"""Endpoints for running the gemma cmd""" import os import redis from flask import Blueprint from flask import current_app from flask import jsonify from flask import request from gn3.commands import queue_cmd from gn3.commands import run_cmd from gn3.computations.gemma import generate_hash_of_string from gn3.computations.gemma import generate_pheno_txt_file from gn3.computations.gemma import generate_gemma_computation_cmd gemma = Blueprint("gemma", __name__) @gemma.route("/version") def get_version(): """Display the installed version of gemma-wrapper""" gemma_cmd = current_app.config['APP_DEFAULTS'].get('GEMMA_WRAPPER_CMD') return jsonify( run_cmd(f"{gemma_cmd} -v | head -n 1")) # This is basically extracted from genenetwork2 # wqflask/wqflask/marker_regression/gemma_ampping.py @gemma.route("/k-gwa-computation", methods=["POST"]) def run_gemma(): """Generates a command for generating K-Values and then later, generate a GWA command that contains markers. These commands are queued; and the expected file output is returned. """ data = request.get_json() app_defaults = current_app.config.get('APP_DEFAULTS') __hash = generate_hash_of_string("".join(data.get("values"))) gemma_kwargs = { "geno_filename": os.path.join(app_defaults.get("GENODIR"), "bimbam", f"{data.get('genofile_name')}.txt"), "trait_filename": generate_pheno_txt_file( tmpdir=app_defaults.get("TMPDIR"), values=data.get("values"), # Generate this file on the fly! trait_filename=(f"{data.get('dataset_groupname')}_" f"{data.get('trait_name')}_" f"{__hash}.txt"))} k_computation_cmd = generate_gemma_computation_cmd( gemma_cmd=app_defaults.get("GEMMA_WRAPPER_CMD"), gemma_kwargs=gemma_kwargs, output_file=(f"{app_defaults.get('TMPDIR')}/gn2/" f"{data.get('dataset_name')}_K_" f"{__hash}.json")) if data.get("covariates"): gemma_kwargs["c"] = os.path.join(app_defaults.get("GENODIR"), "bimbam", data.get("covariates")) gemma_kwargs["lmm"] = data.get("lmm", 9) gwa_cmd = generate_gemma_computation_cmd( gemma_cmd=app_defaults.get("GEMMA_WRAPPER_CMD"), gemma_kwargs=gemma_kwargs, output_file=(f"{data.get('dataset_name')}_GWA_" f"{__hash}.txt")) if not all([k_computation_cmd, gwa_cmd]): return jsonify(status=128, error="Unable to generate cmds for computation!"), 500 return jsonify( unique_id=queue_cmd(conn=redis.Redis(), email=data.get("email"), job_queue=app_defaults.get("REDIS_JOB_QUEUE"), cmd=f"{k_computation_cmd} && {gwa_cmd}"), status="queued", output_file=(f"{data.get('dataset_name')}_GWA_" f"{__hash}.txt"))