"""module contains python code for wgcna""" from unittest import skip from unittest import TestCase from unittest import mock from gn3.computations.wgcna import dump_wgcna_data from gn3.computations.wgcna import compose_wgcna_cmd from gn3.computations.wgcna import call_wgcna_script class TestWgcna(TestCase): """test class for wgcna""" @mock.patch("gn3.computations.wgcna.run_cmd") @mock.patch("gn3.computations.wgcna.compose_wgcna_cmd") @mock.patch("gn3.computations.wgcna.dump_wgcna_data") def test_call_wgcna_script(self, mock_dumping_data, mock_compose_wgcna, mock_run_cmd): """test for calling wgcna script""" mock_dumping_data.return_value = "/tmp/QmQPeNsJPyVWPFDVHb77w8G42Fvo15z4bG2X8D2GhfbSXc-test.json" mock_compose_wgcna.return_value = "Rscript/GUIX_PATH/scripts/r_file.R /tmp/QmQPeNsJPyVWPFDVHb77w8G42Fvo15z4bG2X8D2GhfbSXc-test.json" request_data = { "trait_names": ["1455537_at", "1425637_at", "1449593_at", "1421945_a_at", "1450423_s_at", "1423841_at", "1451144_at"], "trait_sample_data": [ { "129S1/SvImJ": 7.142, "A/J": 7.31, "AKR/J": 7.49, "B6D2F1": 6.899, "BALB/cByJ": 7.172, "BALB/cJ": 7.396 }, { "129S1/SvImJ": 7.071, "A/J": 7.05, "AKR/J": 7.313, "B6D2F1": 6.999, "BALB/cByJ": 7.293, "BALB/cJ": 7.117 }]} mock_run_cmd_results = { "code": 0, "output": "Flagging genes and samples with too many missing values...\n ..step 1\nAllowing parallel execution with up to 3 working processes.\npickSoftThreshold: will use block size 7.\n pickSoftThreshold: calculating connectivity for given powers...\n ..working on genes 1 through 7 of 7\n Flagging genes and samples with too many missing values...\n ..step 1\n ..Working on block 1 .\n TOM calculation: adjacency..\n ..will not use multithreading.\nclustering..\n ....detecting modules..\n ....calculating module eigengenes..\n ....checking kME in modules..\n ..merging modules that are too close..\n mergeCloseModules: Merging modules whose distance is less than 0.15\n mergeCloseModules: less than two proper modules.\n ..color levels are turquoise\n ..there is nothing to merge.\n Calculating new MEs...\n" } json_output = "{\"inputdata\":{\"trait_sample_data \":{},\"minModuleSize\":30,\"TOMtype\":\"unsigned\"},\"outputdata\":{\"eigengenes\":[],\"colors\":[]}}" expected_output = { "data": { "inputdata": { "trait_sample_data ": {}, "minModuleSize": 30, "TOMtype": "unsigned" }, "outputdata": { "eigengenes": [], "colors": [] } }, **mock_run_cmd_results } with mock.patch("builtins.open", mock.mock_open(read_data=json_output)) as mock_file: mock_run_cmd.return_value = mock_run_cmd_results results = call_wgcna_script( "Rscript/GUIX_PATH/scripts/r_file.R", request_data) mock_dumping_data.assert_called_once_with(request_data) mock_compose_wgcna.assert_called_once_with( "Rscript/GUIX_PATH/scripts/r_file.R", "/tmp/QmQPeNsJPyVWPFDVHb77w8G42Fvo15z4bG2X8D2GhfbSXc-test.json") mock_run_cmd.assert_called_once_with( "Rscript/GUIX_PATH/scripts/r_file.R /tmp/QmQPeNsJPyVWPFDVHb77w8G42Fvo15z4bG2X8D2GhfbSXc-test.json") self.assertEqual(results, expected_output) @mock.patch("gn3.computations.wgcna.run_cmd") @mock.patch("gn3.computations.wgcna.compose_wgcna_cmd") @mock.patch("gn3.computations.wgcna.dump_wgcna_data") def test_call_wgcna_script_fails(self, mock_dumping_data, mock_compose_wgcna, mock_run_cmd): """test for calling wgcna script fails and generates the expected error""" mock_dumping_data.return_value = "/tmp/QmQPeNsJPyVWPFDVHb77w8G42Fvo15z4bG2X8D2GhfbSXc-test.json" mock_compose_wgcna.return_value = "Rscript/GUIX_PATH/scripts/r_file.R /tmp/QmQPeNsJPyVWPFDVHb77w8G42Fvo15z4bG2X8D2GhfbSXc-test.json" expected_error = { "code": 127, "output": "could not read the json file" } with mock.patch("builtins.open", mock.mock_open(read_data="")) as mock_file: mock_run_cmd.return_value = expected_error self.assertEqual(call_wgcna_script( "input_file.R", ""), expected_error) def test_compose_wgcna_cmd(self): """test for composing wgcna cmd""" wgcna_cmd = compose_wgcna_cmd( "wgcna.r", "/tmp/wgcna.json") self.assertEqual( wgcna_cmd, "Rscript ./scripts/wgcna.r /tmp/wgcna.json") @ skip("to update tests") def test_create_json_file(self): """test for writing the data to a csv file""" # # All the traits we have data for (should not contain duplicates) # All the strains we have data for (contains duplicates) trait_sample_data = {"1425642_at": {"129S1/SvImJ": 7.142, "A/J": 7.31, "AKR/J": 7.49, "B6D2F1": 6.899, "BALB/cByJ": 7.172, "BALB/cJ": 7.396}, "1457784_at": {"129S1/SvImJ": 7.071, "A/J": 7.05, "AKR/J": 7.313, "B6D2F1": 6.999, "BALB/cByJ": 7.293, "BALB/cJ": 7.117}, "1444351_at": {"129S1/SvImJ": 7.221, "A/J": 7.246, "AKR/J": 7.754, "B6D2F1": 6.866, "BALB/cByJ": 6.752, "BALB/cJ": 7.269} } expected_input = { "trait_sample_data": trait_sample_data, "TOMtype": "unsigned", "minModuleSize": 30 } results = dump_wgcna_data( expected_input) self.assertEqual(results, {})