From 4a52a71956a8d46fcb7294ac71734504bb09bcc2 Mon Sep 17 00:00:00 2001 From: S. Solomon Darnell Date: Fri, 28 Mar 2025 21:52:21 -0500 Subject: two version of R2R are here --- .../algorithms/connectivity/tests/__init__.py | 0 .../connectivity/tests/test_connectivity.py | 421 +++++++++++++++++ .../algorithms/connectivity/tests/test_cuts.py | 309 +++++++++++++ .../connectivity/tests/test_disjoint_paths.py | 249 ++++++++++ .../connectivity/tests/test_edge_augmentation.py | 502 +++++++++++++++++++++ .../connectivity/tests/test_edge_kcomponents.py | 488 ++++++++++++++++++++ .../connectivity/tests/test_kcomponents.py | 296 ++++++++++++ .../algorithms/connectivity/tests/test_kcutsets.py | 273 +++++++++++ .../connectivity/tests/test_stoer_wagner.py | 102 +++++ 9 files changed, 2640 insertions(+) create mode 100644 .venv/lib/python3.12/site-packages/networkx/algorithms/connectivity/tests/__init__.py create mode 100644 .venv/lib/python3.12/site-packages/networkx/algorithms/connectivity/tests/test_connectivity.py create mode 100644 .venv/lib/python3.12/site-packages/networkx/algorithms/connectivity/tests/test_cuts.py create mode 100644 .venv/lib/python3.12/site-packages/networkx/algorithms/connectivity/tests/test_disjoint_paths.py create mode 100644 .venv/lib/python3.12/site-packages/networkx/algorithms/connectivity/tests/test_edge_augmentation.py create mode 100644 .venv/lib/python3.12/site-packages/networkx/algorithms/connectivity/tests/test_edge_kcomponents.py create mode 100644 .venv/lib/python3.12/site-packages/networkx/algorithms/connectivity/tests/test_kcomponents.py create mode 100644 .venv/lib/python3.12/site-packages/networkx/algorithms/connectivity/tests/test_kcutsets.py create mode 100644 .venv/lib/python3.12/site-packages/networkx/algorithms/connectivity/tests/test_stoer_wagner.py (limited to '.venv/lib/python3.12/site-packages/networkx/algorithms/connectivity/tests') diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/connectivity/tests/__init__.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/connectivity/tests/__init__.py new file mode 100644 index 00000000..e69de29b diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/connectivity/tests/test_connectivity.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/connectivity/tests/test_connectivity.py new file mode 100644 index 00000000..7aef2477 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/connectivity/tests/test_connectivity.py @@ -0,0 +1,421 @@ +import itertools + +import pytest + +import networkx as nx +from networkx.algorithms import flow +from networkx.algorithms.connectivity import ( + local_edge_connectivity, + local_node_connectivity, +) + +flow_funcs = [ + flow.boykov_kolmogorov, + flow.dinitz, + flow.edmonds_karp, + flow.preflow_push, + flow.shortest_augmenting_path, +] + + +# helper functions for tests + + +def _generate_no_biconnected(max_attempts=50): + attempts = 0 + while True: + G = nx.fast_gnp_random_graph(100, 0.0575, seed=42) + if nx.is_connected(G) and not nx.is_biconnected(G): + attempts = 0 + yield G + else: + if attempts >= max_attempts: + msg = f"Tried {max_attempts} times: no suitable Graph." + raise Exception(msg) + else: + attempts += 1 + + +def test_average_connectivity(): + # figure 1 from: + # Beineke, L., O. Oellermann, and R. Pippert (2002). The average + # connectivity of a graph. Discrete mathematics 252(1-3), 31-45 + # http://www.sciencedirect.com/science/article/pii/S0012365X01001807 + G1 = nx.path_graph(3) + G1.add_edges_from([(1, 3), (1, 4)]) + G2 = nx.path_graph(3) + G2.add_edges_from([(1, 3), (1, 4), (0, 3), (0, 4), (3, 4)]) + G3 = nx.Graph() + for flow_func in flow_funcs: + kwargs = {"flow_func": flow_func} + errmsg = f"Assertion failed in function: {flow_func.__name__}" + assert nx.average_node_connectivity(G1, **kwargs) == 1, errmsg + assert nx.average_node_connectivity(G2, **kwargs) == 2.2, errmsg + assert nx.average_node_connectivity(G3, **kwargs) == 0, errmsg + + +def test_average_connectivity_directed(): + G = nx.DiGraph([(1, 3), (1, 4), (1, 5)]) + for flow_func in flow_funcs: + errmsg = f"Assertion failed in function: {flow_func.__name__}" + assert nx.average_node_connectivity(G) == 0.25, errmsg + + +def test_articulation_points(): + Ggen = _generate_no_biconnected() + for flow_func in flow_funcs: + for i in range(3): + G = next(Ggen) + errmsg = f"Assertion failed in function: {flow_func.__name__}" + assert nx.node_connectivity(G, flow_func=flow_func) == 1, errmsg + + +def test_brandes_erlebach(): + # Figure 1 chapter 7: Connectivity + # http://www.informatik.uni-augsburg.de/thi/personen/kammer/Graph_Connectivity.pdf + G = nx.Graph() + G.add_edges_from( + [ + (1, 2), + (1, 3), + (1, 4), + (1, 5), + (2, 3), + (2, 6), + (3, 4), + (3, 6), + (4, 6), + (4, 7), + (5, 7), + (6, 8), + (6, 9), + (7, 8), + (7, 10), + (8, 11), + (9, 10), + (9, 11), + (10, 11), + ] + ) + for flow_func in flow_funcs: + kwargs = {"flow_func": flow_func} + errmsg = f"Assertion failed in function: {flow_func.__name__}" + assert 3 == local_edge_connectivity(G, 1, 11, **kwargs), errmsg + assert 3 == nx.edge_connectivity(G, 1, 11, **kwargs), errmsg + assert 2 == local_node_connectivity(G, 1, 11, **kwargs), errmsg + assert 2 == nx.node_connectivity(G, 1, 11, **kwargs), errmsg + assert 2 == nx.edge_connectivity(G, **kwargs), errmsg + assert 2 == nx.node_connectivity(G, **kwargs), errmsg + if flow_func is flow.preflow_push: + assert 3 == nx.edge_connectivity(G, 1, 11, cutoff=2, **kwargs), errmsg + else: + assert 2 == nx.edge_connectivity(G, 1, 11, cutoff=2, **kwargs), errmsg + + +def test_white_harary_1(): + # Figure 1b white and harary (2001) + # https://doi.org/10.1111/0081-1750.00098 + # A graph with high adhesion (edge connectivity) and low cohesion + # (vertex connectivity) + G = nx.disjoint_union(nx.complete_graph(4), nx.complete_graph(4)) + G.remove_node(7) + for i in range(4, 7): + G.add_edge(0, i) + G = nx.disjoint_union(G, nx.complete_graph(4)) + G.remove_node(G.order() - 1) + for i in range(7, 10): + G.add_edge(0, i) + for flow_func in flow_funcs: + errmsg = f"Assertion failed in function: {flow_func.__name__}" + assert 1 == nx.node_connectivity(G, flow_func=flow_func), errmsg + assert 3 == nx.edge_connectivity(G, flow_func=flow_func), errmsg + + +def test_white_harary_2(): + # Figure 8 white and harary (2001) + # https://doi.org/10.1111/0081-1750.00098 + G = nx.disjoint_union(nx.complete_graph(4), nx.complete_graph(4)) + G.add_edge(0, 4) + # kappa <= lambda <= delta + assert 3 == min(nx.core_number(G).values()) + for flow_func in flow_funcs: + errmsg = f"Assertion failed in function: {flow_func.__name__}" + assert 1 == nx.node_connectivity(G, flow_func=flow_func), errmsg + assert 1 == nx.edge_connectivity(G, flow_func=flow_func), errmsg + + +def test_complete_graphs(): + for n in range(5, 20, 5): + for flow_func in flow_funcs: + G = nx.complete_graph(n) + errmsg = f"Assertion failed in function: {flow_func.__name__}" + assert n - 1 == nx.node_connectivity(G, flow_func=flow_func), errmsg + assert n - 1 == nx.node_connectivity( + G.to_directed(), flow_func=flow_func + ), errmsg + assert n - 1 == nx.edge_connectivity(G, flow_func=flow_func), errmsg + assert n - 1 == nx.edge_connectivity( + G.to_directed(), flow_func=flow_func + ), errmsg + + +def test_empty_graphs(): + for k in range(5, 25, 5): + G = nx.empty_graph(k) + for flow_func in flow_funcs: + errmsg = f"Assertion failed in function: {flow_func.__name__}" + assert 0 == nx.node_connectivity(G, flow_func=flow_func), errmsg + assert 0 == nx.edge_connectivity(G, flow_func=flow_func), errmsg + + +def test_petersen(): + G = nx.petersen_graph() + for flow_func in flow_funcs: + errmsg = f"Assertion failed in function: {flow_func.__name__}" + assert 3 == nx.node_connectivity(G, flow_func=flow_func), errmsg + assert 3 == nx.edge_connectivity(G, flow_func=flow_func), errmsg + + +def test_tutte(): + G = nx.tutte_graph() + for flow_func in flow_funcs: + errmsg = f"Assertion failed in function: {flow_func.__name__}" + assert 3 == nx.node_connectivity(G, flow_func=flow_func), errmsg + assert 3 == nx.edge_connectivity(G, flow_func=flow_func), errmsg + + +def test_dodecahedral(): + G = nx.dodecahedral_graph() + for flow_func in flow_funcs: + errmsg = f"Assertion failed in function: {flow_func.__name__}" + assert 3 == nx.node_connectivity(G, flow_func=flow_func), errmsg + assert 3 == nx.edge_connectivity(G, flow_func=flow_func), errmsg + + +def test_octahedral(): + G = nx.octahedral_graph() + for flow_func in flow_funcs: + errmsg = f"Assertion failed in function: {flow_func.__name__}" + assert 4 == nx.node_connectivity(G, flow_func=flow_func), errmsg + assert 4 == nx.edge_connectivity(G, flow_func=flow_func), errmsg + + +def test_icosahedral(): + G = nx.icosahedral_graph() + for flow_func in flow_funcs: + errmsg = f"Assertion failed in function: {flow_func.__name__}" + assert 5 == nx.node_connectivity(G, flow_func=flow_func), errmsg + assert 5 == nx.edge_connectivity(G, flow_func=flow_func), errmsg + + +def test_missing_source(): + G = nx.path_graph(4) + for flow_func in flow_funcs: + pytest.raises( + nx.NetworkXError, nx.node_connectivity, G, 10, 1, flow_func=flow_func + ) + + +def test_missing_target(): + G = nx.path_graph(4) + for flow_func in flow_funcs: + pytest.raises( + nx.NetworkXError, nx.node_connectivity, G, 1, 10, flow_func=flow_func + ) + + +def test_edge_missing_source(): + G = nx.path_graph(4) + for flow_func in flow_funcs: + pytest.raises( + nx.NetworkXError, nx.edge_connectivity, G, 10, 1, flow_func=flow_func + ) + + +def test_edge_missing_target(): + G = nx.path_graph(4) + for flow_func in flow_funcs: + pytest.raises( + nx.NetworkXError, nx.edge_connectivity, G, 1, 10, flow_func=flow_func + ) + + +def test_not_weakly_connected(): + G = nx.DiGraph() + nx.add_path(G, [1, 2, 3]) + nx.add_path(G, [4, 5]) + for flow_func in flow_funcs: + errmsg = f"Assertion failed in function: {flow_func.__name__}" + assert nx.node_connectivity(G) == 0, errmsg + assert nx.edge_connectivity(G) == 0, errmsg + + +def test_not_connected(): + G = nx.Graph() + nx.add_path(G, [1, 2, 3]) + nx.add_path(G, [4, 5]) + for flow_func in flow_funcs: + errmsg = f"Assertion failed in function: {flow_func.