki/Blinding_%28cryptography%29 + """ + blindfac, blindfac_inverse = self._update_blinding_factor() + blinded = (message * pow(blindfac, self.e, self.n)) % self.n + return blinded, blindfac_inverse + + def unblind(self, blinded: int, blindfac_inverse: int) -> int: + """Performs blinding on the message using random number 'blindfac_inverse'. + + :param blinded: the blinded message, as integer, to unblind. + :param blindfac: the factor to unblind with. + :return: the original message. + + The blinding is such that message = unblind(decrypt(blind(encrypt(message))). + + See https://en.wikipedia.org/wiki/Blinding_%28cryptography%29 + """ + return (blindfac_inverse * blinded) % self.n + + def _initial_blinding_factor(self) -> int: + for _ in range(1000): + blind_r = rsa.randnum.randint(self.n - 1) + if rsa.prime.are_relatively_prime(self.n, blind_r): + return blind_r + raise RuntimeError("unable to find blinding factor") + + def _update_blinding_factor(self) -> typing.Tuple[int, int]: + """Update blinding factors. + + Computing a blinding factor is expensive, so instead this function + does this once, then updates the blinding factor as per section 9 + of 'A Timing Attack against RSA with the Chinese Remainder Theorem' + by Werner Schindler. + See https://tls.mbed.org/public/WSchindler-RSA_Timing_Attack.pdf + + :return: the new blinding factor and its inverse. + """ + + with self.mutex: + if self.blindfac < 0: + # Compute initial blinding factor, which is rather slow to do. + self.blindfac = self._initial_blinding_factor() + self.blindfac_inverse = rsa.common.inverse(self.blindfac, self.n) + else: + # Reuse previous blinding factor. + self.blindfac = pow(self.blindfac, 2, self.n) + self.blindfac_inverse = pow(self.blindfac_inverse, 2, self.n) + + return self.blindfac, self.blindfac_inverse + + +class PublicKey(AbstractKey): + """Represents a public RSA key. + + This key is also known as the 'encryption key'. It contains the 'n' and 'e' + values. + + Supports attributes as well as dictionary-like access. Attribute access is + faster, though. + + >>> PublicKey(5, 3) + PublicKey(5, 3) + + >>> key = PublicKey(5, 3) + >>> key.n + 5 + >>> key['n'] + 5 + >>> key.e + 3 + >>> key['e'] + 3 + + """ + + __slots__ = () + + def __getitem__(self, key: str) -> int: + return getattr(self, key) + + def __repr__(self) -> str: + return "PublicKey(%i, %i)" % (self.n, self.e) + + def __getstate__(self) -> typing.Tuple[int, int]: + """Returns the key as tuple for pickling.""" + return self.n, self.e + + def __setstate__(self, state: typing.Tuple[int, int]) -> None: + """Sets the key from tuple.""" + self.n, self.e = state + AbstractKey.__init__(self, self.n, self.e) + + def __eq__(self, other: typing.Any) -> bool: + if other is None: + return False + + if not isinstance(other, PublicKey): + return False + + return self.n == other.n and self.e == other.e + + def __ne__(self, other: typing.Any) -> bool: + return not (self == other) + + def __hash__(self) -> int: + return hash((self.n, self.e)) + + @classmethod + def _load_pkcs1_der(cls, keyfile: bytes) -> "PublicKey": + """Loads a key in PKCS#1 DER format. + + :param keyfile: contents of a DER-encoded file that contains the public + key. + :return: a PublicKey object + + First let's construct a DER encoded key: + + >>> import base64 + >>> b64der = 'MAwCBQCNGmYtAgMBAAE=' + >>> der = base64.standard_b64decode(b64der) + + This loads the file: + + >>> PublicKey._load_pkcs1_der(der) + PublicKey(2367317549, 65537) + + """ + + from pyasn1.codec.der import decoder + from rsa.asn1 import AsnPubKey + + (priv, _) = decoder.decode(keyfile, asn1Spec=AsnPubKey()) + return cls(n=int(priv["modulus"]), e=int(priv["publicExponent"])) + + def _save_pkcs1_der(self) -> bytes: + """Saves the public key in PKCS#1 DER format. + + :returns: the DER-encoded public key. + :rtype: bytes + """ + + from pyasn1.codec.der import encoder + from rsa.asn1 import AsnPubKey + + # Create the