"""Test partial correlations""" import pytest from gn3.computations.partial_correlations import partial_correlations_entry @pytest.mark.integration_test @pytest.mark.parametrize( "post_data", ( None, {}, { "primary_trait": None, "control_traits": None, "method": None, "target_db": None }, { "primary_trait": None, "control_traits": None, "method": None, "target_db": "a_db" }, { "primary_trait": None, "control_traits": None, "method": "a_method", "target_db": None }, { "primary_trait": None, "control_traits": None, "method": "a_method", "target_db": "a_db" }, { "primary_trait": None, "control_traits": ["a_trait", "another"], "method": None, "target_db": None }, { "primary_trait": None, "control_traits": ["a_trait", "another"], "method": None, "target_db": "a_db" }, { "primary_trait": None, "control_traits": ["a_trait", "another"], "method": "a_method", "target_db": None }, { "primary_trait": None, "control_traits": ["a_trait", "another"], "method": "a_method", "target_db": "a_db" }, { "primary_trait": "a_trait", "control_traits": None, "method": None, "target_db": None }, { "primary_trait": "a_trait", "control_traits": None, "method": None, "target_db": "a_db" }, { "primary_trait": "a_trait", "control_traits": None, "method": "a_method", "target_db": None }, { "primary_trait": "a_trait", "control_traits": None, "method": "a_method", "target_db": "a_db" }, { "primary_trait": "a_trait", "control_traits": ["a_trait", "another"], "method": None, "target_db": None }, { "primary_trait": "a_trait", "control_traits": ["a_trait", "another"], "method": None, "target_db": "a_db" }, { "primary_trait": "a_trait", "control_traits": ["a_trait", "another"], "method": "a_method", "target_db": None })) def test_partial_correlation_api_with_missing_request_data(client, post_data): """ Test /api/correlations/partial endpoint with various expected request data missing. """ response = client.post("/api/correlation/partial", json=post_data) assert ( response.status_code == 400 and response.is_json and response.json.get("status") == "error") @pytest.mark.integration_test @pytest.mark.slow @pytest.mark.parametrize( "post_data", ({# ProbeSet "primary_trait": {"dataset": "a_dataset", "name": "a_name"}, "control_traits": [ {"dataset": "a_dataset", "name": "a_name"}, {"dataset": "a_dataset2", "name": "a_name2"}], "method": "a_method", "target_db": "a_db" }, {# Publish "primary_trait": {"dataset": "a_Publish_dataset", "name": "a_name"}, "control_traits": [ {"dataset": "a_dataset", "name": "a_name"}, {"dataset": "a_dataset2", "name": "a_name2"}], "method": "a_method", "target_db": "a_db" }, {# Geno "primary_trait": {"dataset": "a_Geno_dataset", "name": "a_name"}, "control_traits": [ {"dataset": "a_dataset", "name": "a_name"}, {"dataset": "a_dataset2", "name": "a_name2"}], "method": "a_method", "target_db": "a_db" }, {# Temp "primary_trait": {"dataset": "a_Temp_dataset", "name": "a_name"}, "control_traits": [ {"dataset": "a_dataset", "name": "a_name"}, {"dataset": "a_dataset2", "name": "a_name2"}], "method": "a_method", "target_db": "a_db" })) def test_partial_correlation_api_with_non_existent_primary_traits(client, post_data): """ Check that the system responds appropriately in the case where the user makes a request with a non-existent primary trait. """ response = client.post("/api/correlation/partial", json=post_data) assert ( response.status_code == 404 and response.is_json and response.json.get("status") != "error") @pytest.mark.integration_test @pytest.mark.slow @pytest.mark.parametrize( "post_data", ({# ProbeSet "primary_trait": { "dataset": "UCLA_BXDBXH_CARTILAGE_V2", "name": "ILM103710672"}, "control_traits": [ {"dataset": "a_dataset", "name": "a_name"}, {"dataset": "a_dataset2", "name": "a_name2"}], "method": "a_method", "target_db": "a_db" }, {# Publish "primary_trait": {"dataset": "BXDPublish", "name": "BXD_12557"}, "control_traits": [ {"dataset": "a_dataset", "name": "a_name"}, {"dataset": "a_dataset2", "name": "a_name2"}], "method": "a_method", "target_db": "a_db" }, {# Geno "primary_trait": {"dataset": "AKXDGeno", "name": "D4Mit16"}, "control_traits": [ {"dataset": "a_dataset", "name": "a_name"}, {"dataset": "a_dataset2", "name": "a_name2"}], "method": "a_method", "target_db": "a_db" } # Temp -- the data in the database for these is ephemeral, making it # difficult to test for this )) def test_partial_correlation_api_with_non_existent_control_traits(client, post_data): """ Check that the system responds appropriately in the case where the user makes a request with a non-existent control traits. The code repetition here is on purpose - valuing clarity over succinctness. """ response = client.post("/api/correlation/partial", json=post_data) assert ( response.status_code == 404 and response.is_json and response.json.get("status") != "error") @pytest.mark.integration_test @pytest.mark.slow @pytest.mark.parametrize( "primary,controls,method,target", ( (# Probeset "UCLA_BXDBXH_CARTILAGE_V2::ILM103710672", ( "UCLA_BXDBXH_CARTILAGE_V2::nonExisting01", "UCLA_BXDBXH_CARTILAGE_V2::nonExisting02", "UCLA_BXDBXH_CARTILAGE_V2::ILM380019"), "Genetic Correlation, Pearson's r", "BXDPublish"), (# Publish "BXDPublish::17937", ( "BXDPublish::17940", "BXDPublish::nonExisting03"), "Genetic Correlation, Spearman's rho", "BXDPublish"), (# Geno "AKXDGeno::D4Mit16", ( "AKXDGeno::D1Mit170", "AKXDGeno::nonExisting04", "AKXDGeno::D1Mit135", "AKXDGeno::nonExisting05", "AKXDGeno::nonExisting06"), "SGO Literature Correlation", "BXDPublish") ) # Temp -- the data in the database for these is ephemeral, making it # difficult to test for these without a temp database with the temp # traits data set to something we are in control of ) def test_part_corr_api_with_mix_of_existing_and_non_existing_control_traits( db_conn, primary, controls, method, target): """ Check that calling the function with a mix of existing and missing control traits raises an warning. """ criteria = 10 with pytest.warns(UserWarning): partial_correlations_entry( db_conn, primary, controls, method, criteria, target)