from functools import partial class LengthError(BaseException): pass class MirrorError(BaseException): pass def is_list_or_tuple(item): return type(item) in [list, tuple] def raise_valueerror_if_data_is_not_lists_or_tuples(lists): """Check that `lists` is a list of lists: If not, raise an exception.""" if (not is_list_or_tuple(lists)) or (not all(map(is_list_or_tuple, lists))): raise ValueError("Expected list or tuple") def raise_valueerror_if_lists_empty(lists): """Check that the list and its direct children are not empty.""" def empty(lst): return len(lst) == 0 if (empty(lists)) or not all(map(lambda x: not empty(x), lists)): raise ValueError("List/Tuple should NOT be empty!") def raise_lengtherror_if_child_lists_are_not_same_as_parent(lists): def len_is_same_as_parent(lst): return len(lst) == len(lists) if not all(map(len_is_same_as_parent, lists)): raise LengthError("All children lists should be same length as the parent.") def raise_valueerror_if_child_list_distance_from_itself_is_not_zero(lists): def get_child_distance(child): idx = lists.index(child) return lists[idx][idx] def distance_is_zero(dist): return dist == 0 children_distances = map(get_child_distance, lists) if not all(map(distance_is_zero, children_distances)): raise ValueError("Distance of each child list/tuple from itself should be zero!") def raise_mirrorerror_of_distances_one_way_are_not_same_other_way(lists): """Check that the distance from A to B, is the same as the distance from B to A. If the two distances are different, throw an exception.""" for i in range(len(lists)): for j in range(len(lists)): if lists[i][j] != lists[j][i]: raise MirrorError( ("Distance from one child({}) to the other ({}) " "should be the same in both directions.").format( lists[i][j], lists[j][i])) def raise_valueerror_on_negative_distances(lists): """Check that distances between 'somethings' are all positive, otherwise, raise an exception.""" def zero_or_positive(val): return val >= 0; # flatten lists flattened = [distance for child in lists for distance in child] if not all(map(zero_or_positive, flattened)): raise ValueError("Distances should be positive.") def nearest(lists, i, j): """Computes some form of distance. This is 'copied' over from genenetwork1, from https://github.com/genenetwork/genenetwork1/blob/master/web/webqtl/heatmap/slink.py#L42-L64. This description should be updated once the form/type of 'distance' identified.""" #### Guard Functions: Should we do this a different way? #### raise_valueerror_if_data_is_not_lists_or_tuples(lists) raise_valueerror_if_lists_empty(lists) raise_lengtherror_if_child_lists_are_not_same_as_parent(lists) raise_valueerror_if_child_list_distance_from_itself_is_not_zero(lists) raise_mirrorerror_of_distances_one_way_are_not_same_other_way(lists) raise_valueerror_on_negative_distances(lists) #### END: Guard Functions #### if type(i) == int and type(j) == int: # From member i to member j return lists[i][j] elif type(i) == int and is_list_or_tuple(j): return min(map(lambda j_new: nearest(lists, i, j_new), j)) elif type(j) == int and is_list_or_tuple(i): return min(map(lambda i_new: nearest(lists, i_new, j), i)) elif is_list_or_tuple(i) and is_list_or_tuple(j): partial_i = map(lambda x:partial(nearest, lists, x), i[:-1]) ns = list(map(lambda f, x: f(x), partial_i, j[:1])) return min(ns) else: raise ValueError("member values (i or j) should be lists/tuples of integers or integers")