ASN object + asn_key = AsnPubKey() + asn_key.setComponentByName("modulus", self.n) + asn_key.setComponentByName("publicExponent", self.e) + + return encoder.encode(asn_key) + + @classmethod + def _load_pkcs1_pem(cls, keyfile: bytes) -> "PublicKey": + """Loads a PKCS#1 PEM-encoded public key file. + + The contents of the file before the "-----BEGIN RSA PUBLIC KEY-----" and + after the "-----END RSA PUBLIC KEY-----" lines is ignored. + + :param keyfile: contents of a PEM-encoded file that contains the public + key. + :return: a PublicKey object + """ + + der = rsa.pem.load_pem(keyfile, "RSA PUBLIC KEY") + return cls._load_pkcs1_der(der) + + def _save_pkcs1_pem(self) -> bytes: + """Saves a PKCS#1 PEM-encoded public key file. + + :return: contents of a PEM-encoded file that contains the public key. + :rtype: bytes + """ + + der = self._save_pkcs1_der() + return rsa.pem.save_pem(der, "RSA PUBLIC KEY") + + @classmethod + def load_pkcs1_openssl_pem(cls, keyfile: bytes) -> "PublicKey": + """Loads a PKCS#1.5 PEM-encoded public key file from OpenSSL. + + These files can be recognised in that they start with BEGIN PUBLIC KEY + rather than BEGIN RSA PUBLIC KEY. + + The contents of the file before the "-----BEGIN PUBLIC KEY-----" and + after the "-----END PUBLIC KEY-----" lines is ignored. + + :param keyfile: contents of a PEM-encoded file that contains the public + key, from OpenSSL. + :type keyfile: bytes + :return: a PublicKey object + """ + + der = rsa.pem.load_pem(keyfile, "PUBLIC KEY") + return cls.load_pkcs1_openssl_der(der) + + @classmethod + def load_pkcs1_openssl_der(cls, keyfile: bytes) -> "PublicKey": + """Loads a PKCS#1 DER-encoded public key file from OpenSSL. + + :param keyfile: contents of a DER-encoded file that contains the public + key, from OpenSSL. + :return: a PublicKey object + """ + + from rsa.asn1 import OpenSSLPubKey + from pyasn1.codec.der import decoder + from pyasn1.type import univ + + (keyinfo, _) = decoder.decode(keyfile, asn1Spec=OpenSSLPubKey()) + + if keyinfo["header"]["oid"] != univ.ObjectIdentifier("1.2.840.113549.1.1.1"): + raise TypeError("This is not a DER-encoded OpenSSL-compatible public key") + + return cls._load_pkcs1_der(keyinfo["key"][1:]) + + +class PrivateKey(AbstractKey): + """Represents a private RSA key. + + This key is also known as the 'decryption key'. It contains the 'n', 'e', + 'd', 'p', 'q' and other values. + + Supports attributes as well as dictionary-like access. Attribute access is + faster, though. + + >>> PrivateKey(3247, 65537, 833, 191, 17) + PrivateKey(3247, 65537, 833, 191, 17) + + exp1, exp2 and coef will be calculated: + + >>> pk = PrivateKey(3727264081, 65537, 3349121513, 65063, 57287) + >>> pk.exp1 + 55063 + >>> pk.exp2 + 10095 + >>> pk.coef + 50797 + + """ + + __slots__ = ("d", "p", "q", "exp1", "exp2", "coef") + + def __init__(self, n: int, e: int, d: int, p: int, q: int) -> None: + AbstractKey.__init__(self, n, e) + self.d = d + self.p = p + self.q = q + + # Calculate exponents and coefficient. + self.exp1 = int(d % (p - 1)) + self.exp2 = int(d % (q - 1)) + self.coef = rsa.common.inverse(q, p) + + def __getitem__(self, key: str) -> int: + return getattr(self, key) + + def __repr__(self) -> str: + return "PrivateKey(%i, %i, %i, %i, %i)" % ( + self.n, + self.e, + self.d, + self.p, + self.q, + ) + + def __getstate__(self) -> typing.Tuple[int, int, int, int, int, int, int, int]: + """Returns the key as tuple for pickling.""" + return self.n, self.e, self.d, self.p, self.q, self.exp1, self.exp2, self.coef + + def __setstate__(self, state: typing.Tuple[int, int, int, int, int, int, int, int]) -> None: + """Sets the key from tuple.""" + self.n, self.e, self.d, self.p, self.q, self.exp1, self.exp2, self.coef = state + AbstractKey.