"""Procedures related rqtl computations""" import os from typing import Dict, List, Union import numpy as np from flask import current_app from gn3.commands import compose_rqtl_cmd from gn3.computations.gemma import generate_hash_of_string from gn3.fs_helpers import get_hash_of_files def generate_rqtl_cmd(rqtl_wrapper_cmd: str, rqtl_wrapper_kwargs: Dict, rqtl_wrapper_bool_kwargs: list) -> Dict: """Given the base rqtl_wrapper command and dict of keyword arguments, return the full rqtl_wrapper command and an output filename generated from a hash of the genotype and phenotype files """ # Generate a hash from contents of the genotype and phenotype files _hash = get_hash_of_files( [v for k, v in rqtl_wrapper_kwargs.items() if k in ["g", "p"]]) # Append to hash a hash of keyword arguments _hash += generate_hash_of_string( ",".join([f"{k}:{v}" for k, v in rqtl_wrapper_kwargs.items() if k not in ["g", "p"]])) # Append to hash a hash of boolean keyword arguments _hash += generate_hash_of_string( ",".join(rqtl_wrapper_bool_kwargs)) # Temporarily substitute forward-slashes in hash with underscores _hash = _hash.replace("/", "_") _output_filename = f"{_hash}-output.csv" rqtl_wrapper_kwargs["filename"] = _output_filename return { "output_file": _output_filename, "rqtl_cmd": compose_rqtl_cmd(rqtl_wrapper_cmd=rqtl_wrapper_cmd, rqtl_wrapper_kwargs=rqtl_wrapper_kwargs, rqtl_wrapper_bool_kwargs=rqtl_wrapper_bool_kwargs) } def process_rqtl_mapping(file_name: str) -> List: """Given an output file name, read in R/qtl results and return a List of marker objects """ marker_obs = [] # Later I should probably redo this using csv.read to avoid the # awkwardness with removing quotes with [1:-1] with open(os.path.join(current_app.config.get("TMPDIR", "/tmp"), "output", file_name), "r") as the_file: for line in the_file: line_items = line.split(",") if line_items[1][1:-1] == "chr" or not line_items: # Skip header line continue # Convert chr to int if possible the_chr: Union[int, str] try: the_chr = int(line_items[1][1:-1]) except ValueError: the_chr = line_items[1][1:-1] this_marker = { "name": line_items[0][1:-1], "chr": the_chr, "cM": float(line_items[2]), "Mb": float(line_items[2]), "lod_score": float(line_items[3]) } marker_obs.append(this_marker) return marker_obs def process_rqtl_pairscan(file_name: str) -> List: """Given an output file name, read in R/qtl pair-scan results and return a List of Lists representing the matrix of results """ results = [] with open(os.path.join(current_app.config.get("TMPDIR", "/tmp"), "output", file_name), "r") as the_file: for i, line in enumerate(the_file): if i == 0: # Skip first line continue line_items = line.split(",") results.append(line_items[1:]) # Append all but first item in line return results def process_perm_output(file_name: str): """Given base filename, read in R/qtl permutation output and calculate suggestive and significant thresholds """ perm_results = [] with open(os.path.join(current_app.config.get("TMPDIR", "/tmp"), "output", "PERM_" + file_name), "r") as the_file: for i, line in enumerate(the_file): if i == 0: # Skip header line continue line_items = line.split(",") perm_results.append(float(line_items[1])) suggestive = np.percentile(np.array(perm_results), 67) significant = np.percentile(np.array(perm_results), 95) return perm_results, suggestive, significant