From 4a52a71956a8d46fcb7294ac71734504bb09bcc2 Mon Sep 17 00:00:00 2001 From: S. Solomon Darnell Date: Fri, 28 Mar 2025 21:52:21 -0500 Subject: two version of R2R are here --- .../site-packages/networkx/generators/expanders.py | 474 +++++++++++++++++++++ 1 file changed, 474 insertions(+) create mode 100644 .venv/lib/python3.12/site-packages/networkx/generators/expanders.py (limited to '.venv/lib/python3.12/site-packages/networkx/generators/expanders.py') diff --git a/.venv/lib/python3.12/site-packages/networkx/generators/expanders.py b/.venv/lib/python3.12/site-packages/networkx/generators/expanders.py new file mode 100644 index 00000000..befdb0e4 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/networkx/generators/expanders.py @@ -0,0 +1,474 @@ +"""Provides explicit constructions of expander graphs.""" + +import itertools + +import networkx as nx + +__all__ = [ + "margulis_gabber_galil_graph", + "chordal_cycle_graph", + "paley_graph", + "maybe_regular_expander", + "is_regular_expander", + "random_regular_expander_graph", +] + + +# Other discrete torus expanders can be constructed by using the following edge +# sets. For more information, see Chapter 4, "Expander Graphs", in +# "Pseudorandomness", by Salil Vadhan. +# +# For a directed expander, add edges from (x, y) to: +# +# (x, y), +# ((x + 1) % n, y), +# (x, (y + 1) % n), +# (x, (x + y) % n), +# (-y % n, x) +# +# For an undirected expander, add the reverse edges. +# +# Also appearing in the paper of Gabber and Galil: +# +# (x, y), +# (x, (x + y) % n), +# (x, (x + y + 1) % n), +# ((x + y) % n, y), +# ((x + y + 1) % n, y) +# +# and: +# +# (x, y), +# ((x + 2*y) % n, y), +# ((x + (2*y + 1)) % n, y), +# ((x + (2*y + 2)) % n, y), +# (x, (y + 2*x) % n), +# (x, (y + (2*x + 1)) % n), +# (x, (y + (2*x + 2)) % n), +# +@nx._dispatchable(graphs=None, returns_graph=True) +def margulis_gabber_galil_graph(n, create_using=None): + r"""Returns the Margulis-Gabber-Galil undirected MultiGraph on `n^2` nodes. + + The undirected MultiGraph is regular with degree `8`. Nodes are integer + pairs. The second-largest eigenvalue of the adjacency matrix of the graph + is at most `5 \sqrt{2}`, regardless of `n`. + + Parameters + ---------- + n : int + Determines the number of nodes in the graph: `n^2`. + create_using : NetworkX graph constructor, optional (default MultiGraph) + Graph type to create. If graph instance, then cleared before populated. + + Returns + ------- + G : graph + The constructed undirected multigraph. + + Raises + ------ + NetworkXError + If the graph is directed or not a multigraph. + + """ + G = nx.empty_graph(0, create_using, default=nx.MultiGraph) + if G.is_directed() or not G.is_multigraph(): + msg = "`create_using` must be an undirected multigraph." + raise nx.NetworkXError(msg) + + for x, y in itertools.product(range(n), repeat=2): + for u, v in ( + ((x + 2 * y) % n, y), + ((x + (2 * y + 1)) % n, y), + (x, (y + 2 * x) % n), + (x, (y + (2 * x + 1)) % n), + ): + G.add_edge((x, y), (u, v)) + G.graph["name"] = f"margulis_gabber_galil_graph({n})" + return G + + +@nx._dispatchable(graphs=None, returns_graph=True) +def chordal_cycle_graph(p, create_using=None): + """Returns the chordal cycle graph on `p` nodes. + + The returned graph is a cycle graph on `p` nodes with chords joining each + vertex `x` to its inverse modulo `p`. This graph is a (mildly explicit) + 3-regular expander [1]_. + + `p` *must* be a prime number. + + Parameters + ---------- + p : a prime number + + The number of vertices in the graph. This