__name__}" + assert nx.node_connectivity(G) == 0, errmsg + assert nx.edge_connectivity(G) == 0, errmsg + + +def test_directed_edge_connectivity(): + G = nx.cycle_graph(10, create_using=nx.DiGraph()) # only one direction + D = nx.cycle_graph(10).to_directed() # 2 reciprocal edges + for flow_func in flow_funcs: + errmsg = f"Assertion failed in function: {flow_func.__name__}" + assert 1 == nx.edge_connectivity(G, flow_func=flow_func), errmsg + assert 1 == local_edge_connectivity(G, 1, 4, flow_func=flow_func), errmsg + assert 1 == nx.edge_connectivity(G, 1, 4, flow_func=flow_func), errmsg + assert 2 == nx.edge_connectivity(D, flow_func=flow_func), errmsg + assert 2 == local_edge_connectivity(D, 1, 4, flow_func=flow_func), errmsg + assert 2 == nx.edge_connectivity(D, 1, 4, flow_func=flow_func), errmsg + + +def test_cutoff(): + G = nx.complete_graph(5) + for local_func in [local_edge_connectivity, local_node_connectivity]: + for flow_func in flow_funcs: + if flow_func is flow.preflow_push: + # cutoff is not supported by preflow_push + continue + for cutoff in [3, 2, 1]: + result = local_func(G, 0, 4, flow_func=flow_func, cutoff=cutoff) + assert cutoff == result, f"cutoff error in {flow_func.__name__}" + + +def test_invalid_auxiliary(): + G = nx.complete_graph(5) + pytest.raises(nx.NetworkXError, local_node_connectivity, G, 0, 3, auxiliary=G) + + +def test_interface_only_source(): + G = nx.complete_graph(5) + for interface_func in [nx.node_connectivity, nx.edge_connectivity]: + pytest.raises(nx.NetworkXError, interface_func, G, s=0) + + +def test_interface_only_target(): + G = nx.complete_graph(5) + for interface_func in [nx.node_connectivity, nx.edge_connectivity]: + pytest.raises(nx.NetworkXError, interface_func, G, t=3) + + +def test_edge_connectivity_flow_vs_stoer_wagner(): + graph_funcs = [nx.icosahedral_graph, nx.octahedral_graph, nx.dodecahedral_graph] + for graph_func in graph_funcs: + G = graph_func() + assert nx.stoer_wagner(G)[0] == nx.edge_connectivity(G) + + +class TestAllPairsNodeConnectivity: + @classmethod + def setup_class(cls): + cls.path = nx.path_graph(7) + cls.directed_path = nx.path_graph(7, create_using=nx.DiGraph()) + cls.cycle = nx.cycle_graph(7) + cls.directed_cycle = nx.cycle_graph(7, create_using=nx.DiGraph()) + cls.gnp = nx.gnp_random_graph(30, 0.1, seed=42) + cls.directed_gnp = nx.gnp_random_graph(30, 0.1, directed=True, seed=42) + cls.K20 = nx.complete_graph(20) + cls.K10 = nx.complete_graph(10) + cls.K5 = nx.complete_graph(5) + cls.G_list = [ + cls.path, + cls.directed_path, + cls.cycle, + cls.directed_cycle, + cls.gnp, + cls.directed_gnp, + cls.K10, + cls.K5, + cls.K20, + ] + + def test_cycles(self): + K_undir = nx.all_pairs_node_connectivity(self.cycle) + for source in K_undir: + for target, k in K_undir[source].items(): + assert k == 2 + K_dir = nx.all_pairs_node_connectivity(self.directed_cycle) + for source in K_dir: + for target, k in K_dir[source].items(): + assert k == 1 + + def test_complete(self): + for G in [self.K10, self.K5, self.K20]: + K = nx.all_pairs_node_connectivity(G) + for source in K: + for target, k in K[source].items(): + assert k == len(G) - 1 + + def test_paths(self): + K_undir = nx.all_pairs_node_connectivity(self.path) + for source in K_undir: + for target, k in K_undir[source].items(): + assert k == 1 + K_dir = nx.all_pairs_node_connectivity(self.directed_path) + for source in K_dir: + for target, k in K_dir[source].items(): + if source < target: + assert k == 1 + else: + assert k == 0 + + def test_all_pairs_connectivity_nbunch(self): + G = nx.complete_graph(5) + nbunch = [0, 2, 3] + C = nx.all_pairs_node_connectivity(G, nbunch=nbunch) + assert len(C) == len(nbunch) + + def test_all_pairs_connectivity_icosahedral(self): + G = nx.icosahedral_graph() + C = nx.all_pairs_node_connectivity(G) + assert all(5 == C[u][v] for u, v in itertools.combinations(G, 2)) + + def test_all_pairs_connectivity(self): + G = nx.Graph() + nodes = [0, 1, 2, 3] + nx.add_path(G, nodes) + A = {n: {} for n in G} + for u, v in itertools.combinations(nodes, 2): + A[u][v] = A[v][u] = nx.node_connectivity(G, u, v) + C = nx.all_pairs_node_connectivity(G) + assert sorted((k, sorted(v)) for k, v in A.items()) == sorted( + (k, sorted(v)) for k, v in C.items() + ) + + def test_all_pairs_connectivity_directed(self): + G = nx.DiGraph() + nodes = [0, 1, 2, 3] + nx.add_path(G, nodes) + A = {n: {} for n in G} + for u, v in itertools.permutations(nodes, 2): + A[u][v] = nx.node_connectivity(G, u, v) + C = nx.all_pairs_node_connectivity(G) + assert sorted((k, sorted(v)) for k, v in A.items()) == sorted( + (k, sorted(v)) for k, v in C.items() + ) + + def test_all_pairs_connectivity_nbunch_combinations(self): + G = nx.complete_graph(5) + nbunch = [0, 2, 3] + A = {n: {} for n in nbunch} + for u, v in itertools.combinations(nbunch, 2): + A[u][v] = A[v][u] = nx.node_connectivity(G, u, v) + C = nx.all_pairs_node_connectivity(G, nbunch=nbunch) + assert sorted((k, sorted(v)) for k, v in A.items()) == sorted( + (k, sorted(v)) for k, v in C.items() + ) + + def test_all_pairs_connectivity_nbunch_iter(self): + G = nx.complete_graph(5) + nbunch = [0, 2, 3] + A = {n: {} for n in nbunch} + for u, v in itertools.combinations(nbunch, 2): + A[u][v] = A[v][u] = nx.node_connectivity(G, u, v) + C = nx.all_pairs_node_connectivity(G, nbunch=iter(nbunch)) + assert sorted((k, sorted(v)) for k, v in A.items()) == sorted( + (k, sorted(v)) for k, v in C.items() + ) diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/connectivity/tests/test_cuts.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/connectivity/tests/test_cuts.py new file mode 100644 index 00000000..7a485be3 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/connectivity/tests/test_cuts.py @@ -0,0 +1,309 @@ +import pytest + +import networkx as nx +from networkx.algorithms import flow +from networkx.algorithms.connectivity import minimum_st_edge_cut, minimum_st_node_cut +from networkx.utils import arbitrary_element + +flow_funcs = [ + flow.boykov_kolmogorov, + flow.dinitz, + flow.edmonds_karp, + flow.preflow_push, + flow.shortest_augmenting_path, +] + +# Tests for node and edge cutsets + + +def _generate_no_biconnected(max_attempts=50): + attempts = 0 + while True: + G = nx.fast_gnp_random_graph(100, 0.0575, seed=42) + if nx.is_connected(G) and not nx.is_biconnected(G): + attempts = 0 + yield G + else: + if attempts >= max_attempts: + msg = f"Tried {attempts} times: no suitable Graph." + raise Exception(msg) + else: + attempts += 1 + + +def test_articulation_points(): + Ggen = _generate_no_biconnected() + for flow_func in flow_funcs: + errmsg = f"Assertion failed in function: {flow_func.__name__}" + for i in range(1): # change 1 to 3 or more for more realizations. + G = next(Ggen) + cut = nx.minimum_node_cut(G, flow_func=flow_func) + assert len(cut) == 1, errmsg + assert cut.pop() in set(nx.articulation_points(G)), errmsg + + +def test_brandes_erlebach_book(): + # Figure 1 chapter 7: Connectivity + # http://www.informatik.uni-augsburg.de/thi/personen/kammer/Graph_Connectivity.pdf + G = nx.Graph() + G.add_edges_from( + [ + (1, 2), + (1, 3), + (1, 4), + (1, 5), + (2, 3), + (2, 6), + (3, 4), + (3, 6), + (4, 6), + (4, 7), + (5, 7), + (6, 8), + (6, 9), + (7, 8), + (7, 10), + (8, 11), + (9, 10), + (9, 11), + (10, 11), + ] + ) + for flow_func in flow_funcs: + kwargs = {"flow_func": flow_func} + errmsg = f"Assertion failed in function: {flow_func.__name__}" + # edge cutsets + assert 3 == len(nx.minimum_edge_cut(G, 1, 11, **kwargs)), errmsg + edge_cut = nx.minimum_edge_cut(G, **kwargs) + # Node 5 has only two edges + assert 2 == len(edge_cut), errmsg + H = G.copy() + H.remove_edges_from(edge_cut) + assert not nx.is_connected(H), errmsg + # node cuts + assert {6, 7} == minimum_st_node_cut(G, 1, 11, **kwargs), errmsg + assert {6, 7} == nx.minimum_node_cut(G, 1, 11, **kwargs), errmsg + node_cut = nx.minimum_node_cut(G, **kwargs) + assert 2 == len(node_cut), errmsg + H = G.copy() + H.remove_nodes_from(node_cut) + assert not nx.is_connected(H), errmsg + + +def test_white_harary_paper(): + # Figure 1b white and harary (2001) + # https://doi.org/10.1111/0081-1750.00098 + # A graph with high adhesion (edge connectivity) and low cohesion + # (node connectivity) + G = nx.disjoint_union(nx.complete_graph(4), nx.complete_graph(4)) + G.remove_node(7) + for i in range(4, 7): + G.add_edge(0, i) + G = nx.disjoint_union(G, nx.complete_graph(4)) + G.remove_node(G.order() - 1) + for i in range(7, 10): + G.add_edge(0, i) + for flow_func in flow_funcs: + kwargs = {"flow_func": flow_func} + errmsg = f"Assertion failed in function: {flow_func.__name__}" + # edge cuts + edge_cut = nx.minimum_edge_cut(G, **kwargs) + assert 3 == len(edge_cut), errmsg + H = G.copy() + H.remove_edges_from(edge_cut) + assert not nx.is_connected(H), errmsg + # node cuts + node_cut = nx.minimum_node_cut(G, **kwargs) + assert {0} == node_cut, errmsg + H = G.copy() + H.remove_nodes_from(node_cut) + assert not nx.is_connected(H), errmsg + + +def test_petersen_cutset(): + G = nx.petersen_graph() + for flow_func in flow_funcs: + kwargs = {"flow_func": flow_func} + errmsg = f"Assertion failed in function: {flow_func.__name__}" + # edge cuts + edge_cut = nx.minimum_edge_cut(G, **kwargs) + assert 3 == len(edge_cut), errmsg + H = G.copy() + H.remove_edges_from(edge_cut) + assert not nx.is_connected(H), errmsg + # node cuts + node_cut = nx.minimum_node_cut(G, **kwargs) + assert 3 == len(node_cut), errmsg + H = G.copy() + H.remove_nodes_from(node_cut) + assert not nx.is_connected(H), errmsg + + +def test_octahedral_cutset(): + G = nx.octahedral_graph() + for flow_func in flow_funcs: + kwargs = {"flow_func": flow_func} + errmsg = f"Assertion failed in function: {flow_func.__name__}" + # edge cuts + edge_cut = nx.minimum_edge_cut(G, **kwargs) + assert 4 == len(edge_cut), errmsg + H = G.copy() + H.remove_edges_from(edge_cut) + assert not nx.is_connected(H), errmsg + # node cuts + node_cut = nx.minimum_node_cut(G, **kwargs) + assert 4 == len(node_cut), errmsg + H = G.copy() + H.remove_nodes_from(node_cut) + assert not nx.is_connected(H), errmsg + + +def test_icosahedral_cutset(): + G = nx.icosahedral_graph() + for flow_func in flow_funcs: + kwargs = {"flow_func": flow_func} + errmsg = f"Assertion failed in function: {flow_func.