"""Search using Xapian index.""" from collections import namedtuple from decimal import Decimal import gzip import json from functools import partial, reduce from pathlib import Path from typing import Callable import urllib.parse from flask import abort, Blueprint, current_app, jsonify, request from pymonad.maybe import Just, Maybe, Nothing from pymonad.tools import curry import xapian from gn3.monads import MonadicDict from gn3.db_utils import xapian_database search = Blueprint("search", __name__) ChromosomalPosition = namedtuple("ChromosomalPosition", "chromosome position") ChromosomalInterval = namedtuple("ChromosomalInterval", "chromosome start end") IntervalLiftoverFunction = Callable[[ChromosomalInterval], Maybe[ChromosomalInterval]] FieldProcessorFunction = Callable[[str], xapian.Query] def interval_start(interval: ChromosomalInterval) -> Maybe[ChromosomalPosition]: """Return start of a ChromosomalInterval as a ChromosomalPosition.""" return interval.start.map(lambda start: ChromosomalPosition(interval.chromosome, start)) def interval_end(interval: ChromosomalInterval) -> Maybe[ChromosomalPosition]: """Return end of a ChromosomalInterval as a ChromosomalPosition.""" return interval.end.map(lambda end: ChromosomalPosition(interval.chromosome, end)) def combine_queries(operator: int, *queries: xapian.Query) -> xapian.Query: """Combine xapian queries using operator.""" return reduce(partial(xapian.Query, operator), queries) class FieldProcessor(xapian.FieldProcessor): """ Field processor for use in a xapian query parser. This class allows us to create any field processor without creating a separate class for each. To create a field processor, you only have to pass FieldProcessor a function. This function may be a closure. All additional state required by the field processor is contained in the lexical environment of the closure. """ def __init__(self, proc: FieldProcessorFunction) -> None: super().__init__() self.proc = proc def __call__(self, query: str) -> xapian.Query: return self.proc(query) def field_processor_or(*field_processors: FieldProcessorFunction) -> FieldProcessorFunction: """Combine field processors using the OR operator.""" return (lambda query: combine_queries(xapian.Query.OP_OR, *[field_processor(query) for field_processor in field_processors])) def liftover(chain_file: Path, position: ChromosomalPosition) -> Maybe[ChromosomalPosition]: """Liftover chromosomal position using chain file.""" # The chain file format is described at # https://genome.ucsc.edu/goldenPath/help/chain.html def split_chain_line(line: str) -> tuple[ChromosomalInterval, ChromosomalInterval, int, str]: (_, _, target_chromosome, _, _, target_start, target_end, query_chromosome, query_size, query_strand, query_start, query_end, _) = line.split() return (ChromosomalInterval(target_chromosome.removeprefix("chr"), int(target_start), int(target_end)), ChromosomalInterval(query_chromosome.removeprefix("chr"), int(query_start), int(query_end)), int(query_size), query_strand) with gzip.open(chain_file, "rt") as file: for line in file: if line.startswith('chain'): (target, query, query_size, query_strand) = split_chain_line(line) if (target.chromosome == position.chromosome and target.start <= position.position < target.end): transformed_position = query.start + position.position - target.start if query_strand == '-': transformed_position = query_size - 1 - transformed_position return Just(ChromosomalPosition(query.chromosome, transformed_position)) return Nothing def liftover_interval(chain_file: str, interval: ChromosomalInterval) -> ChromosomalInterval: """ Liftover interval using chain file. This function lifts over the interval by merely lifting the start and end points. This is simplistic and not strictly correct, but will do for the purposes of synteny in search. """ point_liftover = partial(liftover, chain_file) return (Maybe.apply(curry(2, lambda start, end: ChromosomalInterval(start.chromosome, Just(start.position), Just(end.position)))) .to_arguments(interval_start(interval).bind(point_liftover), interval_end(interval).bind(point_liftover)) # In '-' strands, the order of the interval may be reversed. Work # around. # KLUDGE: Inspecting the value contained in a monad is usually bad # practice. But, in this case, there doesn't seem to be a way # around. .map(lambda interval: ChromosomalInterval(interval.chromosome, Just(min(interval.start.value, interval.end.value)), Just(max(interval.start.value, interval.end.value))) if interval.start.is_just() and interval.end.is_just() else interval)) def parse_range(range_string: str) -> tuple[Maybe[str], Maybe[str]]: """Parse xapian range strings such as start..end.""" start, end = range_string.split("..") return (Nothing if start == "" else Just(start), Nothing if end == "" else Just(end)) def apply_si_suffix(location: str) -> int: """Apply SI suffixes kilo, mega, giga and convert to bases.""" suffixes = {"k": 3, "m": 6, "g": 9} if location[-1].lower() in suffixes: return int(Decimal(location[:-1])*10**suffixes[location[-1].lower()]) else: return int(location) def parse_position(spec: str) -> tuple[Maybe[int], Maybe[int]]: """Parse position specifiation converting point locations to ranges.""" # Range if ".." in spec: return tuple(limit.map(apply_si_suffix) # type: ignore for limit in parse_range(spec)) # If point location, assume +/- 50 kbases on either side. else: width = 50*10**3 point = apply_si_suffix(spec) return Just(max(0, point - width)), Just(point + width) def