also indicates where the + chordal edges in the cycle will be created. + + create_using : NetworkX graph constructor, optional (default=nx.Graph) + Graph type to create. If graph instance, then cleared before populated. + + Returns + ------- + G : graph + The constructed undirected multigraph. + + Raises + ------ + NetworkXError + + If `create_using` indicates directed or not a multigraph. + + References + ---------- + + .. [1] Theorem 4.4.2 in A. Lubotzky. "Discrete groups, expanding graphs and + invariant measures", volume 125 of Progress in Mathematics. + Birkhäuser Verlag, Basel, 1994. + + """ + G = nx.empty_graph(0, create_using, default=nx.MultiGraph) + if G.is_directed() or not G.is_multigraph(): + msg = "`create_using` must be an undirected multigraph." + raise nx.NetworkXError(msg) + + for x in range(p): + left = (x - 1) % p + right = (x + 1) % p + # Here we apply Fermat's Little Theorem to compute the multiplicative + # inverse of x in Z/pZ. By Fermat's Little Theorem, + # + # x^p = x (mod p) + # + # Therefore, + # + # x * x^(p - 2) = 1 (mod p) + # + # The number 0 is a special case: we just let its inverse be itself. + chord = pow(x, p - 2, p) if x > 0 else 0 + for y in (left, right, chord): + G.add_edge(x, y) + G.graph["name"] = f"chordal_cycle_graph({p})" + return G + + +@nx._dispatchable(graphs=None, returns_graph=True) +def paley_graph(p, create_using=None): + r"""Returns the Paley $\frac{(p-1)}{2}$ -regular graph on $p$ nodes. + + The returned graph is a graph on $\mathbb{Z}/p\mathbb{Z}$ with edges between $x$ and $y$ + if and only if $x-y$ is a nonzero square in $\mathbb{Z}/p\mathbb{Z}$. + + If $p \equiv 1 \pmod 4$, $-1$ is a square in $\mathbb{Z}/p\mathbb{Z}$ and therefore $x-y$ is a square if and + only if $y-x$ is also a square, i.e the edges in the Paley graph are symmetric. + + If $p \equiv 3 \pmod 4$, $-1$ is not a square in $\mathbb{Z}/p\mathbb{Z}$ and therefore either $x-y$ or $y-x$ + is a square in $\mathbb{Z}/p\mathbb{Z}$ but not both. + + Note that a more general definition of Paley graphs extends this construction + to graphs over $q=p^n$ vertices, by using the finite field $F_q$ instead of $\mathbb{Z}/p\mathbb{Z}$. + This construction requires to compute squares in general finite fields and is + not what is implemented here (i.e `paley_graph(25)` does not return the true + Paley graph associated with $5^2$). + + Parameters + ---------- + p : int, an odd prime number. + + create_using : NetworkX graph constructor, optional (default=nx.Graph) + Graph type to create. If graph instance, then cleared before populated. + + Returns + ------- + G : graph + The constructed directed graph. + + Raises + ------ + NetworkXError + If the graph is a multigraph. + + References + ---------- + Chapter 13 in B. Bollobas, Random Graphs. Second edition. + Cambridge Studies in Advanced Mathematics, 73. + Cambridge University Press, Cambridge (2001). + """ + G = nx.empty_graph(0, create_using, default=nx.DiGraph) + if G.is_multigraph(): + msg = "`create_using` cannot be a multigraph." + raise nx.NetworkXError(msg) + + # Compute the squares in Z/pZ. + # Make it a set to uniquify (there are exactly (p-1)/2 squares in Z/pZ + # when is prime). + square_set = {(x**2) % p for x in range(1, p) if (x**2) % p != 0} + + for x in range(p): + for x2 in square_set: + G.add_edge(x, (x + x2) % p) + G.graph["name"] = f"paley({p})" + return G + + +@nx.utils.decorators.np_random_state("seed") +@nx._dispatchable(graphs=None, returns_graph=True) +def