__name__}" + # edge cuts + edge_cut = nx.minimum_edge_cut(G, **kwargs) + assert 5 == len(edge_cut), errmsg + H = G.copy() + H.remove_edges_from(edge_cut) + assert not nx.is_connected(H), errmsg + # node cuts + node_cut = nx.minimum_node_cut(G, **kwargs) + assert 5 == len(node_cut), errmsg + H = G.copy() + H.remove_nodes_from(node_cut) + assert not nx.is_connected(H), errmsg + + +def test_node_cutset_exception(): + G = nx.Graph() + G.add_edges_from([(1, 2), (3, 4)]) + for flow_func in flow_funcs: + pytest.raises(nx.NetworkXError, nx.minimum_node_cut, G, flow_func=flow_func) + + +def test_node_cutset_random_graphs(): + for flow_func in flow_funcs: + errmsg = f"Assertion failed in function: {flow_func.__name__}" + for i in range(3): + G = nx.fast_gnp_random_graph(50, 0.25, seed=42) + if not nx.is_connected(G): + ccs = iter(nx.connected_components(G)) + start = arbitrary_element(next(ccs)) + G.add_edges_from((start, arbitrary_element(c)) for c in ccs) + cutset = nx.minimum_node_cut(G, flow_func=flow_func) + assert nx.node_connectivity(G) == len(cutset), errmsg + G.remove_nodes_from(cutset) + assert not nx.is_connected(G), errmsg + + +def test_edge_cutset_random_graphs(): + for flow_func in flow_funcs: + errmsg = f"Assertion failed in function: {flow_func.__name__}" + for i in range(3): + G = nx.fast_gnp_random_graph(50, 0.25, seed=42) + if not nx.is_connected(G): + ccs = iter(nx.connected_components(G)) + start = arbitrary_element(next(ccs)) + G.add_edges_from((start, arbitrary_element(c)) for c in ccs) + cutset = nx.minimum_edge_cut(G, flow_func=flow_func) + assert nx.edge_connectivity(G) == len(cutset), errmsg + G.remove_edges_from(cutset) + assert not nx.is_connected(G), errmsg + + +def test_empty_graphs(): + G = nx.Graph() + D = nx.DiGraph() + for interface_func in [nx.minimum_node_cut, nx.minimum_edge_cut]: + for flow_func in flow_funcs: + pytest.raises( + nx.NetworkXPointlessConcept, interface_func, G, flow_func=flow_func + ) + pytest.raises( + nx.NetworkXPointlessConcept, interface_func, D, flow_func=flow_func + ) + + +def test_unbounded(): + G = nx.complete_graph(5) + for flow_func in flow_funcs: + assert 4 == len(minimum_st_edge_cut(G, 1, 4, flow_func=flow_func)) + + +def test_missing_source(): + G = nx.path_graph(4) + for interface_func in [nx.minimum_edge_cut, nx.minimum_node_cut]: + for flow_func in flow_funcs: + pytest.raises( + nx.NetworkXError, interface_func, G, 10, 1, flow_func=flow_func + ) + + +def test_missing_target(): + G = nx.path_graph(4) + for interface_func in [nx.minimum_edge_cut, nx.minimum_node_cut]: + for flow_func in flow_funcs: + pytest.raises( + nx.NetworkXError, interface_func, G, 1, 10, flow_func=flow_func + ) + + +def test_not_weakly_connected(): + G = nx.DiGraph() + nx.add_path(G, [1, 2, 3]) + nx.add_path(G, [4, 5]) + for interface_func in [nx.minimum_edge_cut, nx.minimum_node_cut]: + for flow_func in flow_funcs: + pytest.raises(nx.NetworkXError, interface_func, G, flow_func=flow_func) + + +def test_not_connected(): + G = nx.Graph() + nx.add_path(G, [1, 2, 3]) + nx.add_path(G, [4, 5]) + for interface_func in [nx.minimum_edge_cut, nx.minimum_node_cut]: + for flow_func in flow_funcs: + pytest.raises(nx.NetworkXError, interface_func, G, flow_func=flow_func) + + +def tests_min_cut_complete(): + G = nx.complete_graph(5) + for interface_func in [nx.minimum_edge_cut, nx.minimum_node_cut]: + for flow_func in flow_funcs: + assert 4 == len(interface_func(G, flow_func=flow_func)) + + +def tests_min_cut_complete_directed(): + G = nx.complete_graph(5) + G = G.to_directed() + for interface_func in [nx.minimum_edge_cut, nx.minimum_node_cut]: + for flow_func in flow_funcs: + assert 4 == len(interface_func(G, flow_func=flow_func)) + + +def tests_minimum_st_node_cut(): + G = nx.Graph() + G.add_nodes_from([0, 1, 2, 3, 7, 8, 11, 12]) + G.add_edges_from([(7, 11), (1, 11), (1, 12), (12, 8), (0, 1)]) + nodelist = minimum_st_node_cut(G, 7, 11) + assert nodelist == {} + + +def test_invalid_auxiliary(): + G = nx.complete_graph(5) + pytest.raises(nx.NetworkXError, minimum_st_node_cut, G, 0, 3, auxiliary=G) + + +def test_interface_only_source(): + G = nx.complete_graph(5) + for interface_func in [nx.minimum_node_cut, nx.minimum_edge_cut]: + pytest.raises(nx.NetworkXError, interface_func, G, s=0) + + +def test_interface_only_target(): + G = nx.complete_graph(5) + for interface_func in [nx.minimum_node_cut, nx.minimum_edge_cut]: + pytest.raises(nx.NetworkXError, interface_func, G, t=3) diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/connectivity/tests/test_disjoint_paths.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/connectivity/tests/test_disjoint_paths.py new file mode 100644 index 00000000..0c0fad9f --- /dev/null +++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/connectivity/tests/test_disjoint_paths.py @@ -0,0 +1,249 @@ +import pytest + +import networkx as nx +from networkx.algorithms import flow +from networkx.utils import pairwise + +flow_funcs = [ + flow.boykov_kolmogorov, + flow.edmonds_karp, + flow.dinitz, + flow.preflow_push, + flow.shortest_augmenting_path, +] + + +def is_path(G, path): + return all(v in G[u] for u, v in pairwise(path)) + + +def are_edge_disjoint_paths(G, paths): + if not paths: + return False + for path in paths: + assert is_path(G, path) + paths_edges = [list(pairwise(p)) for p in paths] + num_of_edges = sum(len(e) for e in paths_edges) + num_unique_edges = len(set.union(*[set(es) for es in paths_edges])) + if num_of_edges == num_unique_edges: + return True + return False + + +def are_node_disjoint_paths(G, paths): + if not paths: + return False + for path in paths: + assert is_path(G, path) + # first and last nodes are source and target + st = {paths[0][0], paths[0][-1]} + num_of_nodes = len([n for path in paths for n in path if n not in st]) + num_unique_nodes = len({n for path in paths for n in path if n not in st}) + if num_of_nodes == num_unique_nodes: + return True + return False + + +def test_graph_from_pr_2053(): + G = nx.Graph() + G.add_edges_from( + [ + ("A", "B"), + ("A", "D"), + ("A", "F"), + ("A", "G"), + ("B", "C"), + ("B", "D"), + ("B", "G"), + ("C", "D"), + ("C", "E"), + ("C", "Z"), + ("D", "E"), + ("D", "F"), + ("E", "F"), + ("E", "Z"), + ("F", "Z"), + ("G", "Z"), + ] + ) + for flow_func in flow_funcs: + kwargs = {"flow_func": flow_func} + errmsg = f"Assertion failed in function: {flow_func.__name__}" + # edge disjoint paths + edge_paths = list(nx.edge_disjoint_paths(G, "A", "Z", **kwargs)) + assert are_edge_disjoint_paths(G, edge_paths), errmsg + assert nx.edge_connectivity(G, "A", "Z") == len(edge_paths), errmsg + # node disjoint paths + node_paths = list(nx.node_disjoint_paths(G, "A", "Z", **kwargs)) + assert are_node_disjoint_paths(G, node_paths), errmsg + assert nx.node_connectivity(G, "A", "Z") == len(node_paths), errmsg + + +def test_florentine_families(): + G = nx.florentine_families_graph() + for flow_func in flow_funcs: + kwargs = {"flow_func": flow_func} + errmsg = f"Assertion failed in function: {flow_func.__name__}" + # edge disjoint paths + edge_dpaths = list(nx.edge_disjoint_paths(G, "Medici", "Strozzi", **kwargs)) + assert are_edge_disjoint_paths(G, edge_dpaths), errmsg + assert nx.edge_connectivity(G, "Medici", "Strozzi") == len(edge_dpaths), errmsg + # node disjoint paths + node_dpaths = list(nx.node_disjoint_paths(G, "Medici", "Strozzi", **kwargs)) + assert are_node_disjoint_paths(G, node_dpaths), errmsg + assert nx.node_connectivity(G, "Medici", "Strozzi") == len(node_dpaths), errmsg + + +def test_karate(): + G = nx.karate_club_graph() + for flow_func in flow_funcs: + kwargs = {"flow_func": flow_func} + errmsg = f"Assertion failed in function: {flow_func.__name__}" + # edge disjoint paths + edge_dpaths = list(nx.edge_disjoint_paths(G, 0, 33, **kwargs)) + assert are_edge_disjoint_paths(G, edge_dpaths), errmsg + assert nx.edge_connectivity(G, 0, 33) == len(edge_dpaths), errmsg + # node disjoint paths + node_dpaths = list(nx.node_disjoint_paths(G, 0, 33, **kwargs)) + assert are_node_disjoint_paths(G, node_dpaths), errmsg + assert nx.node_connectivity(G, 0, 33) == len(node_dpaths), errmsg + + +def test_petersen_disjoint_paths(): + G = nx.petersen_graph() + for flow_func in flow_funcs: + kwargs = {"flow_func": flow_func} + errmsg = f"Assertion failed in function: {flow_func.__name__}" + # edge disjoint paths + edge_dpaths = list(nx.edge_disjoint_paths(G, 0, 6, **kwargs)) + assert are_edge_disjoint_paths(G, edge_dpaths), errmsg + assert 3 == len(edge_dpaths), errmsg + # node disjoint paths + node_dpaths = list(nx.node_disjoint_paths(G, 0, 6, **kwargs)) + assert are_node_disjoint_paths(G, node_dpaths), errmsg + assert 3 == len(node_dpaths), errmsg + + +def test_octahedral_disjoint_paths(): + G = nx.octahedral_graph() + for flow_func in flow_funcs: + kwargs = {"flow_func": flow_func} + errmsg = f"Assertion failed in function: {flow_func.__name__}" + # edge disjoint paths + edge_dpaths = list(nx.edge_disjoint_paths(G, 0, 5, **kwargs)) + assert are_edge_disjoint_paths(G, edge_dpaths), errmsg + assert 4 == len(edge_dpaths), errmsg + # node disjoint paths + node_dpaths = list(nx.node_disjoint_paths(G, 0, 5, **kwargs)) + assert are_node_disjoint_paths(G, node_dpaths), errmsg + assert 4 == len(node_dpaths), errmsg + + +def test_icosahedral_disjoint_paths(): + G = nx.icosahedral_graph() + for flow_func in flow_funcs: + kwargs = {"flow_func": flow_func} + errmsg = f"Assertion failed in function: {flow_func.__name__}" + # edge disjoint paths + edge_dpaths = list(nx.edge_disjoint_paths(G, 0, 6, **kwargs)) + assert are_edge_disjoint_paths(G, edge_dpaths), errmsg + assert 5 == len(edge_dpaths), errmsg + # node disjoint paths + node_dpaths = list(nx.node_disjoint_paths(G, 0, 6, **kwargs)) + assert are_node_disjoint_paths(G, node_dpaths), errmsg + assert 5 == len(node_dpaths), errmsg + + +def test_cutoff_disjoint_paths(): + G = nx.icosahedral_graph() + for flow_func in flow_funcs: + kwargs = {"flow_func": flow_func} + errmsg = f"Assertion failed in function: {flow_func.