# This script file contains the an implementation of qtl mapping using r-qtl2 # For r-qtl1 implementation see: Scripts/rqtl_wrapper.R # load the library library(qtl2) library(rjson) library(stringi) library(stringr) options(stringsAsFactors = FALSE) args = commandArgs(trailingOnly = TRUE) # get the json file path with pre metadata required to create the cross if (length(args) == 0) { stop("Argument for the metadata file is Missing ", call. = FALSE) } else { json_file_path = args[1] } # validation for the json file if (!(file.exists(json_file_path))) { stop("The input file path does not exists") } else { str_glue("The input path for the metadata >>>>>>> {json_file_path}") json_data = fromJSON(file = json_file_path) } # generate random string file path here genRandomFileName <- function(prefix, file_ext = ".txt") { randStr = paste(prefix, stri_rand_strings(1, 9, pattern = "[A-Za-z0-9]"), sep = "_") return(paste(randStr, file_ext, sep = "")) } # this should be read from the json file assigned to variables # TODO improve on this or use option # should put constraints for items data required for this crosstype <- json_data$crosstype geno_file <- json_data$geno_file pheno_file <- json_data$pheno_file geno_map_file <- json_data$geno_map_file pheno_covar_file <- json_data$phenocovar_file alleles <- json_data$alleles founder_geno_file = json_data$founder_geno_file gmap_file = json_data$gmap_file # work on the optional parameters # better fit for reading the data # make validations # parsing the required data for example the geno_codes # geno_codes handle the geno codes here # make assertion for the geno_file and the geno_file exists # make assertion for the physical map file or the geno map file exists # create temp directory for this workspace control_file_path <- file.path("/home/kabui", genRandomFileName(prefix = "control_", file_ext = ".json")) str_glue("Generated control file path is {control_file_path}") # create the cross file here from the arguments provided # todo add more validation checks here # issue I can no define the different paths for files for example pheno_file # think about the issue about geno codes ~~~~ # function to generate a cross file from a json list generate_cross_object <- function(json_data) { return ( write_control_file( control_file_path, crosstype = json_data$crosstype, geno_file = json_data$geno_file, pheno_file = json_data$pheno_file, gmap_file = json_data$geno_map_file, phenocovar_file = json_data$phenocovar_file, geno_codes = json_data$geno_codes, alleles = json_data$alleles, na.strings = json_data$na.strings, overwrite = TRUE ) ) } # alternatively pass a yaml file with dataset <- write_control_file( control_file_path, crosstype = crosstype, geno_file = geno_file, pheno_file = pheno_file, gmap_file = geno_map_file, phenocovar_file = pheno_covar_file, geno_codes = c(L = 1L, C = 2L), alleles = alleles, na.strings = c("-", "NA"), overwrite = TRUE ) # make validation for the data dataset <- read_cross2(control_file_path, quiet = FALSE) # replace this with a dynamic path # check integrity of the cross cat("Check the integrity of the cross object") check_cross2(dataset) if (check_cross2(dataset)) { print("Dataset meets required specifications for a cross") } else { print("Dataset does not meet required specifications") } # Dataset Summarys cat("A Summary about the Dataset You Provided\n") summary(dataset) n_ind(dataset) n_chr(dataset) cat("names of markers in the object\n") marker_names(dataset) cat("names of phenotypes in a the object") pheno_names(dataset) cat("IDs for all individuals in the dataset cross object that have genotype data\n") ind_ids_geno(dataset) cat(" IDs for all individuals in the dataset object that have phenotype data") ind_ids_pheno(dataset) cat("Name of the founder Strains/n") founders(dataset) # Work on computing the genetic probabilities analysis_type <- "single" perform_genetic_pr <- function(cross, cores = 1, error_prob = 0.002, analysis_type = "single") { # improve on this if (analysis_type == "single") { pr <- calc_genoprob(cross, error_prob = error_prob, quiet = FALSE, cores = cores) return (pr) } } # get the genetic probability Pr = perform_genetic_pr(dataset) cat("Summaries on the genetic probabilites \n") print(Pr) summary(Pr) #calculate genotyping error LOD scores, to help identify potential genotyping errors (and problem markers and/or individuals error_lod <- calc_errorlod(dataset, Pr, quiet = FALSE, cores = 4) print(error_lod) # Perform genome scane # rework on this issue ## grab phenotypes and covariates; ensure that covariates have names attribute pheno <- dataset$pheno covar <- match(dataset$covar$sex, c("f", "m")) # make numeric names(covar) <- rownames(dataset$covar) Xcovar <- get_x_covar(dataset) print(pheno) print(covar) print(Xcovar) # rework on fetching th Xcovar and getting the covar data # perform kinship perform_genome_scan <- function(cross, genome_prob, method, covar = NULL, xCovar = NULL) # perform scan1 using haley-knott regression or linear model, or LOCO linear model { if (method == "LMM") { # provide parameters for this kinship = calc_kinship(genome_prob) out <- scan1( genome_prob, cross$pheno, kinship = kinship, addcovar = covar, Xcovar = Xcovar ) } if (method == "LOCO") { # perform kinship inside better option kinship = calc_kinship(genome_prob, "loco") out <- scan1( genome_prob, cross$pheno, kinship = kinship, addcovar = covar, Xcovar = Xcovar ) } else { # perform using Haley Knott out <- scan1(genome_prob, cross$pheno, addcovar = NULL, Xcovar = Xcovar) } return (out) } results <- perform_genome_scan(cross = dataset, genome_prob = Pr, method = "HMM") results # this should probably return the method use here # plot for the LOD scores from performing the genome scan generate_lod_plot <- function(cross, scan_result, method, base_dir = ".") { # Plot LOD curves for a genome scan color <- c("slateblue", "violetred", "green3") par(mar = c(4.1, 4.1, 1.6, 1.1)) ymx <- maxlod(scan_result) file_name = genRandomFileName(prefix = "RQTL_LOD_SCORE_", file_ext = ".png") image_loc = file.path(base_dir , file_name) png(image_loc, width = 1000, height = 600, type = 'cairo-png') plot( scan_result, cross$gmap, lodcolumn = 1, col = color[1], main = colnames(cross$pheno)[1], ylim = c(0, ymx * 1.02) ) legend( "topleft", lwd = 2, col = color[1], method, bg = "gray90", lty = c(1, 1, 2) ) dev.off() return (image_loc) } lod_file_path <- generate_lod_plot(dataset, results, "HK") lod_file_path # work on 2 pair scan multiple pair scan # multiple pair scan # Q how do we perform geno scan with Genome scan with a single-QTL model ???? # perform permutation tests for single-QTL method perform_permutation_test <- function(cross, genome_prob, n_perm, method = "HKK", covar = NULL, Xcovar = NULL, perm_strata = NULL) { # todo add chr_lengths and perm_Xsp if (method == "HKK") { perm <- scan1perm( genome_prob, cross$pheno, Xcovar = Xcovar, n_perm = n_perm, perm_strata = perm_strata ) } else if (method == "LMM") { kinship = calc_kinship(genome_prob) perm <- scan1perm( genome_prob, cross$pheno, kinship = kinship, Xcovar = Xcovar, n_perm = n_perm ) } else if (method == "LOCO") { kinship = calc_kinship(genome_prob, "loco") perm <- scan1perm( genome_prob, cross$pheno, kinship = kinship , perm_strata = perm_strata, Xcovar = Xcovar, n_perm = n_perm ) } return (perm) } # TODO ! get these parameters from argument from the user perm <- perform_permutation_test(dataset, Pr, n_perm = 2, method = "LMM") # get the permutation summary with a significance threshold summary(perm, alpha = c(0.2, 0.05)) # find function to perform the LOD peaks find_lod_peaks <-function(scan_results, cross, threshold=4, drop=1.5){ # can this take pmap??? which map should we use??? # TODO add more ags print("Finding the lod peaks with thresholds n and drop n\n") return (find_peaks(scan_results, cross$gmap, threshold= threshold, drop=drop)) } # add the number of cores lod_peaks <- find_lod_peaks(results, dataset) print(load_peaks) # how can we perform qtl effect computations ??? with input from user # what data should we return to the user # improve on this script