maybe_regular_expander(n, d, *, create_using=None, max_tries=100, seed=None): + r"""Utility for creating a random regular expander. + + Returns a random $d$-regular graph on $n$ nodes which is an expander + graph with very good probability. + + Parameters + ---------- + n : int + The number of nodes. + d : int + The degree of each node. + create_using : Graph Instance or Constructor + Indicator of type of graph to return. + If a Graph-type instance, then clear and use it. + If a constructor, call it to create an empty graph. + Use the Graph constructor by default. + max_tries : int. (default: 100) + The number of allowed loops when generating each independent cycle + seed : (default: None) + Seed used to set random number generation state. See :ref`Randomness`. + + Notes + ----- + The nodes are numbered from $0$ to $n - 1$. + + The graph is generated by taking $d / 2$ random independent cycles. + + Joel Friedman proved that in this model the resulting + graph is an expander with probability + $1 - O(n^{-\tau})$ where $\tau = \lceil (\sqrt{d - 1}) / 2 \rceil - 1$. [1]_ + + Examples + -------- + >>> G = nx.maybe_regular_expander(n=200, d=6, seed=8020) + + Returns + ------- + G : graph + The constructed undirected graph. + + Raises + ------ + NetworkXError + If $d % 2 != 0$ as the degree must be even. + If $n - 1$ is less than $ 2d $ as the graph is complete at most. + If max_tries is reached + + See Also + -------- + is_regular_expander + random_regular_expander_graph + + References + ---------- + .. [1] Joel Friedman, + A Proof of Alon’s Second Eigenvalue Conjecture and Related Problems, 2004 + https://arxiv.org/abs/cs/0405020 + + """ + + import numpy as np + + if n < 1: + raise nx.NetworkXError("n must be a positive integer") + + if not (d >= 2): + raise nx.NetworkXError("d must be greater than or equal to 2") + + if not (d % 2 == 0): + raise nx.NetworkXError("d must be even") + + if not (n - 1 >= d): + raise nx.NetworkXError( + f"Need n-1>= d to have room for {d//2} independent cycles with {n} nodes" + ) + + G = nx.empty_graph(n, create_using) + + if n < 2: + return G + + cycles = [] + edges = set() + + # Create d / 2 cycles + for i in range(d // 2): + iterations = max_tries + # Make sure the cycles are independent to have a regular graph + while len(edges) != (i + 1) * n: + iterations -= 1 + # Faster than random.permutation(n) since there are only + # (n-1)! distinct cycles against n! permutations of size n + cycle = seed.permutation(n - 1).tolist() + cycle.append(n - 1) + + new_edges = { + (u, v) + for u, v in nx.utils.pairwise(cycle, cyclic=True) + if (u, v) not in edges and (v, u) not in edges + } + # If the new cycle has no edges in common with previous cycles + # then add it to the list otherwise try again + if len(new_edges) == n: + cycles.append(cycle) + edges.update(new_edges) + + if iterations == 0: + raise nx.NetworkXError("Too many iterations in maybe_regular_expander") + + G.add_edges_from(edges) + + return G + + +@nx.utils.not_implemented_for("directed") +@nx.utils.not_implemented_for("multigraph") +@nx._dispatchable(preserve_edge_attrs={"G": {"weight": 1}}) +def is_regular_expander(G, *, epsilon=0): + r"""Determines whether the graph G is a regular expander. [1]_ + + An expander graph is a sparse graph with strong connectivity properties. + + More precisely, this helper checks whether the graph is a + regular $(n, d, \lambda)$-expander with $\lambda$ close to + the Alon-Boppana bound and given by + $\lambda = 2 \sqrt{d - 1} + \epsilon$. [2]_ + + In the case where $\epsilon = 0$ then if the graph successfully passes the test + it is a Ramanujan graph. [3]_ + + A Ramanujan graph has spectral gap almost as large as possible, which makes them + excellent expanders. + + Parameters + ---------- + G : NetworkX graph + epsilon : int, float, default=0 + + Returns + ------- + bool + Whether the given graph is a regular $(n, d, \lambda)$-expander + where $\lambda = 2 \sqrt{d - 1} + \epsilon$. + + Examples + -------- + >>> G = nx.random_regular_expander_graph(20, 4) + >>> nx.is_regular_expander(G) + True + + See Also + -------- + maybe_regular_expander + random_regular_expander_graph + + References + ---------- + .. [1] Expander graph, https://en.wikipedia.org/wiki/Expander_graph + .. [2] Alon-Boppana bound, https://en.wikipedia.org/wiki/Alon%E2%80%93Boppana_bound + .. [3] Ramanujan graphs, https://en.wikipedia.org/wiki/Ramanujan_graph + + """ + + import numpy as np + from scipy.sparse.linalg import eigsh + + if epsilon < 0: + raise nx.NetworkXError("epsilon must be non negative") + + if not nx.is_regular(G): + return False + + _, d = nx.utils.arbitrary_element(G.degree) + + A = nx.adjacency_matrix(G, dtype=float) + lams = eigsh(A, which="LM", k=2, return_eigenvectors=False) + + # lambda2 is the second biggest eigenvalue + lambda2 = min(lams) + + # Use bool() to convert numpy scalar to Python Boolean + return bool(abs(lambda2) < 2 ** np.sqrt(d - 1) + epsilon) + + +@nx.utils.decorators.np_random_state("seed") +@nx._dispatchable(graphs=None, returns_graph=True) +def random_regular_expander_graph( + n, d, *, epsilon=0, create_using=None, max_tries=100, seed=None +): + r"""Returns a random regular expander graph on $n$ nodes with degree $d$. + + An expander graph is a sparse graph with strong connectivity properties. [1]_ + + More precisely the returned graph is a $(n, d, \lambda)$-expander with + $\lambda = 2 \sqrt{d - 1} + \epsilon$, close to the Alon-Boppana bound. [2]_ + + In the case where $\epsilon = 0$ it returns a Ramanujan graph. + A Ramanujan graph has spectral gap almost as large as possible, + which makes them excellent expanders. [3]_ + + Parameters + ---------- + n : int + The number of nodes. + d : int + The degree of each node. + epsilon : int, float, default=0 + max_tries : int, (default: 100) + The number of allowed loops, also used in the maybe_regular_expander utility + seed : (default: None) + Seed used to set random number generation state. See :ref`Randomness`. + + Raises + ------ + NetworkXError + If max_tries is reached + + Examples + -------- + >>> G = nx.random_regular_expander_graph(20, 4) + >>> nx.is_regular_expander(G) + True + + Notes + ----- + This loops over `maybe_regular_expander` and can be slow when + $n$ is too big or $\epsilon$ too small. + + See Also + -------- + maybe_regular_expander + is_regular_expander + + References + ---------- + .. [1] Expander graph, https://en.wikipedia.org/wiki/Expander_graph + .. [2] Alon-Boppana bound, https://en.wikipedia.org/wiki/Alon%E2%80%93Boppana_bound + .. [3] Ramanujan graphs, https://en.wikipedia.org/wiki/Ramanujan_graph + + """ + G = maybe_regular_expander( + n, d, create_using=create_using, max_tries=max_tries, seed=seed + ) + iterations = max_tries + + while not is_regular_expander(G, epsilon=epsilon): + iterations -= 1 + G = maybe_regular_expander( + n=n, d=d, create_using=create_using, max_tries=max_tries, seed=seed + ) + + if iterations == 0: + raise nx.NetworkXError( + "Too many iterations in random_regular_expander_graph" + ) + + return G -- cgit v1.2.3