__name__}" + for cutoff in [2, 4]: + kwargs["cutoff"] = cutoff + # edge disjoint paths + edge_dpaths = list(nx.edge_disjoint_paths(G, 0, 6, **kwargs)) + assert are_edge_disjoint_paths(G, edge_dpaths), errmsg + assert cutoff == len(edge_dpaths), errmsg + # node disjoint paths + node_dpaths = list(nx.node_disjoint_paths(G, 0, 6, **kwargs)) + assert are_node_disjoint_paths(G, node_dpaths), errmsg + assert cutoff == len(node_dpaths), errmsg + + +def test_missing_source_edge_paths(): + with pytest.raises(nx.NetworkXError): + G = nx.path_graph(4) + list(nx.edge_disjoint_paths(G, 10, 1)) + + +def test_missing_source_node_paths(): + with pytest.raises(nx.NetworkXError): + G = nx.path_graph(4) + list(nx.node_disjoint_paths(G, 10, 1)) + + +def test_missing_target_edge_paths(): + with pytest.raises(nx.NetworkXError): + G = nx.path_graph(4) + list(nx.edge_disjoint_paths(G, 1, 10)) + + +def test_missing_target_node_paths(): + with pytest.raises(nx.NetworkXError): + G = nx.path_graph(4) + list(nx.node_disjoint_paths(G, 1, 10)) + + +def test_not_weakly_connected_edges(): + with pytest.raises(nx.NetworkXNoPath): + G = nx.DiGraph() + nx.add_path(G, [1, 2, 3]) + nx.add_path(G, [4, 5]) + list(nx.edge_disjoint_paths(G, 1, 5)) + + +def test_not_weakly_connected_nodes(): + with pytest.raises(nx.NetworkXNoPath): + G = nx.DiGraph() + nx.add_path(G, [1, 2, 3]) + nx.add_path(G, [4, 5]) + list(nx.node_disjoint_paths(G, 1, 5)) + + +def test_not_connected_edges(): + with pytest.raises(nx.NetworkXNoPath): + G = nx.Graph() + nx.add_path(G, [1, 2, 3]) + nx.add_path(G, [4, 5]) + list(nx.edge_disjoint_paths(G, 1, 5)) + + +def test_not_connected_nodes(): + with pytest.raises(nx.NetworkXNoPath): + G = nx.Graph() + nx.add_path(G, [1, 2, 3]) + nx.add_path(G, [4, 5]) + list(nx.node_disjoint_paths(G, 1, 5)) + + +def test_isolated_edges(): + with pytest.raises(nx.NetworkXNoPath): + G = nx.Graph() + G.add_node(1) + nx.add_path(G, [4, 5]) + list(nx.edge_disjoint_paths(G, 1, 5)) + + +def test_isolated_nodes(): + with pytest.raises(nx.NetworkXNoPath): + G = nx.Graph() + G.add_node(1) + nx.add_path(G, [4, 5]) + list(nx.node_disjoint_paths(G, 1, 5)) + + +def test_invalid_auxiliary(): + with pytest.raises(nx.NetworkXError): + G = nx.complete_graph(5) + list(nx.node_disjoint_paths(G, 0, 3, auxiliary=G)) diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/connectivity/tests/test_edge_augmentation.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/connectivity/tests/test_edge_augmentation.py new file mode 100644 index 00000000..e1d92d99 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/connectivity/tests/test_edge_augmentation.py @@ -0,0 +1,502 @@ +import itertools as it +import random + +import pytest + +import networkx as nx +from networkx.algorithms.connectivity import k_edge_augmentation +from networkx.algorithms.connectivity.edge_augmentation import ( + _unpack_available_edges, + collapse, + complement_edges, + is_k_edge_connected, + is_locally_k_edge_connected, +) +from networkx.utils import pairwise + +# This should be set to the largest k for which an efficient algorithm is +# explicitly defined. +MAX_EFFICIENT_K = 2 + + +def tarjan_bridge_graph(): + # graph from tarjan paper + # RE Tarjan - "A note on finding the bridges of a graph" + # Information Processing Letters, 1974 - Elsevier + # doi:10.1016/0020-0190(74)90003-9. + # define 2-connected components and bridges + ccs = [ + (1, 2, 4, 3, 1, 4), + (5, 6, 7, 5), + (8, 9, 10, 8), + (17, 18, 16, 15, 17), + (11, 12, 14, 13, 11, 14), + ] + bridges = [(4, 8), (3, 5), (3, 17)] + G = nx.Graph(it.chain(*(pairwise(path) for path in ccs + bridges))) + return G + + +def test_weight_key(): + G = nx.Graph() + G.add_nodes_from([1, 2, 3, 4, 5, 6, 7, 8, 9]) + G.add_edges_from([(3, 8), (1, 2), (2, 3)]) + impossible = {(3, 6), (3, 9)} + rng = random.Random(0) + avail_uv = list(set(complement_edges(G)) - impossible) + avail = [(u, v, {"cost": rng.random()}) for u, v in avail_uv] + + _augment_and_check(G, k=1) + _augment_and_check(G, k=1, avail=avail_uv) + _augment_and_check(G, k=1, avail=avail, weight="cost") + + _check_augmentations(G, avail, weight="cost") + + +def test_is_locally_k_edge_connected_exceptions(): + pytest.raises(nx.NetworkXNotImplemented, is_k_edge_connected, nx.DiGraph(), k=0) + pytest.raises(nx.NetworkXNotImplemented, is_k_edge_connected, nx.MultiGraph(), k=0) + pytest.raises(ValueError, is_k_edge_connected, nx.Graph(), k=0) + + +def test_is_k_edge_connected(): + G = nx.barbell_graph(10, 0) + assert is_k_edge_connected(G, k=1) + assert not is_k_edge_connected(G, k=2) + + G = nx.Graph() + G.add_nodes_from([5, 15]) + assert not is_k_edge_connected(G, k=1) + assert not is_k_edge_connected(G, k=2) + + G = nx.complete_graph(5) + assert is_k_edge_connected(G, k=1) + assert is_k_edge_connected(G, k=2) + assert is_k_edge_connected(G, k=3) + assert is_k_edge_connected(G, k=4) + + G = nx.compose(nx.complete_graph([0, 1, 2]), nx.complete_graph([3, 4, 5])) + assert not is_k_edge_connected(G, k=1) + assert not is_k_edge_connected(G, k=2) + assert not is_k_edge_connected(G, k=3) + + +def test_is_k_edge_connected_exceptions(): + pytest.raises( + nx.NetworkXNotImplemented, is_locally_k_edge_connected, nx.DiGraph(), 1, 2, k=0 + ) + pytest.raises( + nx.NetworkXNotImplemented, + is_locally_k_edge_connected, + nx.MultiGraph(), + 1, + 2, + k=0, + ) + pytest.raises(ValueError, is_locally_k_edge_connected, nx.Graph(), 1, 2, k=0) + + +def test_is_locally_k_edge_connected(): + G = nx.barbell_graph(10, 0) + assert is_locally_k_edge_connected(G, 5, 15, k=1) + assert not is_locally_k_edge_connected(G, 5, 15, k=2) + + G = nx.Graph() + G.add_nodes_from([5, 15]) + assert not is_locally_k_edge_connected(G, 5, 15, k=2) + + +def test_null_graph(): + G = nx.Graph() + _check_augmentations(G, max_k=MAX_EFFICIENT_K + 2) + + +def test_cliques(): + for n in range(1, 10): + G = nx.complete_graph(n) + _check_augmentations(G, max_k=MAX_EFFICIENT_K + 2) + + +def test_clique_and_node(): + for n in range(1, 10): + G = nx.complete_graph(n) + G.add_node(n + 1) + _check_augmentations(G, max_k=MAX_EFFICIENT_K + 2) + + +def test_point_graph(): + G = nx.Graph() + G.add_node(1) + _check_augmentations(G, max_k=MAX_EFFICIENT_K + 2) + + +def test_edgeless_graph(): + G = nx.Graph() + G.add_nodes_from([1, 2, 3, 4]) + _check_augmentations(G) + + +def test_invalid_k(): + G = nx.Graph() + pytest.raises(ValueError, list, k_edge_augmentation(G, k=-1)) + pytest.raises(ValueError, list, k_edge_augmentation(G, k=0)) + + +def test_unfeasible(): + G = tarjan_bridge_graph() + pytest.raises(nx.NetworkXUnfeasible, list, k_edge_augmentation(G, k=1, avail=[])) + + pytest.raises(nx.NetworkXUnfeasible, list, k_edge_augmentation(G, k=2, avail=[])) + + pytest.raises( + nx.NetworkXUnfeasible, list, k_edge_augmentation(G, k=2, avail=[(7, 9)]) + ) + + # partial solutions should not error if real solutions are infeasible + aug_edges = list(k_edge_augmentation(G, k=2, avail=[(7, 9)], partial=True)) + assert aug_edges == [(7, 9)] + + _check_augmentations(G, avail=[], max_k=MAX_EFFICIENT_K + 2) + + _check_augmentations(G, avail=[(7, 9)], max_k=MAX_EFFICIENT_K + 2) + + +def test_tarjan(): + G = tarjan_bridge_graph() + + aug_edges = set(_augment_and_check(G, k=2)[0]) + print(f"aug_edges = {aug_edges!r}") + # can't assert edge exactly equality due to non-determinant edge order + # but we do know the size of the solution must be 3 + assert len(aug_edges) == 3 + + avail = [ + (9, 7), + (8, 5), + (2, 10), + (6, 13), + (11, 18), + (1, 17), + (2, 3), + (16, 17), + (18, 14), + (15, 14), + ] + aug_edges = set(_augment_and_check(G, avail=avail, k=2)[0]) + + # Can't assert exact length since approximation depends on the order of a + # dict traversal. + assert len(aug_edges) <= 3 * 2 + + _check_augmentations(G, avail) + + +def test_configuration(): + # seeds = [2718183590, 2470619828, 1694705158, 3001036531, 2401251497] + seeds = [1001, 1002, 1003, 1004] + for seed in seeds: + deg_seq = nx.random_powerlaw_tree_sequence(20, seed=seed, tries=5000) + G = nx.Graph(nx.configuration_model(deg_seq, seed=seed)) + G.remove_edges_from(nx.selfloop_edges(G)) + _check_augmentations(G) + + +def test_shell(): + # seeds = [2057382236, 3331169846, 1840105863, 476020778, 2247498425] + seeds = [18] + for seed in seeds: + constructor = [(12, 70, 0.8), (15, 40, 0.6)] + G = nx.random_shell_graph(constructor, seed=seed) + _check_augmentations(G) + + +def test_karate(): + G = nx.karate_club_graph() + _check_augmentations(G) + + +def test_star(): + G = nx.star_graph(3) + _check_augmentations(G) + + G = nx.star_graph(5) + _check_augmentations(G) + + G = nx.star_graph(10) + _check_augmentations(G) + + +def test_barbell(): + G = nx.barbell_graph(5, 0) + _check_augmentations(G) + + G = nx.barbell_graph(5, 2) + _check_augmentations(G) + + G = nx.barbell_graph(5, 3) + _check_augmentations(G) + + G = nx.barbell_graph(5, 4) + _check_augmentations(G) + + +def test_bridge(): + G = nx.Graph([(2393, 2257), (2393, 2685), (2685, 2257), (1758, 2257)]) + _check_augmentations(G) + + +def test_gnp_augmentation(): + rng = random.Random(0) + G = nx.gnp_random_graph(30, 0.005, seed=0) + # Randomly make edges available + avail = { + (u, v): 1 + rng.random() for u, v in complement_edges(G) if rng.random() < 0.25 + } + _check_augmentations(G, avail) + + +def _assert_solution_properties(G, aug_edges, avail_dict=None): + """Checks that aug_edges are consistently formatted""" + if avail_dict is not None: + assert all( + e in avail_dict for e in aug_edges + ), "when avail is specified aug-edges should be in avail" + + unique_aug = set(map(tuple, map(sorted, aug_edges))) + unique_aug = list(map(tuple, map(sorted, aug_edges))) + assert len(aug_edges) == len(unique_aug), "edges should be unique" + + assert not any(u == v for u, v in unique_aug), "should be no self-edges" + + assert not any( + G.has_edge(u, v) for u, v in unique_aug + ), "aug edges and G.edges should be disjoint" + + +def _augment_and_check( + G, k, avail=None, weight=None, verbose=False, orig_k=None, max_aug_k=None +): + """ + Does one specific augmentation and checks for properties of the result + """ + if orig_k is None: + try: + orig_k = nx.edge_connectivity(G) + except nx.NetworkXPointlessConcept: + orig_k = 0 + info = {} + try: + if avail is not None: + # ensure avail is in dict form + avail_dict = dict(zip(*_unpack_available_edges(avail, weight=weight))) + else: + avail_dict = None + try: + # Find the augmentation if possible + generator = nx.k_edge_augmentation(G, k=k, weight=weight, avail=avail) + assert not isinstance(generator, list), "should always return an iter" + aug_edges = [] + for edge in generator: + aug_edges.append(edge) + except nx.NetworkXUnfeasible: + infeasible = True + info["infeasible"] = True + assert len(aug_edges) == 0, "should not generate anything if unfeasible" + + if avail is None: + n_nodes = G.number_of_nodes() + assert n_nodes <= k, ( + "unconstrained cases are only unfeasible if |V| <= k. " + f"Got |V|={n_nodes} and k={k}" + ) + else: + if max_aug_k is None: + G_aug_all = G.copy() + G_aug_all.add_edges_from(avail_dict.keys()) + try: + max_aug_k = nx.edge_connectivity(G_aug_all) + except nx.NetworkXPointlessConcept: + max_aug_k = 0 + + assert max_aug_k < k, ( + "avail should only be unfeasible if using all edges " + "does not achieve k-edge-connectivity" + ) + + # Test for a partial solution + partial_edges = list( + nx.k_edge_augmentation(G, k=k, weight=weight, partial=True, avail=avail) + ) + + info["n_partial_edges"] = len(partial_edges) + + if avail_dict is None: + assert set(partial_edges) == set( + complement_edges(G) + ), "unweighted partial solutions should be the complement" + elif len(avail_dict) > 0: + H = G.copy() + + # Find the partial / full augmented connectivity + H.add_edges_from(partial_edges) + partial_conn = nx.edge_connectivity(H) + + H.add_edges_from(set(avail_dict.keys())) + full_conn = nx.edge_connectivity(H) + + # Full connectivity should be no better than our partial + # solution. + assert ( + partial_conn == full_conn + ), "adding more edges should not increase k-conn" + + # Find the new edge-connectivity after adding the augmenting edges + aug_edges = partial_edges + else: + infeasible = False + + # Find the weight of the augmentation + num_edges = len(aug_edges) + if avail is not None: + total_weight = sum(avail_dict[e] for e in aug_edges) + else: + total_weight = num_edges + + info["total_weight"] = total_weight + info["num_edges"] = num_edges + + # Find the new edge-connectivity after adding the augmenting edges + G_aug = G.copy() + G_aug.add_edges_from(aug_edges) + try: + aug_k = nx.edge_connectivity(G_aug) + except nx.NetworkXPointlessConcept: + aug_k = 0 + info["aug_k"] = aug_k + + # Do checks + if not infeasible and orig_k < k: + assert info["aug_k"] >= k, f"connectivity should increase to k={k} or more" + + assert info["aug_k"] >= orig_k, "augmenting should never reduce connectivity" + + _assert_solution_properties(G, aug_edges, avail_dict) + + except Exception: + info["failed"] = True + print(f"edges = {list(G.edges())}") + print(f"nodes = {list(G.nodes())}") + print(f"aug_edges = {list(aug_edges)}") + print(f"info = {info}") + raise + else: + if verbose: + print(f"info = {info}") + + if infeasible: + aug_edges = None + return aug_edges, info + + +def _check_augmentations(G, avail=None, max_k=None, weight=None, verbose=False): + """Helper to check weighted/unweighted cases with multiple values of k""" + # Using all available edges, find the maximum edge-connectivity + try: + orig_k = nx.edge_connectivity(G) + except nx.NetworkXPointlessConcept: + orig_k = 0 + + if avail is not None: + all_aug_edges = _unpack_available_edges(avail, weight=weight)[0] + G_aug_all = G.copy() + G_aug_all.add_edges_from(all_aug_edges) + try: + max_aug_k = nx.edge_connectivity(G_aug_all) + except nx.NetworkXPointlessConcept: + max_aug_k = 0 + else: + max_aug_k = G.number_of_nodes() - 1 + + if max_k is None: + max_k = min(4, max_aug_k) + + avail_uniform = {e: 1 for e in complement_edges(G)} + + if verbose: + print("\n=== CHECK_AUGMENTATION ===") + print(f"G.number_of_nodes = {G.number_of_nodes()!r}") + print(f"G.number_of_edges = {G.number_of_edges()!r}") + print(f"max_k = {max_k!r}") + print(f"max_aug_k = {max_aug_k!r}") + print(f"orig_k = {orig_k!r}") + + # check augmentation for multiple values of k + for k in range(1, max_k + 1): + if verbose: + print("---------------") + print(f"Checking k = {k}") + + # Check the unweighted version + if verbose: + print("unweighted case") + aug_edges1, info1 = _augment_and_check(G, k=k, verbose=verbose, orig_k=orig_k) + + # Check that the weighted version with all available edges and uniform + # weights gives a similar solution to the unweighted case. + if verbose: + print("weighted uniform case") + aug_edges2, info2 = _augment_and_check( + G, + k=k, + avail=avail_uniform, + verbose=verbose, + orig_k=orig_k, + max_aug_k=G.number_of_nodes() - 1, + ) + + # Check the weighted version + if avail is not None: + if verbose: + print("weighted case") + aug_edges3, info3 = _augment_and_check( + G, + k=k, + avail=avail, + weight=weight, + verbose=verbose, + max_aug_k=max_aug_k, + orig_k=orig_k, + ) + + if aug_edges1 is not None: + # Check approximation ratios + if k == 1: + # when k=1, both solutions should be optimal + assert info2["total_weight"] == info1["total_weight"] + if k == 2: + # when k=2, the weighted version is an approximation + if orig_k == 0: + # the approximation ratio is 3 if G is not connected + assert info2["total_weight"] <= info1["total_weight"] * 3 + else: + # the approximation ratio is 2 if G is was connected + assert info2["total_weight"] <= info1["total_weight"] * 2 + _check_unconstrained_bridge_property(G, info1) + + +def _check_unconstrained_bridge_property(G, info1): + # Check Theorem 5 from Eswaran and Tarjan. (1975) Augmentation problems + import math + + bridge_ccs = list(nx.connectivity.bridge_components(G)) + # condense G into an forest C + C = collapse(G, bridge_ccs) + + p = len([n for n, d in C.degree() if d == 1]) # leafs + q = len([n for n, d in C.degree() if d == 0]) # isolated + if p + q > 1: + size_target = math.ceil(p / 2) + q + size_aug = info1["num_edges"] + assert ( + size_aug == size_target + ), "augmentation size is different from what theory predicts" diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/connectivity/tests/test_edge_kcomponents.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/connectivity/tests/test_edge_kcomponents.py new file mode 100644 index 00000000..4a1f681a --- /dev/null +++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/connectivity/tests/test_edge_kcomponents.py @@ -0,0 +1,488 @@ +import itertools as it + +import pytest + +import networkx as nx +from networkx.algorithms.connectivity import EdgeComponentAuxGraph, bridge_components +from networkx.algorithms.connectivity.edge_kcomponents import general_k_edge_subgraphs +from networkx.utils import pairwise + +# ---------------- +# Helper functions +# ---------------- + + +def fset(list_of_sets): + """allows == to be used for list of sets""" + return set(map(frozenset, list_of_sets)) + + +def _assert_subgraph_edge_connectivity(G, ccs_subgraph, k): + """ + tests properties of k-edge-connected subgraphs + + the actual edge connectivity should be no less than k unless the cc is a + single node. + """ + for cc in ccs_subgraph: + C = G.subgraph(cc) + if len(cc) > 1: + connectivity = nx.edge_connectivity(C) + assert connectivity >= k + + +def _memo_connectivity(G, u, v, memo): + edge = (u, v) + if edge in memo: + return memo[edge] + if not G.is_directed(): + redge = (v, u) + if redge in memo: + return memo[redge] + memo[edge] = nx.edge_connectivity(G, *edge) + return memo[edge] + + +def _all_pairs_connectivity(G, cc, k, memo): + # Brute force check + for u, v in it.combinations(cc, 2): + # Use a memoization dict to save on computation + connectivity = _memo_connectivity(G, u, v, memo) + if G.is_directed(): + connectivity = min(connectivity, _memo_connectivity(G, v, u, memo)) + assert connectivity >= k + + +def _assert_local_cc_edge_connectivity(G, ccs_local, k, memo): + """ + tests properties of k-edge-connected components + + the local edge connectivity between each pair of nodes in the original + graph should be no less than k unless the cc is a single node. + """ + for cc in ccs_local: + if len(cc) > 1: + # Strategy for testing a bit faster: If the subgraph has high edge + # connectivity then it must have local connectivity + C = G.subgraph(cc) + connectivity = nx.edge_connectivity(C) + if connectivity < k: + # Otherwise do the brute force (with memoization) check + _all_pairs_connectivity(G, cc, k, memo) + + +# Helper function +def _check_edge_connectivity(G): + """ + Helper - generates all k-edge-components using the aux graph. Checks the + both local and subgraph edge connectivity of each cc. Also checks that + alternate methods of computing the k-edge-ccs generate the same result. + """ + # Construct the auxiliary graph that can be used to make each k-cc or k-sub + aux_graph = EdgeComponentAuxGraph.construct(G) + + # memoize the local connectivity in this graph + memo = {} + + for k in it.count(1): + # Test "local" k-edge-components and k-edge-subgraphs + ccs_local = fset(aux_graph.k_edge_components(k)) + ccs_subgraph = fset(aux_graph.k_edge_subgraphs(k)) + + # Check connectivity properties that should be guaranteed by the + # algorithms. + _assert_local_cc_edge_connectivity(G, ccs_local, k, memo) + _assert_subgraph_edge_connectivity(G, ccs_subgraph, k) + + if k == 1 or k == 2 and not G.is_directed(): + assert ( + ccs_local == ccs_subgraph + ), "Subgraphs and components should be the same when k == 1 or (k == 2 and not G.directed())" + + if G.is_directed(): + # Test special case methods are the same as the aux graph + if k == 1: + alt_sccs = fset(nx.strongly_connected_components(G)) + assert alt_sccs == ccs_local, "k=1 failed alt" + assert alt_sccs == ccs_subgraph, "k=1 failed alt" + else: + # Test special case methods are the same as the aux graph + if k == 1: + alt_ccs = fset(nx.connected_components(G)) + assert alt_ccs == ccs_local, "k=1 failed alt" + assert