library(ctl) library(rjson) options(stringsAsFactors = FALSE); # The genotypes.csv file containing the genotype matrix is stored individuals (rows) x genetic marker (columns): args = commandArgs(trailingOnly=TRUE) if (length(args)==0) { stop("Argument for the data file", call.=FALSE) } else { # default output file json_file_path = args[1] } # add validation for the files input <- fromJSON(file = json_file_path) genotypes <- read.csv(input$geno_file,row.names=1, header=FALSE, sep="\t") # The phenotypes.csv file containing individuals (rows) x traits (columns) measurements: traits <- read.csv(input$pheno_file,row.names=1, header=FALSE, sep="\t") ctls <- CTLscan(geno,traits,strategy=input$strategy, nperm=input$nperms,parametric =input$parametric, nthreads=6,verbose=TRUE) # same function used in a different script:refactor genImageRandStr <- function(prefix){ randStr <- paste(prefix,stri_rand_strings(1, 9, pattern = "[A-Za-z0-9]"),sep="_") return(paste(randStr,".png",sep="")) } #output matrix significant CTL interactions with 4 columns: trait, marker, trait, lod sign <- CTLsignificant(ctls,significance = input$significance) # Create the lineplot imageLoc = file.path(imgDir,genImageRandStr("CTLline")) png(imageLoc,width=1000,height=600,type='cairo-png') lineplot(res, significance=input$significance) json_data <- list(significance=signs, images=lists("image_1"=imageLoc), network_figure_location="/location")