From 4a52a71956a8d46fcb7294ac71734504bb09bcc2 Mon Sep 17 00:00:00 2001 From: S. Solomon Darnell Date: Fri, 28 Mar 2025 21:52:21 -0500 Subject: two version of R2R are here --- .../site-packages/networkx/generators/ego.py | 66 ++++++++++++++++++++++ 1 file changed, 66 insertions(+) create mode 100644 .venv/lib/python3.12/site-packages/networkx/generators/ego.py (limited to '.venv/lib/python3.12/site-packages/networkx/generators/ego.py') diff --git a/.venv/lib/python3.12/site-packages/networkx/generators/ego.py b/.venv/lib/python3.12/site-packages/networkx/generators/ego.py new file mode 100644 index 00000000..1c705430 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/networkx/generators/ego.py @@ -0,0 +1,66 @@ +""" +Ego graph. +""" + +__all__ = ["ego_graph"] + +import networkx as nx + + +@nx._dispatchable(preserve_all_attrs=True, returns_graph=True) +def ego_graph(G, n, radius=1, center=True, undirected=False, distance=None): + """Returns induced subgraph of neighbors centered at node n within + a given radius. + + Parameters + ---------- + G : graph + A NetworkX Graph or DiGraph + + n : node + A single node + + radius : number, optional + Include all neighbors of distance<=radius from n. + + center : bool, optional + If False, do not include center node in graph + + undirected : bool, optional + If True use both in- and out-neighbors of directed graphs. + + distance : key, optional + Use specified edge data key as distance. For example, setting + distance='weight' will use the edge weight to measure the + distance from the node n. + + Notes + ----- + For directed graphs D this produces the "out" neighborhood + or successors. If you want the neighborhood of predecessors + first reverse the graph with D.reverse(). If you want both + directions use the keyword argument undirected=True. + + Node, edge, and graph attributes are copied to the returned subgraph. + """ + if undirected: + if distance is not None: + sp, _ = nx.single_source_dijkstra( + G.to_undirected(), n, cutoff=radius, weight=distance + ) + else: + sp = dict( + nx.single_source_shortest_path_length( + G.to_undirected(), n, cutoff=radius + ) + ) + else: + if distance is not None: + sp, _ = nx.single_source_dijkstra(G, n, cutoff=radius, weight=distance) + else: + sp = dict(nx.single_source_shortest_path_length(G, n, cutoff=radius)) + + H = G.subgraph(sp).copy() + if not center: + H.remove_node(n) + return H -- cgit v1.2.3