parse_position_field(location_slot: int, query: bytes) -> xapian.Query: """Parse position and return a xapian query.""" start, end = parse_position(query.decode("utf-8")) # TODO: Convert the xapian index to use bases instead of megabases. def to_megabases(val): return str(Decimal(val)/10**6) return (xapian.NumberRangeProcessor(location_slot) (start.maybe("", to_megabases), end.maybe("", to_megabases))) # type: ignore def parse_location_field(species_query: xapian.Query, chromosome_prefix: str, location_slot: int, liftover_function: IntervalLiftoverFunction, query: bytes) -> xapian.Query: """Parse location shorthands and return a xapian query. Location shorthands compress species, chromosome and position into a single field. e.g., Hs:chr2:1M..1.2M """ def split_query(query: str) -> ChromosomalInterval: """Split query into chromosome and location tuple.""" chromosome, position_spec = query.lower().split(":") if not chromosome.startswith("chr"): raise ValueError return ChromosomalInterval(chromosome.removeprefix("chr"), *parse_position(position_spec)) def make_query(interval: ChromosomalInterval) -> xapian.Query: # TODO: Convert the xapian index to use bases instead of megabases. def to_megabases(val): return str(Decimal(val)/10**6) return combine_queries(xapian.Query.OP_AND, species_query, xapian.Query(chromosome_prefix + interval.chromosome), xapian.NumberRangeProcessor(location_slot) (interval.start.maybe("", to_megabases), interval.end.maybe("", to_megabases))) try: interval = split_query(query.decode("utf-8")) except ValueError: return xapian.Query(xapian.Query.OP_INVALID) return (liftover_function(interval) .maybe(xapian.Query.MatchNothing, make_query)) # pylint: disable=too-many-locals def parse_query(synteny_files_directory: Path, query: str): """Parse search query using GeneNetwork specific field processors.""" queryparser = xapian.QueryParser() queryparser.set_stemmer(xapian.Stem("en")) queryparser.set_stemming_strategy(queryparser.STEM_SOME) species_prefix = "XS" chromosome_prefix = "XC" queryparser.add_boolean_prefix("author", "A") queryparser.add_boolean_prefix("species", species_prefix) queryparser.add_boolean_prefix("group", "XG") queryparser.add_boolean_prefix("tissue", "XI") queryparser.add_boolean_prefix("dataset", "XDS") queryparser.add_boolean_prefix("symbol", "XY") queryparser.add_boolean_prefix("chr", chromosome_prefix) queryparser.add_boolean_prefix("peakchr", "XPC") queryparser.add_prefix("description", "XD") queryparser.add_prefix("rif", "XRF") range_prefixes = ["mean", "peak", "position", "peakmb", "additive", "year"] for i, prefix in enumerate(range_prefixes): # Treat position specially since it needs its own field processor. if prefix == "position": position_field_processor = FieldProcessor(partial(parse_position_field, i)) queryparser.add_boolean_prefix(prefix, position_field_processor) # Alias the position prefix with pos. queryparser.add_boolean_prefix("pos", position_field_processor) else: queryparser.add_rangeprocessor(xapian.NumberRangeProcessor(i, prefix + ":")) # Add field processors for synteny triplets. species_shorthands = {"Hs": "human", "Mm": "mouse"} for shorthand, species in species_shorthands.items(): field_processors = [partial(parse_location_field, xapian.Query(species_prefix + species), chromosome_prefix, range_prefixes.index("position"), Just)] # With synteny search, we search for the same gene sequences # across different species. But, the same gene sequences may be # present in very different chromosomal positions in different # species. So, we first liftover. # TODO: Implement liftover and synteny search for species other than # human. if shorthand == "Hs": chain_files = {"mouse": "hg19ToMm10-chains.over.chain.gz"} for lifted_species, chain_file in chain_files.items(): field_processors.append( partial(parse_location_field, xapian.Query(species_prefix + lifted_species), chromosome_prefix, range_prefixes.index("position"), partial(liftover_interval, synteny_files_directory / chain_file))) queryparser.add_boolean_prefix( shorthand, FieldProcessor(field_processor_or(*field_processors))) return queryparser.parse_query(query) @search.route("/") def search_results(): """Search Xapian index and return a list of results.""" args = request.args search_type = args.get("type", default="gene") querystring = args.get("query", default="") page = args.get("page", default=1, type=int) if page < 1: abort(404, description="Requested page does not exist") results_per_page = args.get("per_page", default=100, type=int) maximum_results_per_page = 50000 if results_per_page > maximum_results_per_page: abort(400, description="Requested too many search results") query = parse_query(Path(current_app.config["DATA_DIR"]) / "synteny", querystring) traits = [] # pylint: disable=invalid-name with xapian_database(current_app.config["XAPIAN_DB_PATH"]) as db: enquire = xapian.Enquire(db) # Filter documents by type. enquire.set_query(xapian.Query(xapian.Query.OP_FILTER, query, xapian.Query(f"XT{search_type}"))) for xapian_match in enquire.get_mset((page-1)*results_per_page, results_per_page): trait = MonadicDict(json.loads(xapian_match.document.get_data())) # Add PubMed link to phenotype search results. if search_type == "phenotype": trait["pubmed_link"] = trait["pubmed_id"].map( lambda pubmed_id: "http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?" + urllib.parse.urlencode({"cmd": "Retrieve", "db": "PubMed", "list_uids": pubmed_id, "dopt": "Abstract"})) traits.append(trait.data) return jsonify(traits)