From 4a52a71956a8d46fcb7294ac71734504bb09bcc2 Mon Sep 17 00:00:00 2001 From: S. Solomon Darnell Date: Fri, 28 Mar 2025 21:52:21 -0500 Subject: two version of R2R are here --- .../networkx/algorithms/polynomials.py | 306 +++++++++++++++++++++ 1 file changed, 306 insertions(+) create mode 100644 .venv/lib/python3.12/site-packages/networkx/algorithms/polynomials.py (limited to '.venv/lib/python3.12/site-packages/networkx/algorithms/polynomials.py') diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/polynomials.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/polynomials.py new file mode 100644 index 00000000..7ebc7554 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/polynomials.py @@ -0,0 +1,306 @@ +"""Provides algorithms supporting the computation of graph polynomials. + +Graph polynomials are polynomial-valued graph invariants that encode a wide +variety of structural information. Examples include the Tutte polynomial, +chromatic polynomial, characteristic polynomial, and matching polynomial. An +extensive treatment is provided in [1]_. + +For a simple example, the `~sympy.matrices.matrices.MatrixDeterminant.charpoly` +method can be used to compute the characteristic polynomial from the adjacency +matrix of a graph. Consider the complete graph ``K_4``: + +>>> import sympy +>>> x = sympy.Symbol("x") +>>> G = nx.complete_graph(4) +>>> A = nx.to_numpy_array(G, dtype=int) +>>> M = sympy.SparseMatrix(A) +>>> M.charpoly(x).as_expr() +x**4 - 6*x**2 - 8*x - 3 + + +.. [1] Y. Shi, M. Dehmer, X. Li, I. Gutman, + "Graph Polynomials" +""" + +from collections import deque + +import networkx as nx +from networkx.utils import not_implemented_for + +__all__ = ["tutte_polynomial", "chromatic_polynomial"] + + +@not_implemented_for("directed") +@nx._dispatchable +def tutte_polynomial(G): + r"""Returns the Tutte polynomial of `G` + + This function computes the Tutte polynomial via an iterative version of + the deletion-contraction algorithm. + + The Tutte polynomial `T_G(x, y)` is a fundamental graph polynomial invariant in + two variables. It encodes a wide array of information related to the + edge-connectivity of a graph; "Many problems about graphs can be reduced to + problems of finding and evaluating the Tutte polynomial at certain values" [1]_. + In fact, every deletion-contraction-expressible feature of a graph is a + specialization of the Tutte polynomial [2]_ (see Notes for examples). + + There are several equivalent definitions; here are three: + + Def 1 (rank-nullity expansion): For `G` an undirected graph, `n(G)` the + number of vertices of `G`, `E` the edge set of `G`, `V` the vertex set of + `G`, and `c(A)` the number of connected components of the graph with vertex + set `V` and edge set `A` [3]_: + + .. math:: + + T_G(x, y) = \sum_{A \in E} (x-1)^{c(A) - c(E)} (y-1)^{c(A) + |A| - n(G)} + + Def 2 (spanning tree expansion): Let `G` be an undirected graph, `T` a spanning + tree of `G`, and `E` the edge set of `G`. Let `E` have an arbitrary strict + linear order `L`. Let `B_e` be the unique minimal nonempty edge cut of + $E \setminus T \cup {e}$. An edge `e` is internally active with respect to + `T` and `L` if `e` is the least edge in `B_e` according to the linear order + `L`. The internal activity of `T` (denoted `i(T)`) is the number of edges + in $E \setminus T$ that are internally active with respect to `T` and `L`. + Let `P_e` be the unique path in $T \cup {e}$ whose source and target vertex + are the same. An edge `e` is externally active with respect to `T` and `L` + if `e` is the least edge in `P_e` according to the linear order `L`. The + external activity of `T` (denoted `e(T)`) is the number of edges in + $E \setminus T$ that are externally active with respect to `T` and `L`. + Then [4]_ [5]_: + + .. math:: + + T_G(x, y) = \sum_{T \text{ a spanning tree of } G} x^{i(T)} y^{e(T)} + + Def 3 (deletion-contraction recurrence): For `G` an undirected graph, `G-e` + the graph obtained from `G` by deleting edge `e`, `G/e` the graph obtained + from `G` by contracting edge `e`, `k(G)` the number of cut-edges of `G`, + and `l(G)` the number of self-loops of `G`: + + .. math:: + T_G(x, y) = \begin{cases} + x^{k(G)} y^{l(G)}, & \text{if all edges are cut-edges or self-loops} \\ + T_{G-e}(x, y) + T_{G/e}(x, y), & \text{otherwise, for an arbitrary edge $e$ not a cut-edge or loop} + \end{cases} + + Parameters + ---------- + G : NetworkX graph + + Returns + ------- + instance of `sympy.core.add.Add` + A Sympy expression representing the Tutte polynomial for `G`. + + Examples + -------- + >>> C = nx.cycle_graph(5) + >>> nx.tutte_polynomial(C) + x**4 + x**3 + x**2 + x + y + + >>> D = nx.diamond_graph() + >>> nx.tutte_polynomial(D) + x**3 + 2*x**2 + 2*x*y + x + y**2 + y + + Notes + ----- + Some specializations of the Tutte polynomial: + + - `T_G(1, 1)` counts the number of spanning trees of `G` + - `T_G(1, 2)` counts the number of connected spanning subgraphs of `G` + - `T_G(2, 1)` counts the number of spanning forests in `G` + - `T_G(0, 2)` counts the number of strong orientations of `G` + - `T_G(2, 0)` counts the number of acyclic orientations of `G` + + Edge contraction is defined and deletion-contraction is introduced in [6]_. + Combinatorial meaning of the coefficients is introduced in [7]_. + Universality, properties, and applications are discussed in [8]_. + + Practically, up-front computation of the Tutte polynomial may be useful when + users wish to repeatedly calculate edge-connectivity-related information + about one or more graphs. + + References + ---------- + .. [1] M. Brandt, + "The Tutte Polynomial." + Talking About Combinatorial Objects Seminar, 2015 + https://math.berkeley.edu/~brandtm/talks/tutte.pdf + .. [2] A. Björklund, T. Husfeldt, P. Kaski, M. Koivisto, + "Computing the Tutte polynomial in vertex-exponential time" + 49th Annual IEEE Symposium on Foundations of Computer Science, 2008 + https://ieeexplore.ieee.org/abstract/document/4691000 + .. [3] Y. Shi, M. Dehmer, X. Li, I. Gutman, + "Graph Polynomials," p. 14 + .. [4] Y. Shi, M. Dehmer, X. Li, I. Gutman, + "Graph Polynomials," p. 46 + .. [5] A. Nešetril, J. Goodall, + "Graph invariants, homomorphisms, and the Tutte polynomial" + https://iuuk.mff.cuni.cz/~andrew/Tutte.pdf + .. [6] D. B. West, + "Introduction to Graph Theory," p. 84 + .. [7] G. Coutinho, + "A brief introduction to the Tutte polynomial" + Structural Analysis of Complex Networks, 2011 + https://homepages.dcc.ufmg.br/~gabriel/seminars/coutinho_tuttepolynomial_seminar.pdf + .. [8] J. A. Ellis-Monaghan, C. Merino, + "Graph polynomials and their applications I: The Tutte polynomial" + Structural Analysis of Complex Networks, 2011 + https://arxiv.org/pdf/0803.3079.pdf + """ + import sympy + + x = sympy.Symbol("x") + y = sympy.Symbol("y") + stack = deque() + stack.append(nx.MultiGraph(G)) + + polynomial = 0 + while stack: + G = stack.pop() + bridges = set(nx.bridges(G)) + + e = None + for i in G.edges: + if (i[0], i[1]) not in bridges and i[0] != i[1]: + e = i + break + if not e: + loops = list(nx.selfloop_edges(G, keys=True)) + polynomial += x ** len(bridges) * y ** len(loops) + else: + # deletion-contraction + C = nx.contracted_edge(G, e, self_loops=True) + C.remove_edge(e[0], e[0]) + G.remove_edge(*e) + stack.append(G) + stack.append(C) + return sympy.simplify(polynomial) + + +@not_implemented_for("directed") +@nx._dispatchable +def chromatic_polynomial(G): + r"""Returns the chromatic polynomial of `G` + + This function computes the chromatic polynomial