alt_ccs == ccs_subgraph, "k=1 failed alt" + elif k == 2: + alt_bridge_ccs = fset(bridge_components(G)) + assert alt_bridge_ccs == ccs_local, "k=2 failed alt" + assert alt_bridge_ccs == ccs_subgraph, "k=2 failed alt" + # if new methods for k == 3 or k == 4 are implemented add them here + + # Check the general subgraph method works by itself + alt_subgraph_ccs = fset( + [set(C.nodes()) for C in general_k_edge_subgraphs(G, k=k)] + ) + assert alt_subgraph_ccs == ccs_subgraph, "alt subgraph method failed" + + # Stop once k is larger than all special case methods + # and we cannot break down ccs any further. + if k > 2 and all(len(cc) == 1 for cc in ccs_local): + break + + +# ---------------- +# Misc tests +# ---------------- + + +def test_zero_k_exception(): + G = nx.Graph() + # functions that return generators error immediately + pytest.raises(ValueError, nx.k_edge_components, G, k=0) + pytest.raises(ValueError, nx.k_edge_subgraphs, G, k=0) + + # actual generators only error when you get the first item + aux_graph = EdgeComponentAuxGraph.construct(G) + pytest.raises(ValueError, list, aux_graph.k_edge_components(k=0)) + pytest.raises(ValueError, list, aux_graph.k_edge_subgraphs(k=0)) + + pytest.raises(ValueError, list, general_k_edge_subgraphs(G, k=0)) + + +def test_empty_input(): + G = nx.Graph() + assert [] == list(nx.k_edge_components(G, k=5)) + assert [] == list(nx.k_edge_subgraphs(G, k=5)) + + G = nx.DiGraph() + assert [] == list(nx.k_edge_components(G, k=5)) + assert [] == list(nx.k_edge_subgraphs(G, k=5)) + + +def test_not_implemented(): + G = nx.MultiGraph() + pytest.raises(nx.NetworkXNotImplemented, EdgeComponentAuxGraph.construct, G) + pytest.raises(nx.NetworkXNotImplemented, nx.k_edge_components, G, k=2) + pytest.raises(nx.NetworkXNotImplemented, nx.k_edge_subgraphs, G, k=2) + with pytest.raises(nx.NetworkXNotImplemented): + next(bridge_components(G)) + with pytest.raises(nx.NetworkXNotImplemented): + next(bridge_components(nx.DiGraph())) + + +def test_general_k_edge_subgraph_quick_return(): + # tests quick return optimization + G = nx.Graph() + G.add_node(0) + subgraphs = list(general_k_edge_subgraphs(G, k=1)) + assert len(subgraphs) == 1 + for subgraph in subgraphs: + assert subgraph.number_of_nodes() == 1 + + G.add_node(1) + subgraphs = list(general_k_edge_subgraphs(G, k=1)) + assert len(subgraphs) == 2 + for subgraph in subgraphs: + assert subgraph.number_of_nodes() == 1 + + +# ---------------- +# Undirected tests +# ---------------- + + +def test_random_gnp(): + # seeds = [1550709854, 1309423156, 4208992358, 2785630813, 1915069929] + seeds = [12, 13] + + for seed in seeds: + G = nx.gnp_random_graph(20, 0.2, seed=seed) + _check_edge_connectivity(G) + + +def test_configuration(): + # seeds = [2718183590, 2470619828, 1694705158, 3001036531, 2401251497] + seeds = [14, 15] + for seed in seeds: + deg_seq = nx.random_powerlaw_tree_sequence(20, seed=seed, tries=5000) + G = nx.Graph(nx.configuration_model(deg_seq, seed=seed)) + G.remove_edges_from(nx.selfloop_edges(G)) + _check_edge_connectivity(G) + + +def test_shell(): + # seeds = [2057382236, 3331169846, 1840105863, 476020778, 2247498425] + seeds = [20] + for seed in seeds: + constructor = [(12, 70, 0.8), (15, 40, 0.6)] + G = nx.random_shell_graph(constructor, seed=seed) + _check_edge_connectivity(G) + + +def test_karate(): + G = nx.karate_club_graph() + _check_edge_connectivity(G) + + +def test_tarjan_bridge(): + # graph from tarjan paper + # RE Tarjan - "A note on finding the bridges of a graph" + # Information Processing Letters, 1974 - Elsevier + # doi:10.1016/0020-0190(74)90003-9. + # define 2-connected components and bridges + ccs = [ + (1, 2, 4, 3, 1, 4), + (5, 6, 7, 5), + (8, 9, 10, 8), + (17, 18, 16, 15, 17), + (11, 12, 14, 13, 11, 14), + ] + bridges = [(4, 8), (3, 5), (3, 17)] + G = nx.Graph(it.chain(*(pairwise(path) for path in ccs + bridges))) + _check_edge_connectivity(G) + + +def test_bridge_cc(): + # define 2-connected components and bridges + cc2 = [(1, 2, 4, 3, 1, 4), (8, 9, 10, 8), (11, 12, 13, 11)] + bridges = [(4, 8), (3, 5), (20, 21), (22, 23, 24)] + G = nx.Graph(it.chain(*(pairwise(path) for path in cc2 + bridges))) + bridge_ccs = fset(bridge_components(G)) + target_ccs = fset( + [{1, 2, 3, 4}, {5}, {8, 9, 10}, {11, 12, 13}, {20}, {21}, {22}, {23}, {24}] + ) + assert bridge_ccs == target_ccs + _check_edge_connectivity(G) + + +def test_undirected_aux_graph(): + # Graph similar to the one in + # http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0136264 + a, b, c, d, e, f, g, h, i = "abcdefghi" + paths = [ + (a, d, b, f, c), + (a, e, b), + (a, e, b, c, g, b, a), + (c, b), + (f, g, f), + (h, i), + ] + G = nx.Graph(it.chain(*[pairwise(path) for path in paths])) + aux_graph = EdgeComponentAuxGraph.construct(G) + + components_1 = fset(aux_graph.k_edge_subgraphs(k=1)) + target_1 = fset([{a, b, c, d, e, f, g}, {h, i}]) + assert target_1 == components_1 + + # Check that the undirected case for k=1 agrees with CCs + alt_1 = fset(nx.k_edge_subgraphs(G, k=1)) + assert alt_1 == components_1 + + components_2 = fset(aux_graph.k_edge_subgraphs(k=2)) + target_2 = fset([{a, b, c, d, e, f, g}, {h}, {i}]) + assert target_2 == components_2 + + # Check that the undirected case for k=2 agrees with bridge components + alt_2 = fset(nx.k_edge_subgraphs(G, k=2)) + assert alt_2 == components_2 + + components_3 = fset(aux_graph.k_edge_subgraphs(k=3)) + target_3 = fset([{a}, {b, c, f, g}, {d}, {e}, {h}, {i}]) + assert target_3 == components_3 + + components_4 = fset(aux_graph.k_edge_subgraphs(k=4)) + target_4 = fset([{a}, {b}, {c}, {d}, {e}, {f}, {g}, {h}, {i}]) + assert target_4 == components_4 + + _check_edge_connectivity(G) + + +def test_local_subgraph_difference(): + paths = [ + (11, 12, 13, 14, 11, 13, 14, 12), # first 4-clique + (21, 22, 23, 24, 21, 23, 24, 22), # second 4-clique + # paths connecting each node of the 4 cliques + (11, 101, 21), + (12, 102, 22), + (13, 103, 23), + (14, 104, 24), + ] + G = nx.Graph(it.chain(*[pairwise(path) for path in paths])) + aux_graph = EdgeComponentAuxGraph.construct(G) + + # Each clique is returned separately in k-edge-subgraphs + subgraph_ccs = fset(aux_graph.k_edge_subgraphs(3)) + subgraph_target = fset( + [{101}, {102}, {103}, {104}, {21, 22, 23, 24}, {11, 12, 13, 14}] + ) + assert subgraph_ccs == subgraph_target + + # But in k-edge-ccs they are returned together + # because they are locally 3-edge-connected + local_ccs = fset(aux_graph.k_edge_components(3)) + local_target = fset([{101}, {102}, {103}, {104}, {11, 12, 13, 14, 21, 22, 23, 24}]) + assert local_ccs == local_target + + +def test_local_subgraph_difference_directed(): + dipaths = [(1, 2, 3, 4, 1), (1, 3, 1)] + G = nx.DiGraph(it.chain(*[pairwise(path) for path in dipaths])) + + assert fset(nx.k_edge_components(G, k=1)) == fset(nx.k_edge_subgraphs(G, k=1)) + + # Unlike undirected graphs, when k=2, for directed graphs there is a case + # where the k-edge-ccs are not the same as the k-edge-subgraphs. + # (in directed graphs ccs and subgraphs are the same when k=2) + assert fset(nx.k_edge_components(G, k=2)) != fset(nx.k_edge_subgraphs(G, k=2)) + + assert fset(nx.k_edge_components(G, k=3)) == fset(nx.k_edge_subgraphs(G, k=3)) + + _check_edge_connectivity(G) + + +def test_triangles(): + paths = [ + (11, 12, 13, 11), # first 3-clique + (21, 22, 23, 21), # second 3-clique + (11, 21), # connected by an edge + ] + G = nx.Graph(it.chain(*[pairwise(path) for path in paths])) + + # subgraph and ccs are the same in all cases here + assert fset(nx.k_edge_components(G, k=1)) == fset(nx.k_edge_subgraphs(G, k=1)) + + assert fset(nx.k_edge_components(G, k=2)) == fset(nx.k_edge_subgraphs(G, k=2)) + + assert fset(nx.k_edge_components(G, k=3)) == fset(nx.k_edge_subgraphs(G, k=3)) + + _check_edge_connectivity(G) + + +def test_four_clique(): + paths = [ + (11, 12, 13, 14, 11, 13, 14, 12), # first 4-clique + (21, 22, 23, 24, 21, 23, 24, 22), # second 4-clique + # paths connecting the 4 cliques such that they are + # 3-connected in G, but not in the subgraph. + # Case where the nodes bridging them do not have degree less than 3. + (100, 13), + (12, 100, 22), + (13, 200, 23), + (14, 300, 24), + ] + G = nx.Graph(it.chain(*[pairwise(path) for path in paths])) + + # The subgraphs and ccs are different for k=3 + local_ccs = fset(nx.k_edge_components(G, k=3)) + subgraphs = fset(nx.k_edge_subgraphs(G, k=3)) + assert local_ccs != subgraphs + + # The cliques ares in the same cc + clique1 = frozenset(paths[0]) + clique2 = frozenset(paths[1]) + assert clique1.union(clique2).union({100}) in local_ccs + + # but different subgraphs + assert clique1 in subgraphs + assert clique2 in subgraphs + + assert G.degree(100) == 3 + + _check_edge_connectivity(G) + + +def test_five_clique(): + # Make a graph that can be disconnected less than 4 edges, but no node has + # degree less than 4. + G = nx.disjoint_union(nx.complete_graph(5), nx.complete_graph(5)) + paths = [ + # add aux-connections + (1, 100, 6), + (2, 100, 7), + (3, 200, 8), + (4, 200, 100), + ] + G.add_edges_from(it.chain(*[pairwise(path) for path in paths])) + assert min(dict(nx.degree(G)).values()) == 4 + + # For k=3 they are the same + assert fset(nx.k_edge_components(G, k=3)) == fset(nx.k_edge_subgraphs(G, k=3)) + + # For k=4 they are the different + # the aux nodes are in the same CC as clique 1 but no the same subgraph + assert fset(nx.k_edge_components(G, k=4)) != fset(nx.k_edge_subgraphs(G, k=4)) + + # For k=5 they are not the same + assert fset(nx.k_edge_components(G, k=5)) != fset(nx.k_edge_subgraphs(G, k=5)) + + # For k=6 they are the same + assert fset(nx.k_edge_components(G, k=6)) == fset(nx.k_edge_subgraphs(G, k=6)) + _check_edge_connectivity(G) + + +# ---------------- +# Undirected tests +# ---------------- + + +def test_directed_aux_graph(): + # Graph similar to the one in + # http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0136264 + a, b, c, d, e, f, g, h, i = "abcdefghi" + dipaths = [ + (a, d, b, f, c), + (a, e, b), + (a, e, b, c, g, b, a), + (c, b), + (f, g, f), + (h, i), + ] + G = nx.DiGraph(it.chain(*[pairwise(path) for path in dipaths])) + aux_graph = EdgeComponentAuxGraph.construct(G) + + components_1 = fset(aux_graph.k_edge_subgraphs(k=1)) + target_1 = fset([{a, b, c, d, e, f, g}, {h}, {i}]) + assert target_1 == components_1 + + # Check that the directed case for k=1 agrees with SCCs + alt_1 = fset(nx.strongly_connected_components(G)) + assert alt_1 == components_1 + + components_2 = fset(aux_graph.k_edge_subgraphs(k=2)) + target_2 = fset([{i}, {e}, {d}, {b, c, f, g}, {h}, {a}]) + assert target_2 == components_2 + + components_3 = fset(aux_graph.k_edge_subgraphs(k=3)) + target_3 = fset([{a}, {b}, {c}, {d}, {e}, {f}, {g}, {h}, {i}]) + assert target_3 == components_3 + + +def test_random_gnp_directed(): + # seeds = [3894723670, 500186844, 267231174, 2181982262, 1116750056] + seeds = [21] + for seed in seeds: + G = nx.gnp_random_graph(20, 0.2, directed=True, seed=seed) + _check_edge_connectivity(G) + + +def test_configuration_directed(): + # seeds = [671221681, 2403749451, 124433910, 672335939, 1193127215] + seeds = [67] + for seed in seeds: + deg_seq = nx.random_powerlaw_tree_sequence(20, seed=seed, tries=5000) + G = nx.DiGraph(nx.configuration_model(deg_seq, seed=seed)) + G.remove_edges_from(nx.selfloop_edges(G)) + _check_edge_connectivity(G) + + +def test_shell_directed(): + # seeds = [3134027055, 4079264063, 1350769518, 1405643020, 530038094] + seeds = [31] + for seed in seeds: + constructor = [(12, 70, 0.8), (15, 40, 0.6)] + G = nx.random_shell_graph(constructor, seed=seed).to_directed() + _check_edge_connectivity(G) + + +def test_karate_directed(): + G = nx.karate_club_graph().to_directed() + _check_edge_connectivity(G) diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/connectivity/tests/test_kcomponents.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/connectivity/tests/test_kcomponents.py new file mode 100644 index 00000000..f4436acd --- /dev/null +++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/connectivity/tests/test_kcomponents.py @@ -0,0 +1,296 @@ +# Test for Moody and White k-components algorithm +import pytest + +import networkx as nx +from networkx.algorithms.connectivity.kcomponents import ( + _consolidate, + build_k_number_dict, +) + +## +# A nice synthetic graph +## + + +def torrents_and_ferraro_graph(): + # Graph from https://arxiv.org/pdf/1503.04476v1 p.26 + G = nx.convert_node_labels_to_integers( + nx.grid_graph([5, 5]), label_attribute="labels" + ) + rlabels = nx.get_node_attributes(G, "labels") + labels = {v: k for k, v in rlabels.items()} + + for nodes in [(labels[(0, 4)], labels[(1, 4)]), (labels[(3, 4)], labels[(4, 4)])]: + new_node = G.order() + 1 + # Petersen graph is triconnected + P = nx.petersen_graph() + G = nx.disjoint_union(G, P) + # Add two edges between the grid and P + G.add_edge(new_node + 1, nodes[0]) + G.add_edge(new_node, nodes[1]) + # K5 is 4-connected + K = nx.complete_graph(5) + G = nx.disjoint_union(G, K) + # Add three edges between P and K5 + G.add_edge(new_node + 2, new_node + 11) + G.add_edge(new_node + 3, new_node + 12) + G.add_edge(new_node + 4, new_node + 13) + # Add another K5 sharing a node + G = nx.disjoint_union(G, K) + nbrs = G[new_node + 10] + G.remove_node(new_node + 10) + for nbr in nbrs: + G.add_edge(new_node + 17, nbr) + # This edge makes the graph biconnected; it's + # needed because K5s share only one node. + G.add_edge(new_node + 16, new_node + 8) + + for nodes in [(labels[(0, 0)], labels[(1, 0)]), (labels[(3, 0)], labels[(4, 0)])]: + new_node = G.order() + 1 + # Petersen graph is triconnected + P = nx.petersen_graph() + G = nx.disjoint_union(G, P) + # Add two edges between the grid and P + G.add_edge(new_node + 1, nodes[0]) + G.add_edge(new_node, nodes[1]) + # K5 is 4-connected + K = nx.complete_graph(5) + G = nx.disjoint_union(G, K) + # Add three edges between P and K5 + G.add_edge(new_node + 2, new_node + 11) + G.add_edge(new_node + 3, new_node + 12) + G.add_edge(new_node + 4, new_node + 13) + # Add another K5 sharing two nodes + G = nx.disjoint_union(G, K) + nbrs = G[new_node + 10] + G.remove_node(new_node + 10) + for nbr in nbrs: + G.add_edge(new_node + 17, nbr) + nbrs2 = G[new_node + 9] + G.remove_node(new_node + 9) + for nbr in nbrs2: + G.add_edge(new_node + 18, nbr) + return G + + +def test_directed(): + with pytest.raises(nx.NetworkXNotImplemented): + G = nx.gnp_random_graph(10, 0.2, directed=True, seed=42) + nx.k_components(G) + + +# Helper function +def _check_connectivity(G, k_components): + for k, components in k_components.items(): + if k < 3: + continue + # check that k-components have node connectivity >= k. + for component in components: + C = G.subgraph(component) + K = nx.node_connectivity(C) + assert K >= k + + +@pytest.mark.slow +def test_torrents_and_ferraro_graph(): + G = torrents_and_ferraro_graph() + result = nx.k_components(G) + _check_connectivity(G, result) + + # In this example graph there are 8 3-components, 4 with 15 nodes + # and 4 with 5 nodes. + assert len(result[3]) == 8 + assert len([c for c in result[3] if len(c) == 15]) == 4 + assert len([c for c in result[3] if len(c) == 5]) == 4 + # There are also 8 4-components all with 5 nodes. + assert len(result[4]) == 8 + assert all(len(c) == 5 for c in result[4]) + + +@pytest.mark.slow +def test_random_gnp(): + G = nx.gnp_random_graph(50, 0.2, seed=42) + result = nx.k_components(G) + _check_connectivity(G, result) + + +@pytest.mark.slow +def test_shell(): + constructor = [(20, 80, 0.8), (80, 180, 0.6)] + G = nx.random_shell_graph(constructor, seed=42) + result = nx.k_components(G) + _check_connectivity(G, result) + + +def test_configuration(): + deg_seq = nx.random_powerlaw_tree_sequence(100, tries=5, seed=72) + G = nx.Graph(nx.configuration_model(deg_seq)) + G.remove_edges_from(nx.selfloop_edges(G)) + result = nx.k_components(G) + _check_connectivity(G, result) + + +def test_karate(): + G = nx.karate_club_graph() + result = nx.k_components(G) + _check_connectivity(G, result) + + +def test_karate_component_number(): + karate_k_num = { + 0: 4, + 1: 4, + 2: 4, + 3: 4, + 4: 3, + 5: 3, + 6: 3, + 7: 4, + 8: 4, + 9: 2, + 10: 3, + 11: 1, + 12: 2, + 13: 4, + 14: 2, + 15: 2, + 16: 2, + 17: 2, + 18: 2, + 19: 3, + 20: 2, + 21: 2, + 22: 2, + 23: 3, + 24: 3, + 25: 3, + 26: 2, + 27: 3, + 28: 3, + 29: 3, + 30: 4, + 31: 3, + 32: 4, + 33: 4, + } + G = nx.karate_club_graph() + k_components = nx.k_components(G) + k_num = build_k_number_dict(k_components) + assert karate_k_num == k_num + + +def test_davis_southern_women(): + G = nx.davis_southern_women_graph() + result = nx.k_components(G) + _check_connectivity(G, result) + + +def test_davis_southern_women_detail_3_and_4(): + solution = { + 3: [ + { + "Nora Fayette", + "E10", + "Myra Liddel", + "E12", + "E14", + "Frances Anderson", + "Evelyn Jefferson", + "Ruth DeSand", + "Helen Lloyd", + "Eleanor Nye", + "E9", + "E8", + "E5", + "E4", + "E7", + "E6", + "E1", + "Verne Sanderson", + "E3", + "E2", + "Theresa Anderson", + "Pearl Oglethorpe", + "Katherina Rogers", + "Brenda Rogers", + "E13", + "Charlotte McDowd", + "Sylvia Avondale", + "Laura Mandeville", + } + ], + 4: [ + { + "Nora Fayette", + "E10", + "Verne Sanderson", + "E12", + "Frances Anderson", + "Evelyn Jefferson", + "Ruth DeSand", + "Helen Lloyd", + "Eleanor Nye", + "E9", + "E8", + "E5", + "E4", + "E7", + "E6", + "Myra Liddel", + "E3", + "Theresa Anderson", + "Katherina Rogers", + "Brenda Rogers", + "Charlotte McDowd", + "Sylvia Avondale", + "Laura Mandeville", + } + ], + } + G = nx.davis_southern_women_graph() + result = nx.k_components(G) + for k, components in result.items(): + if k < 3: + continue + assert len(components) == len(solution[k]) + for component in components: + assert component in solution[k] + + +def test_set_consolidation_rosettacode(): + # Tests from http://rosettacode.org/wiki/Set_consolidation + def list_of_sets_equal(result, solution): + assert {frozenset(s) for s in result} == {frozenset(s) for s in solution} + + question = [{"A", "B"}, {"C", "D"}] + solution = [{"A", "B"}, {"C", "D"}] + list_of_sets_equal(_consolidate(question, 1), solution) + question = [{"A", "B"}, {"B", "C"}] + solution = [{"A", "B", "C"}] + list_of_sets_equal(_consolidate(question, 1), solution) + question = [{"A", "B"}, {"C", "D"}, {"D", "B"}] + solution = [{"A", "C", "B", "D"}] + list_of_sets_equal(_consolidate(question, 1), solution) + question = [{"H", "I", "K"}, {"A", "B"}, {"C", "D"}, {"D", "B"}, {"F", "G", "H"}] + solution = [{"A", "C", "B", "D"}, {"G", "F", "I", "H", "K"}] + list_of_sets_equal(_consolidate(question, 1), solution) + question = [ + {"A", "H"}, + {"H", "I", "K"}, + {"A", "B"}, + {"C", "D"}, + {"D", "B"}, + {"F", "G", "H"}, + ] + solution = [{"A", "C", "B", "D", "G", "F", "I", "H", "K"}] + list_of_sets_equal(_consolidate(question, 1), solution) + question = [ + {"H", "I", "K"}, + {"A", "B"}, + {"C", "D"}, + {"D", "B"}, + {"F", "G", "H"}, + {"A", "H"}, + ] + solution = [{"A", "C", "B", "D", "G", "F", "I", "H", "K"}] + list_of_sets_equal(_consolidate(question, 1), solution) diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/connectivity/tests/test_kcutsets.