__init__(self, self.n, self.e) + + def __eq__(self, other: typing.Any) -> bool: + if other is None: + return False + + if not isinstance(other, PrivateKey): + return False + + return ( + self.n == other.n + and self.e == other.e + and self.d == other.d + and self.p == other.p + and self.q == other.q + and self.exp1 == other.exp1 + and self.exp2 == other.exp2 + and self.coef == other.coef + ) + + def __ne__(self, other: typing.Any) -> bool: + return not (self == other) + + def __hash__(self) -> int: + return hash((self.n, self.e, self.d, self.p, self.q, self.exp1, self.exp2, self.coef)) + + def blinded_decrypt(self, encrypted: int) -> int: + """Decrypts the message using blinding to prevent side-channel attacks. + + :param encrypted: the encrypted message + :type encrypted: int + + :returns: the decrypted message + :rtype: int + """ + + # Blinding and un-blinding should be using the same factor + blinded, blindfac_inverse = self.blind(encrypted) + + # Instead of using the core functionality, use the Chinese Remainder + # Theorem and be 2-4x faster. This the same as: + # + # decrypted = rsa.core.decrypt_int(blinded, self.d, self.n) + s1 = pow(blinded, self.exp1, self.p) + s2 = pow(blinded, self.exp2, self.q) + h = ((s1 - s2) * self.coef) % self.p + decrypted = s2 + self.q * h + + return self.unblind(decrypted, blindfac_inverse) + + def blinded_encrypt(self, message: int) -> int: + """Encrypts the message using blinding to prevent side-channel attacks. + + :param message: the message to encrypt + :type message: int + + :returns: the encrypted message + :rtype: int + """ + + blinded, blindfac_inverse = self.blind(message) + encrypted = rsa.core.encrypt_int(blinded, self.d, self.n) + return self.unblind(encrypted, blindfac_inverse) + + @classmethod + def _load_pkcs1_der(cls, keyfile: bytes) -> "PrivateKey": + """Loads a key in PKCS#1 DER format. + + :param keyfile: contents of a DER-encoded file that contains the private + key. + :type keyfile: bytes + :return: a PrivateKey object + + First let's construct a DER encoded key: + + >>> import base64 + >>> b64der = 'MC4CAQACBQDeKYlRAgMBAAECBQDHn4npAgMA/icCAwDfxwIDANcXAgInbwIDAMZt' + >>> der = base64.standard_b64decode(b64der) + + This loads the file: + + >>> PrivateKey._load_pkcs1_der(der) + PrivateKey(3727264081, 65537, 3349121513, 65063, 57287) + + """ + + from pyasn1.codec.der import decoder + + (priv, _) = decoder.decode(keyfile) + + # ASN.1 contents of DER encoded private key: + # + # RSAPrivateKey ::= SEQUENCE { + # version Version, + # modulus INTEGER, -- n + # publicExponent INTEGER, -- e + # privateExponent INTEGER, -- d + # prime1 INTEGER, -- p + # prime2 INTEGER, -- q + # exponent1 INTEGER, -- d mod (p-1) + # exponent2 INTEGER, -- d mod (q-1) + # coefficient INTEGER, -- (inverse of q) mod p + # otherPrimeInfos OtherPrimeInfos OPTIONAL + # } + + if priv[0] != 0: + raise ValueError("Unable to read this file, version %s != 0" % priv[0]) + + as_ints = map(int, priv[1:6]) + key = cls(*as_ints) + + exp1, exp2, coef = map(int, priv[6:9]) + + if (key.exp1, key.exp2, key.coef) != (exp1, exp2, coef): + warnings.warn( + "You have provided a malformed keyfile. Either the exponents " + "or the coefficient are incorrect. Using the correct values " + "instead.", + UserWarning, + ) + + return key + + def _save_pkcs1_der(self) -> bytes: + """Saves the private key in PKCS#1 DER format. + + :returns: the DER-encoded private key. + :rtype: bytes + """ + + from pyasn1.type import univ, namedtype + from pyasn1.codec.der import encoder + + class AsnPrivKey(univ.Sequence): + componentType = namedtype.NamedTypes( + namedtype.NamedType("version", univ.Integer()), + namedtype.NamedType("modulus", univ.Integer()), + namedtype.NamedType("publicExponent", univ.Integer()), + namedtype.NamedType("privateExponent", univ.Integer()), + namedtype.NamedType("prime1", univ.Integer()), + namedtype.NamedType("prime2", univ.Integer()), + namedtype.NamedType("exponent1", univ.Integer()), + namedtype.NamedType("exponent2", univ.Integer()), + namedtype.NamedType("coefficient", univ.Integer()), + ) + + # Create the ASN object + asn_key = AsnPrivKey() + asn_key.setComponentByName("version", 0) + asn_key.setComponentByName("modulus", self.n) + asn_key.setComponentByName("publicExponent", self.e) + asn_key.setComponentByName("privateExponent", self.d) + asn_key.setComponentByName("prime1", self.p) + asn_key.setComponentByName("prime2", self.q) + asn_key.setComponentByName("exponent1", self.exp1) + asn_key.setComponentByName("exponent2", self.exp2) + asn_key.setComponentByName("coefficient", self.coef) + + return encoder.encode(asn_key) + + @classmethod + def _load_pkcs1_pem(cls, keyfile: bytes) -> "PrivateKey": + """Loads a PKCS#1 PEM-encoded private key file. + + The contents of the file before the "-----BEGIN RSA PRIVATE KEY-----" and + after the "-----END RSA PRIVATE KEY-----" lines is ignored. + + :param keyfile: contents of a PEM-encoded file that contains the private + key. + :type keyfile: bytes + :return: a PrivateKey object + """ + + der = rsa.pem.load_pem(keyfile, b"RSA PRIVATE KEY") + return cls._load_pkcs1_der(der) + + def _save_pkcs1_pem(self) -> bytes: + """Saves a PKCS#1 PEM-encoded private key file. + + :return: contents of a PEM-encoded file that contains the private key. + :rtype: bytes + """ + + der = self._save_pkcs1_der() + return rsa.pem.save_pem(der, b"RSA PRIVATE KEY") + + +def find_p_q( + nbits: int, + getprime_func: typing.Callable[[int], int] = rsa.prime.getprime, + accurate: bool = True, +) -> typing.Tuple[int, int]: + """Returns a tuple of two different primes of nbits bits each. + + The resulting p * q has exactly 2 * nbits bits, and the returned p and q + will not be equal. + + :param nbits: the number of bits in each of p and q. + :param getprime_func: the getprime function, defaults to + :py:func:`rsa.prime.getprime`. + + *Introduced in Python-RSA 3.1* + + :param accurate: whether to enable accurate mode or not. + :returns: (p, q), where p > q + + >>> (p, q) = find_p_q(128) + >>> from rsa import common + >>> common.bit_size(p * q) + 256 + + When not in accurate mode, the number of bits can be slightly less + + >>> (p, q) = find_p_q(128, accurate=False) + >>> from rsa import common + >>> common.bit_size(p * q) <= 256 + True + >>> common.bit_size(p * q) > 240 + True + + """ + + total_bits = nbits * 2 + + # Make sure that p and q aren't too close or the factoring programs can + # factor n. + shift = nbits // 16 + pbits = nbits + shift + qbits = nbits - shift + + # Choose the two initial primes + p = getprime_func(pbits) + q = getprime_func(qbits) + + def is_acceptable(p: int, q: int) -> bool: + """Returns True iff p and q are acceptable: + + - p and q differ + - (p * q) has the right nr of bits (when accurate=True) + """ + + if p == q: + return False + + if not accurate: + return True + + # Make sure we have just the right amount of bits + found_size = rsa.common.bit_size(p * q) + return total_bits == found_size + + # Keep choosing other primes until they match our requirements. + change_p = False + while not is_acceptable(p, q): + # Change p on one iteration and q on the other + if change_p: + p = getprime_func(pbits) + else: + q = getprime_func(qbits) + + change_p = not change_p + + # We want p > q as described on + # http://www.di-mgt.com.au/rsa_alg.html#crt + return max(p, q), min(p, q) + + +def calculate_keys_custom_exponent(p: int, q: int, exponent: int) -> typing.Tuple[int, int]: + """Calculates an encryption and a decryption key given p, q and an exponent, + and returns them as a tuple (e, d) + + :param p: the first large prime + :param q: the second large prime + :param exponent: the exponent for the key; only change this if you know + what you're doing, as the exponent influences how difficult your + private key can be cracked. A very common choice for e is 65537. + :type exponent: int + + """ + + phi_n = (p - 1) * (q - 1) + + try: + d = rsa.common.inverse(exponent, phi_n) + except rsa.common.NotRelativePrimeError as ex: + raise rsa.common.NotRelativePrimeError( + exponent, + phi_n, + ex.d, + msg="e (%d) and phi_n (%d) are not relatively prime (divider=%i)" + % (exponent, phi_n, ex.d), + ) from ex + + if (exponent * d) % phi_n != 1: + raise ValueError( + "e (%d) and d (%d) are not mult. inv. modulo " "phi_n (%d)" % (exponent, d, phi_n) + ) + + return exponent, d + + +def calculate_keys(p: int, q: int) -> typing.Tuple[int, int]: + """Calculates an encryption and a decryption key given p and q, and + returns them as a tuple (e, d) + + :param p: the first large prime + :param q: the second large prime + + :return: tuple (e, d) with the encryption and decryption exponents. + """ + + return calculate_keys_custom_exponent(p, q, DEFAULT_EXPONENT) + + +def gen_keys( + nbits: int, + getprime_func: typing.Callable[[int], int], + accurate: bool = True, + exponent: int = DEFAULT_EXPONENT, +) -> typing.Tuple[int, int, int, int]: + """Generate RSA keys of nbits bits. Returns (p, q, e, d). + + Note: this can take a long time, depending on the key size. + + :param nbits: the total number of bits in ``p`` and ``q``. Both ``p`` and + ``q`` will use ``nbits/2`` bits. + :param getprime_func: either :py:func:`rsa.prime.getprime` or a function + with similar signature. + :param exponent: the exponent for the key; only change this if you know + what you're doing, as the exponent influences how difficult your + private key can be cracked. A very common choice for e is 65537. + :type exponent: int + """ + + # Regenerate p and q values, until calculate_keys doesn't raise a + # ValueError. + while True: + (p, q) = find_p_q(nbits // 2, getprime_func, accurate) + try: + (e, d) = calculate_keys_custom_exponent(p, q, exponent=exponent) + break + except ValueError: + pass + + return p, q, e, d + + +def newkeys( + nbits: int, + accurate: bool = True, + poolsize: int = 1, + exponent: int = DEFAULT_EXPONENT, +) -> typing.Tuple[PublicKey, PrivateKey]: + """Generates public and private keys, and returns them as (pub, priv). + + The public key is also known as the 'encryption key', and is a + :py:class:`rsa.PublicKey` object. The private key is also known as the + 'decryption key' and is a :py:class:`rsa.PrivateKey` object. + + :param nbits: the number of bits required to store ``n = p*q``. + :param accurate: when True, ``n`` will have exactly the number of bits you + asked for. However, this makes key generation much slower. When False, + `n`` may have slightly less bits. + :param poolsize: the number of processes to use to generate the prime + numbers. If set to a number > 1, a parallel algorithm will be used. + This requires Python 2.6 or newer. + :param exponent: the exponent for the key; only change this if you know + what you're doing, as the exponent influences how difficult your + private key can be cracked. A very common choice for e is 65537. + :type exponent: int + + :returns: a tuple (:py:class:`rsa.PublicKey`, :py:class:`rsa.PrivateKey`) + + The ``poolsize`` parameter was added in *Python-RSA 3.1* and requires + Python 2.6 or newer. + + """ + + if nbits < 16: + raise ValueError("Key too small") + + if poolsize < 1: + raise ValueError("Pool size (%i) should be >= 1" % poolsize) + + # Determine which getprime function to use + if poolsize > 1: + from rsa import parallel + + def getprime_func(nbits: int) -> int: + return parallel.getprime(nbits, poolsize=poolsize) + + else: + getprime_func = rsa.prime.getprime + + # Generate the key components + (p, q, e, d) = gen_keys(nbits, getprime_func, accurate=accurate, exponent=exponent) + + # Create the key objects + n = p * q + + return (PublicKey(n, e), PrivateKey(n, e, d, p, q)) + + +__all__ = ["PublicKey", "PrivateKey", "newkeys"] + +if __name__ == "__main__": + import doctest + + try: + for count in range(100): + (failures, tests) = doctest.testmod() + if failures: + break + + if (count % 10 == 0 and count) or count == 1: + print("%i times" % count) + except KeyboardInterrupt: + print("Aborted") + else: + print("Doctests done") -- cgit v1.2.3