""" # Copyright (C) University of Tennessee Health Science Center, Memphis, TN. # # This program is free software: you can redistribute it and/or modify it # under the terms of the GNU Affero General Public License # as published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU Affero General Public License for more details. # # This program is available from Source Forge: at GeneNetwork Project # (sourceforge.net/projects/genenetwork/). # # Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) # at rwilliams@uthsc.edu and xzhou15@uthsc.edu # # # # This module is used by GeneNetwork project (www.genenetwork.org) # # Created by GeneNetwork Core Team 2010/08/10 # # Last updated by NL 2011/03/23 """ import rpy2.robjects from gn3.base.mrna_assay_tissue_data import MrnaAssayTissueData ##################################################################################### # Input: primaryValue(list): one list of expression values of one probeSet, # targetValue(list): one list of expression values of one probeSet, # method(string): indicate correlation method ('pearson' or 'spearman') # Output: corr_result(list): first item is Correlation Value, second item is tissue number, # third item is PValue # Function: get correlation value,Tissue quantity ,p value result by using R; # Note : This function is special case since both primaryValue and targetValue are from # the same dataset. So the length of these two parameters is the same. They are pairs. # Also, in the datatable TissueProbeSetData, all Tissue values are loaded based on # the same tissue order ##################################################################################### def cal_zero_order_corr_for_tiss(primaryValue=[], targetValue=[], method='pearson'): """refer above for info on the function""" # pylint: disable = E, W, R, C #nb disabled pylint until tests are written for this function R_primary = rpy2.robjects.FloatVector(list(range(len(primaryValue)))) N = len(primaryValue) for i in range(len(primaryValue)): R_primary[i] = primaryValue[i] R_target = rpy2.robjects.FloatVector(list(range(len(targetValue)))) for i in range(len(targetValue)): R_target[i] = targetValue[i] R_corr_test = rpy2.robjects.r['cor.test'] if method == 'spearman': R_result = R_corr_test(R_primary, R_target, method='spearman') else: R_result = R_corr_test(R_primary, R_target) corr_result = [] corr_result.append(R_result[3][0]) corr_result.append(N) corr_result.append(R_result[2][0]) return corr_result #################################################### #################################################### # input: cursor, symbolList (list), dataIdDict(Dict): key is symbol # output: SymbolValuePairDict(dictionary):one dictionary of Symbol and Value Pair. # key is symbol, value is one list of expression values of one probeSet. # function: wrapper function for getSymbolValuePairDict function # build gene symbol list if necessary, cut it into small lists if necessary, # then call getSymbolValuePairDict function and merge the results. ################################################### ##################################################### def get_trait_symbol_and_tissue_values(symbol_list=None): """function to get trait symbol and tissues values refer above""" tissue_data = MrnaAssayTissueData(gene_symbols=symbol_list) if len(tissue_data.gene_symbols) >= 1: return tissue_data.get_symbol_values_pairs() return None