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/connectivity/tests/test_kcutsets.py new file mode 100644 index 00000000..4b4b5494 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/connectivity/tests/test_kcutsets.py @@ -0,0 +1,273 @@ +# Jordi Torrents +# Test for k-cutsets +import itertools + +import pytest + +import networkx as nx +from networkx.algorithms import flow +from networkx.algorithms.connectivity.kcutsets import _is_separating_set + +MAX_CUTSETS_TO_TEST = 4 # originally 100. cut to decrease testing time + +flow_funcs = [ + flow.boykov_kolmogorov, + flow.dinitz, + flow.edmonds_karp, + flow.preflow_push, + flow.shortest_augmenting_path, +] + + +## +# Some nice synthetic graphs +## +def graph_example_1(): + G = nx.convert_node_labels_to_integers( + nx.grid_graph([5, 5]), label_attribute="labels" + ) + rlabels = nx.get_node_attributes(G, "labels") + labels = {v: k for k, v in rlabels.items()} + + for nodes in [ + (labels[(0, 0)], labels[(1, 0)]), + (labels[(0, 4)], labels[(1, 4)]), + (labels[(3, 0)], labels[(4, 0)]), + (labels[(3, 4)], labels[(4, 4)]), + ]: + new_node = G.order() + 1 + # Petersen graph is triconnected + P = nx.petersen_graph() + G = nx.disjoint_union(G, P) + # Add two edges between the grid and P + G.add_edge(new_node + 1, nodes[0]) + G.add_edge(new_node, nodes[1]) + # K5 is 4-connected + K = nx.complete_graph(5) + G = nx.disjoint_union(G, K) + # Add three edges between P and K5 + G.add_edge(new_node + 2, new_node + 11) + G.add_edge(new_node + 3, new_node + 12) + G.add_edge(new_node + 4, new_node + 13) + # Add another K5 sharing a node + G = nx.disjoint_union(G, K) + nbrs = G[new_node + 10] + G.remove_node(new_node + 10) + for nbr in nbrs: + G.add_edge(new_node + 17, nbr) + G.add_edge(new_node + 16, new_node + 5) + return G + + +def torrents_and_ferraro_graph(): + G = nx.convert_node_labels_to_integers( + nx.grid_graph([5, 5]), label_attribute="labels" + ) + rlabels = nx.get_node_attributes(G, "labels") + labels = {v: k for k, v in rlabels.items()} + + for nodes in [(labels[(0, 4)], labels[(1, 4)]), (labels[(3, 4)], labels[(4, 4)])]: + new_node = G.order() + 1 + # Petersen graph is triconnected + P = nx.petersen_graph() + G = nx.disjoint_union(G, P) + # Add two edges between the grid and P + G.add_edge(new_node + 1, nodes[0]) + G.add_edge(new_node, nodes[1]) + # K5 is 4-connected + K = nx.complete_graph(5) + G = nx.disjoint_union(G, K) + # Add three edges between P and K5 + G.add_edge(new_node + 2, new_node + 11) + G.add_edge(new_node + 3, new_node + 12) + G.add_edge(new_node + 4, new_node + 13) + # Add another K5 sharing a node + G = nx.disjoint_union(G, K) + nbrs = G[new_node + 10] + G.remove_node(new_node + 10) + for nbr in nbrs: + G.add_edge(new_node + 17, nbr) + # Commenting this makes the graph not biconnected !! + # This stupid mistake make one reviewer very angry :P + G.add_edge(new_node + 16, new_node + 8) + + for nodes in [(labels[(0, 0)], labels[(1, 0)]), (labels[(3, 0)], labels[(4, 0)])]: + new_node = G.order() + 1 + # Petersen graph is triconnected + P = nx.petersen_graph() + G = nx.disjoint_union(G, P) + # Add two edges between the grid and P + G.add_edge(new_node + 1, nodes[0]) + G.add_edge(new_node, nodes[1]) + # K5 is 4-connected + K = nx.complete_graph(5) + G = nx.disjoint_union(G, K) + # Add three edges between P and K5 + G.add_edge(new_node + 2, new_node + 11) + G.add_edge(new_node + 3, new_node + 12) + G.add_edge(new_node + 4, new_node + 13) + # Add another K5 sharing two nodes + G = nx.disjoint_union(G, K) + nbrs = G[new_node + 10] + G.remove_node(new_node + 10) + for nbr in nbrs: + G.add_edge(new_node + 17, nbr) + nbrs2 = G[new_node + 9] + G.remove_node(new_node + 9) + for nbr in nbrs2: + G.add_edge(new_node + 18, nbr) + return G + + +# Helper function +def _check_separating_sets(G): + for cc in nx.connected_components(G): + if len(cc) < 3: + continue + Gc = G.subgraph(cc) + node_conn = nx.node_connectivity(Gc) + all_cuts = nx.all_node_cuts(Gc) + # Only test a limited number of cut sets to reduce test time. + for cut in itertools.islice(all_cuts, MAX_CUTSETS_TO_TEST): + assert node_conn == len(cut) + assert not nx.is_connected(nx.restricted_view(G, cut, [])) + + +@pytest.mark.slow +def test_torrents_and_ferraro_graph(): + G = torrents_and_ferraro_graph() + _check_separating_sets(G) + + +def test_example_1(): + G = graph_example_1() + _check_separating_sets(G) + + +def test_random_gnp(): + G = nx.gnp_random_graph(100, 0.1, seed=42) + _check_separating_sets(G) + + +def test_shell(): + constructor = [(20, 80, 0.8), (80, 180, 0.6)] + G = nx.random_shell_graph(constructor, seed=42) + _check_separating_sets(G) + + +def test_configuration(): + deg_seq = nx.random_powerlaw_tree_sequence(100, tries=5, seed=72) + G = nx.Graph(nx.configuration_model(deg_seq)) + G.remove_edges_from(nx.selfloop_edges(G)) + _check_separating_sets(G) + + +def test_karate(): + G = nx.karate_club_graph() + _check_separating_sets(G) + + +def _generate_no_biconnected(max_attempts=50): + attempts = 0 + while True: + G = nx.fast_gnp_random_graph(100, 0.0575, seed=42) + if nx.is_connected(G) and not nx.is_biconnected(G): + attempts = 0 + yield G + else: + if attempts >= max_attempts: + msg = f"Tried {attempts} times: no suitable Graph." + raise Exception(msg) + else: + attempts += 1 + + +def test_articulation_points(): + Ggen = _generate_no_biconnected() + for i in range(1): # change 1 to 3 or more for more realizations. + G = next(Ggen) + articulation_points = [{a} for a in nx.articulation_points(G)] + for cut in nx.all_node_cuts(G): + assert cut in articulation_points + + +def test_grid_2d_graph(): + # All minimum node cuts of a 2d grid + # are the four pairs of nodes that are + # neighbors of the four corner nodes. + G = nx.grid_2d_graph(5, 5) + solution = [{(0, 1), (1, 0)}, {(3, 0), (4, 1)}, {(3, 4), (4, 3)}, {(0, 3), (1, 4)}] + for cut in nx.all_node_cuts(G): + assert cut in solution + + +def test_disconnected_graph(): + G = nx.fast_gnp_random_graph(100, 0.01, seed=42) + cuts = nx.all_node_cuts(G) + pytest.raises(nx.NetworkXError, next, cuts) + + +@pytest.mark.slow +def test_alternative_flow_functions(): + graphs = [nx.grid_2d_graph(4, 4), nx.cycle_graph(5)] + for G in graphs: + node_conn = nx.node_connectivity(G) + for flow_func in flow_funcs: + all_cuts = nx.all_node_cuts(G, flow_func=flow_func) + # Only test a limited number of cut sets to reduce test time. + for cut in itertools.islice(all_cuts, MAX_CUTSETS_TO_TEST): + assert node_conn == len(cut) + assert not nx.is_connected(nx.restricted_view(G, cut, [])) + + +def test_is_separating_set_complete_graph(): + G = nx.complete_graph(5) + assert _is_separating_set(G, {0, 1, 2, 3}) + + +def test_is_separating_set(): + for i in [5, 10, 15]: + G = nx.star_graph(i) + max_degree_node = max(G, key=G.degree) + assert _is_separating_set(G, {max_degree_node}) + + +def test_non_repeated_cuts(): + # The algorithm was repeating the cut {0, 1} for the giant biconnected + # component of the Karate club graph. + K = nx.karate_club_graph() + bcc = max(list(nx.biconnected_components(K)), key=len) + G = K.subgraph(bcc) + solution = [{32, 33}, {2, 33}, {0, 3}, {0, 1}, {29, 33}] + cuts = list(nx.all_node_cuts(G)) + if len(solution) != len(cuts): + print(f"Solution: {solution}") + print(f"Result: {cuts}") + assert len(solution) == len(cuts) + for cut in cuts: + assert cut in solution + + +def test_cycle_graph(): + G = nx.cycle_graph(5) + solution = [{0, 2}, {0, 3}, {1, 3}, {1, 4}, {2, 4}] + cuts = list(nx.all_node_cuts(G)) + assert len(solution) == len(cuts) + for cut in cuts: + assert cut in solution + + +def test_complete_graph(): + G = nx.complete_graph(5) + assert nx.node_connectivity(G) == 4 + assert list(nx.all_node_cuts(G)) == [] + + +def test_all_node_cuts_simple_case(): + G = nx.complete_graph(5) + G.remove_edges_from([(0, 1), (3, 4)]) + expected = [{0, 1, 2}, {2, 3, 4}] + actual = list(nx.all_node_cuts(G)) + assert len(actual) == len(expected) + for cut in actual: + assert cut in expected diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/connectivity/tests/test_stoer_wagner.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/connectivity/tests/test_stoer_wagner.py new file mode 100644 index 00000000..2b9e2bab --- /dev/null +++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/connectivity/tests/test_stoer_wagner.py @@ -0,0 +1,102 @@ +from itertools import chain + +import pytest + +import networkx as nx + + +def _check_partition(G, cut_value, partition, weight): + assert isinstance(partition, tuple) + assert len(partition) == 2 + assert isinstance(partition[0], list) + assert isinstance(partition[1], list) + assert len(partition[0]) > 0 + assert len(partition[1]) > 0 + assert sum(map(len, partition)) == len(G) + assert set(chain.from_iterable(partition)) == set(G) + partition = tuple(map(set, partition)) + w = 0 + for u, v, e in G.edges(data=True): + if (u in partition[0]) == (v in partition[1]): + w += e.get(weight, 1) + assert w == cut_value + + +def _test_stoer_wagner(G, answer, weight="weight"): + cut_value, partition = nx.stoer_wagner(G, weight, heap=nx.utils.PairingHeap) + assert cut_value == answer + _check_partition(G, cut_value, partition, weight) + cut_value, partition = nx.stoer_wagner(G, weight, heap=nx.utils.BinaryHeap) + assert cut_value == answer + _check_partition(G, cut_value, partition, weight) + + +def test_graph1(): + G = nx.Graph() + G.add_edge("x", "a", weight=3) + G.add_edge("x", "b", weight=1) + G.add_edge("a", "c", weight=3) + G.add_edge("b", "c", weight=5) + G.add_edge("b", "d", weight=4) + G.add_edge("d", "e", weight=2) + G.add_edge("c", "y", weight=2) + G.add_edge("e", "y", weight=3) + _test_stoer_wagner(G, 4) + + +def test_graph2(): + G = nx.Graph() + G.add_edge("x", "a") + G.add_edge("x", "b") + G.add_edge("a", "c") + G.add_edge("b", "c") + G.add_edge("b", "d") + G.add_edge("d", "e") + G.add_edge("c", "y") + G.add_edge("e", "y") + _test_stoer_wagner(G, 2) + + +def test_graph3(): + # Source: + # Stoer, M. and Wagner, F. (1997). "A simple min-cut algorithm". Journal of + # the ACM 44 (4), 585-591. + G = nx.Graph() + G.add_edge(1, 2, weight=2) + G.add_edge(1, 5, weight=3) + G.add_edge(2, 3, weight=3) + G.add_edge(2, 5, weight=2) + G.add_edge(2, 6, weight=2) + G.add_edge(3, 4, weight=4) + G.add_edge(3, 7, weight=2) + G.add_edge(4, 7, weight=2) + G.add_edge(4, 8, weight=2) + G.add_edge(5, 6, weight=3) + G.add_edge(6, 7, weight=1) + G.add_edge(7, 8, weight=3) + _test_stoer_wagner(G, 4) + + +def test_weight_name(): + G = nx.Graph() + G.add_edge(1, 2, weight=1, cost=8) + G.add_edge(1, 3, cost=2) + G.add_edge(2, 3, cost=4) + _test_stoer_wagner(G, 6, weight="cost") + + +def test_exceptions(): + G = nx.Graph() + pytest.raises(nx.NetworkXError, nx.stoer_wagner, G) + G.add_node(1) + pytest.raises(nx.NetworkXError, nx.stoer_wagner, G) + G.add_node(2) + pytest.raises(nx.NetworkXError, nx.stoer_wagner, G) + G.add_edge(1, 2, weight=-2) + pytest.raises(nx.NetworkXError, nx.stoer_wagner, G) + G = nx.DiGraph() + pytest.raises(nx.NetworkXNotImplemented, nx.stoer_wagner, G) + G = nx.MultiGraph() + pytest.raises(nx.NetworkXNotImplemented, nx.stoer_wagner, G) + G = nx.MultiDiGraph() + pytest.raises(nx.NetworkXNotImplemented, nx.stoer_wagner, G) -- cgit v1.2.3