# initial workspace setup library(WGCNA); library(stringi); options(stringsAsFactors = FALSE); # load expression data **assumes csv format row(traits)(columns info+samples) wgcnaRawData <- read.csv(file = "wgcna_data.csv") # transform expressionData dataExpr <- as.data.frame(t(wgcnaRawData)); # data cleaning # adopted from docs gsg = goodSamplesGenes(dataExpr, verbose = 3); if (!gsg$allOK) { # Optionally, print the gene and sample names that were removed: if (sum(!gsg$goodGenes)>0) printFlush(paste("Removing genes:", paste(names(datExpr0)[!gsg$goodGenes], collapse = ", "))); if (sum(!gsg$goodSamples)>0) printFlush(paste("Removing samples:", paste(rownames(datExpr0)[!gsg$goodSamples], collapse = ", "))); # Remove the offending genes and samples from the data: dataExpr <- dataExpr[gsg$goodSamples, gsg$goodGenes] } # network constructions and modules # choose softthreshhold (Calculate soft threshold if the user specified the) powers <- c(c(1:10), seq(from = 12, to=20, by=2)) sft <- pickSoftThreshold(dataExpr, powerVector = powers, verbose = 5) # pass user options network <- blockwiseModules(dataExpr, #similarity matrix options corType = "pearson", #adjacency matrix options power = sft$powerEstimate, networkType = "unsigned", #TOM options TOMtype = "unsigned", #module indentification minmodulesSize = 30, deepSplit = 5, PamRespectsDendro = FALSE ) genImageRandStr <- function(prefix){ randStr <- paste(prefix,stri_rand_strings(1, 9, pattern = "[A-Za-z0-9]"),sep="_") return(paste(randStr,".png",sep="")) } mergedColors = labels2colors(net$colors) png(genImageRandStr,width=1000,height=600,type='cairo-png') plotDendroAndColors(network$dendrograms[[1]],mergedColors[net$blockGenes[[1]]], "Module colors", dendroLabels = FALSE, hang = 0.03, addGuide = TRUE, guideHang = 0.05)