via an iterative version of + the deletion-contraction algorithm. + + The chromatic polynomial `X_G(x)` is a fundamental graph polynomial + invariant in one variable. Evaluating `X_G(k)` for an natural number `k` + enumerates the proper k-colorings of `G`. + + There are several equivalent definitions; here are three: + + Def 1 (explicit formula): + For `G` an undirected graph, `c(G)` the number of connected components of + `G`, `E` the edge set of `G`, and `G(S)` the spanning subgraph of `G` with + edge set `S` [1]_: + + .. math:: + + X_G(x) = \sum_{S \subseteq E} (-1)^{|S|} x^{c(G(S))} + + + Def 2 (interpolating polynomial): + For `G` an undirected graph, `n(G)` the number of vertices of `G`, `k_0 = 0`, + and `k_i` the number of distinct ways to color the vertices of `G` with `i` + unique colors (for `i` a natural number at most `n(G)`), `X_G(x)` is the + unique Lagrange interpolating polynomial of degree `n(G)` through the points + `(0, k_0), (1, k_1), \dots, (n(G), k_{n(G)})` [2]_. + + + Def 3 (chromatic recurrence): + For `G` an undirected graph, `G-e` the graph obtained from `G` by deleting + edge `e`, `G/e` the graph obtained from `G` by contracting edge `e`, `n(G)` + the number of vertices of `G`, and `e(G)` the number of edges of `G` [3]_: + + .. math:: + X_G(x) = \begin{cases} + x^{n(G)}, & \text{if $e(G)=0$} \\ + X_{G-e}(x) - X_{G/e}(x), & \text{otherwise, for an arbitrary edge $e$} + \end{cases} + + This formulation is also known as the Fundamental Reduction Theorem [4]_. + + + Parameters + ---------- + G : NetworkX graph + + Returns + ------- + instance of `sympy.core.add.Add` + A Sympy expression representing the chromatic polynomial for `G`. + + Examples + -------- + >>> C = nx.cycle_graph(5) + >>> nx.chromatic_polynomial(C) + x**5 - 5*x**4 + 10*x**3 - 10*x**2 + 4*x + + >>> G = nx.complete_graph(4) + >>> nx.chromatic_polynomial(G) + x**4 - 6*x**3 + 11*x**2 - 6*x + + Notes + ----- + Interpretation of the coefficients is discussed in [5]_. Several special + cases are listed in [2]_. + + The chromatic polynomial is a specialization of the Tutte polynomial; in + particular, ``X_G(x) = T_G(x, 0)`` [6]_. + + The chromatic polynomial may take negative arguments, though evaluations + may not have chromatic interpretations. For instance, ``X_G(-1)`` enumerates + the acyclic orientations of `G` [7]_. + + References + ---------- + .. [1] D. B. West, + "Introduction to Graph Theory," p. 222 + .. [2] E. W. Weisstein + "Chromatic Polynomial" + MathWorld--A Wolfram Web Resource + https://mathworld.wolfram.com/ChromaticPolynomial.html + .. [3] D. B. West, + "Introduction to Graph Theory," p. 221 + .. [4] J. Zhang, J. Goodall, + "An Introduction to Chromatic Polynomials" + https://math.mit.edu/~apost/courses/18.204_2018/Julie_Zhang_paper.pdf + .. [5] R. C. Read, + "An Introduction to Chromatic Polynomials" + Journal of Combinatorial Theory, 1968 + https://math.berkeley.edu/~mrklug/ReadChromatic.pdf + .. [6] W. T. Tutte, + "Graph-polynomials" + Advances in Applied Mathematics, 2004 + https://www.sciencedirect.com/science/article/pii/S0196885803000411 + .. [7] R. P. Stanley, + "Acyclic orientations of graphs" + Discrete Mathematics, 2006 + https://math.mit.edu/~rstan/pubs/pubfiles/18.pdf + """ + import sympy + + x = sympy.Symbol("x") + stack = deque() + stack.append(nx.MultiGraph(G, contraction_idx=0)) + + polynomial = 0 + while stack: + G = stack.pop() + edges = list(G.edges) + if not edges: + polynomial += (-1) ** G.graph["contraction_idx"] * x ** len(G) + else: + e = edges[0] + C = nx.contracted_edge(G, e, self_loops=True) + C.graph["contraction_idx"] = G.graph["contraction_idx"] + 1 + C.remove_edge(e[0], e[0]) + G.remove_edge(*e) + stack.append(G) + stack.append(C) + return polynomial -- cgit v1.2.3