From 4a52a71956a8d46fcb7294ac71734504bb09bcc2 Mon Sep 17 00:00:00 2001 From: S. Solomon Darnell Date: Fri, 28 Mar 2025 21:52:21 -0500 Subject: two version of R2R are here --- .../networkx/algorithms/graph_hashing.py | 328 +++++++++++++++++++++ 1 file changed, 328 insertions(+) create mode 100644 .venv/lib/python3.12/site-packages/networkx/algorithms/graph_hashing.py (limited to '.venv/lib/python3.12/site-packages/networkx/algorithms/graph_hashing.py') diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/graph_hashing.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/graph_hashing.py new file mode 100644 index 00000000..7ded847f --- /dev/null +++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/graph_hashing.py @@ -0,0 +1,328 @@ +""" +Functions for hashing graphs to strings. +Isomorphic graphs should be assigned identical hashes. +For now, only Weisfeiler-Lehman hashing is implemented. +""" + +from collections import Counter, defaultdict +from hashlib import blake2b + +import networkx as nx + +__all__ = ["weisfeiler_lehman_graph_hash", "weisfeiler_lehman_subgraph_hashes"] + + +def _hash_label(label, digest_size): + return blake2b(label.encode("ascii"), digest_size=digest_size).hexdigest() + + +def _init_node_labels(G, edge_attr, node_attr): + if node_attr: + return {u: str(dd[node_attr]) for u, dd in G.nodes(data=True)} + elif edge_attr: + return {u: "" for u in G} + else: + return {u: str(deg) for u, deg in G.degree()} + + +def _neighborhood_aggregate(G, node, node_labels, edge_attr=None): + """ + Compute new labels for given node by aggregating + the labels of each node's neighbors. + """ + label_list = [] + for nbr in G.neighbors(node): + prefix = "" if edge_attr is None else str(G[node][nbr][edge_attr]) + label_list.append(prefix + node_labels[nbr]) + return node_labels[node] + "".join(sorted(label_list)) + + +@nx.utils.not_implemented_for("multigraph") +@nx._dispatchable(edge_attrs={"edge_attr": None}, node_attrs="node_attr") +def weisfeiler_lehman_graph_hash( + G, edge_attr=None, node_attr=None, iterations=3, digest_size=16 +): + """Return Weisfeiler Lehman (WL) graph hash. + + The function iteratively aggregates and hashes neighborhoods of each node. + After each node's neighbors are hashed to obtain updated node labels, + a hashed histogram of resulting labels is returned as the final hash. + + Hashes are identical for isomorphic graphs and strong guarantees that + non-isomorphic graphs will get different hashes. See [1]_ for details. + + If no node or edge attributes are provided, the degree of each node + is used as its initial label. + Otherwise, node and/or edge labels are used to compute the hash. + + Parameters + ---------- + G : graph + The graph to be hashed. + Can have node and/or edge attributes. Can also have no attributes. + edge_attr : string, optional (default=None) + The key in edge attribute dictionary to be used for hashing. + If None, edge labels are ignored. + node_attr: string, optional (default=None) + The key in node attribute dictionary to be used for hashing. + If None, and no edge_attr given, use the degrees of the nodes as labels. + iterations: int, optional (default=3) + Number of neighbor aggregations to perform. + Should be larger for larger graphs. + digest_size: int, optional (default=16) + Size (in bits) of blake2b hash digest to use for hashing node labels. + + Returns + ------- + h : string + Hexadecimal string corresponding to hash of the input graph. + + Examples + -------- + Two graphs with edge attributes that are isomorphic, except for + differences in the edge labels. + + >>> G1 = nx.Graph() + >>> G1.add_edges_from( + ... [ + ... (1, 2, {"label": "A"}), + ... (2, 3, {"label": "A"}), + ... (3, 1, {"label": "A"}), + ... (1, 4, {"label": "B"}), + ... ] + ... ) + >>> G2 = nx.Graph() + >>> G2.add_edges_from( + ... [ + ... (5, 6, {"label": "B"}), + ... (6, 7, {"label": "A"}), + ... (7, 5, {"label": "A"}), + ... (7, 8, {"label": "A"}), + ... ] + ... ) + + Omitting the `edge_attr` option, results in identical hashes. + + >>> nx.weisfeiler_lehman_graph_hash(G1) + '7bc4dde9a09d0b94c5097b219891d81a' + >>> nx.weisfeiler_lehman_graph_hash(G2) + '7bc4dde9a09d0b94c5097b219891d81a' + + With edge labels, the graphs are no longer assigned + the same hash digest. + + >>> nx.weisfeiler_lehman_graph_hash(G1, edge_attr="label") + 'c653d85538bcf041d88c011f4f905f10' + >>> nx.weisfeiler_lehman_graph_hash(G2, edge_attr="label") + '3dcd84af1ca855d0eff3c978d88e7ec7' + + Notes + ----- + To return the WL hashes of each subgraph of a graph, use + `weisfeiler_lehman_subgraph_hashes` + + Similarity between hashes does not imply similarity between graphs. + + References + ---------- + .. [1] Shervashidze, Nino, Pascal Schweitzer, Erik Jan Van Leeuwen, + Kurt Mehlhorn, and Karsten M. Borgwardt. Weisfeiler Lehman + Graph Kernels. Journal of Machine Learning Research. 2011. + http://www.jmlr.org/papers/volume12/shervashidze11a/shervashidze11a.pdf + + See also + -------- + weisfeiler_lehman_subgraph_hashes + """ + + def weisfeiler_lehman_step(G, labels, edge_attr=None): + """ + Apply neighborhood aggregation to each node + in the graph. + Computes a dictionary with labels for each node. + """ + new_labels = {} + for node in G.nodes(): + label = _neighborhood_aggregate(G, node, labels, edge_attr=edge_attr) + new_labels[node] = _hash_label(label, digest_size) + return new_labels + + # set initial node labels + node_labels = _init_node_labels(G, edge_attr, node_attr) + + subgraph_hash_counts = [] + for _ in range(iterations): + node_labels = weisfeiler_lehman_step(G, node_labels, edge_attr=edge_attr) + counter = Counter(node_labels.values()) + # sort the counter, extend total counts + subgraph_hash_counts.extend(sorted(counter.items(), key=lambda x: x[0])) + + # hash the final counter + return _hash_label(str(tuple(subgraph_hash_counts)), digest_size) + + +@nx.utils.not_implemented_for("multigraph") +@nx._dispatchable(edge_attrs={"edge_attr": None}, node_attrs="node_attr") +def weisfeiler_lehman_subgraph_hashes( + G, + edge_attr=None, + node_attr=None, + iterations=3, + digest_size=16, + include_initial_labels=False, +): + """ + Return a dictionary of subgraph hashes by node. + + Dictionary keys are nodes in `G`, and values are a list of hashes. + Each hash corresponds to a subgraph rooted at a given node u in `G`. + Lists of subgraph hashes are sorted in increasing order of depth from + their root node, with the hash at index i corresponding to a subgraph + of nodes at most i edges distance from u. Thus, each list will contain + `iterations` elements - a hash for a subgraph at each depth. If + `include_initial_labels` is set to `True`, each list will additionally + have contain a hash of the initial node label (or equivalently a + subgraph of depth 0) prepended, totalling ``iterations + 1`` elements. + + The function iteratively aggregates and hashes neighborhoods of each node. + This is achieved for each step by replacing for each node its label from + the previous iteration with its hashed 1-hop neighborhood aggregate. + The new node label is then appended to a list of node labels for each + node. + + To aggregate neighborhoods for a node $u$ at each step, all labels of + nodes adjacent to $u$ are concatenated. If the `edge_attr` parameter is set, + labels for each neighboring node are prefixed with the value of this attribute + along the connecting edge from this neighbor to node $u$. The resulting string + is then hashed to compress this information into a fixed digest size. + + Thus, at the $i$-th iteration, nodes within $i$ hops influence any given + hashed node label. We can therefore say that at depth $i$ for node $u$ + we have a hash for a subgraph induced by the $i$-hop neighborhood of $u$. + + The output can be used to create general Weisfeiler-Lehman graph kernels, + or generate features for graphs or nodes - for example to generate 'words' in + a graph as seen in the 'graph2vec' algorithm. + See [1]_ & [2]_ respectively for details. + + Hashes are identical for isomorphic subgraphs and there exist strong + guarantees that non-isomorphic graphs will get different hashes. + See [1]_ for details. + + If no node or edge attributes are provided, the degree of each node + is used as its initial label. + Otherwise, node and/or edge labels are used to compute the hash. + + Parameters + ---------- + G : graph + The graph to be hashed. + Can have node and/or edge attributes. Can also have no attributes. + edge_attr : string, optional (default=None) + The key in edge attribute dictionary to be used for hashing. + If None, edge labels are ignored. + node_attr : string, optional (default=None) + The key in node attribute dictionary to be used for hashing. + If None, and no edge_attr given, use the degrees of the nodes as labels. + If None, and edge_attr is given, each node starts with an identical label. + iterations : int, optional (default=3) + Number of neighbor aggregations to perform. + Should be larger for larger graphs. + digest_size : int, optional (default=16) + Size (in bits) of blake2b hash digest to use for hashing node labels. + The default size is 16 bits. + include_initial_labels : bool, optional (default=False) + If True, include the hashed initial node label as the first subgraph + hash for each node. + + Returns + ------- + node_subgraph_hashes : dict + A dictionary with each key given by a node in G, and each value given + by the subgraph hashes in order of depth from the key node. + + Examples + -------- + Finding similar nodes in different graphs: + + >>> G1 = nx.Graph() + >>> G1.add_edges_from([(1, 2), (2, 3), (2, 4), (3, 5), (4, 6), (5, 7), (6, 7)]) + >>> G2 = nx.Graph() + >>> G2.add_edges_from([(1, 3), (2, 3), (1, 6), (1, 5), (4, 6)]) + >>> g1_hashes = nx.weisfeiler_lehman_subgraph_hashes( + ... G1, iterations=3, digest_size=8 + ... ) + >>> g2_hashes = nx.weisfeiler_lehman_subgraph_hashes( + ... G2, iterations=3, digest_size=8 + ... ) + + Even though G1 and G2 are not isomorphic (they have different numbers of edges), + the hash sequence of depth 3 for node 1 in G1 and node 5 in G2 are similar: + + >>> g1_hashes[1] + ['a93b64973cfc8897', 'db1b43ae35a1878f', '57872a7d2059c1c0'] + >>> g2_hashes[5] + ['a93b64973cfc8897', 'db1b43ae35a1878f', '1716d2a4012fa4bc'] + + The first 2 WL subgraph hashes match. From this we can conclude that it's very + likely the neighborhood of 2 hops around these nodes are isomorphic. + + However the 3-hop neighborhoods of ``G1`` and ``G2`` are not isomorphic since the + 3rd hashes in the lists above are not equal. + + These nodes may be candidates to be classified together since their local topology + is similar. + + Notes + ----- + To hash the full graph when subgraph hashes are not needed, use + `weisfeiler_lehman_graph_hash` for efficiency. + + Similarity between hashes does not imply similarity between graphs. + + References + ---------- + .. [1] Shervashidze, Nino, Pascal Schweitzer, Erik Jan Van Leeuwen, + Kurt Mehlhorn, and Karsten M. Borgwardt. Weisfeiler Lehman + Graph Kernels. Journal of Machine Learning Research. 2011. + http://www.jmlr.org/papers/volume12/shervashidze11a/shervashidze11a.pdf + .. [2] Annamalai Narayanan, Mahinthan Chandramohan, Rajasekar Venkatesan, + Lihui Chen, Yang Liu and Shantanu Jaiswa. graph2vec: Learning + Distributed Representations of Graphs. arXiv. 2017 + https://arxiv.org/pdf/1707.05005.pdf + + See also + -------- + weisfeiler_lehman_graph_hash + """ + + def weisfeiler_lehman_step(G, labels, node_subgraph_hashes, edge_attr=None): + """ + Apply neighborhood aggregation to each node + in the graph. + Computes a dictionary with labels for each node. + Appends the new hashed label to the dictionary of subgraph hashes + originating from and indexed by each node in G + """ + new_labels = {} + for node in G.nodes(): + label = _neighborhood_aggregate(G, node, labels, edge_attr=edge_attr) + hashed_label = _hash_label(label, digest_size) + new_labels[node] = hashed_label + node_subgraph_hashes[node].append(hashed_label) + return new_labels + + node_labels = _init_node_labels(G, edge_attr, node_attr) + if include_initial_labels: + node_subgraph_hashes = { + k: [_hash_label(v, digest_size)] for k, v in node_labels.items() + } + else: + node_subgraph_hashes = defaultdict(list) + + for _ in range(iterations): + node_labels = weisfeiler_lehman_step( + G, node_labels, node_subgraph_hashes, edge_attr + ) + + return dict(node_subgraph_hashes) -- cgit v1.2.3