"""Endpoints for running correlations""" import json from functools import reduce from flask import jsonify from flask import Blueprint from flask import request from flask import make_response from gn3.computations.correlations import compute_all_sample_correlation from gn3.computations.correlations import compute_all_lit_correlation from gn3.computations.correlations import compute_tissue_correlation from gn3.computations.correlations import map_shared_keys_to_values from gn3.db_utils import database_connector from gn3.computations.partial_correlations import partial_correlations_entry correlation = Blueprint("correlation", __name__) @correlation.route("/sample_x/", methods=["POST"]) def compute_sample_integration(corr_method="pearson"): """temporary api to help integrate genenetwork2 to genenetwork3 """ correlation_input = request.get_json() target_samplelist = correlation_input.get("target_samplelist") target_data_values = correlation_input.get("target_dataset") this_trait_data = correlation_input.get("trait_data") results = map_shared_keys_to_values(target_samplelist, target_data_values) correlation_results = compute_all_sample_correlation(corr_method=corr_method, this_trait=this_trait_data, target_dataset=results) return jsonify(correlation_results) @correlation.route("/sample_r/", methods=["POST"]) def compute_sample_r(corr_method="pearson"): """Correlation endpoint for computing sample r correlations\ api expects the trait data with has the trait and also the\ target_dataset data """ correlation_input = request.get_json() # xtodo move code below to compute_all_sampl correlation this_trait_data = correlation_input.get("this_trait") target_dataset_data = correlation_input.get("target_dataset") correlation_results = compute_all_sample_correlation(corr_method=corr_method, this_trait=this_trait_data, target_dataset=target_dataset_data) return jsonify({ "corr_results": correlation_results }) @correlation.route("/lit_corr//", methods=["POST"]) def compute_lit_corr(species=None, gene_id=None): """Api endpoint for doing lit correlation.results for lit correlation\ are fetched from the database this is the only case where the db\ might be needed for actual computing of the correlation results """ conn, _cursor_object = database_connector() target_traits_gene_ids = request.get_json() target_trait_gene_list = list(target_traits_gene_ids.items()) lit_corr_results = compute_all_lit_correlation( conn=conn, trait_lists=target_trait_gene_list, species=species, gene_id=gene_id) conn.close() return jsonify(lit_corr_results) @correlation.route("/tissue_corr/", methods=["POST"]) def compute_tissue_corr(corr_method="pearson"): """Api endpoint fr doing tissue correlation""" tissue_input_data = request.get_json() primary_tissue_dict = tissue_input_data["primary_tissue"] target_tissues_dict = tissue_input_data["target_tissues_dict"] results = compute_tissue_correlation(primary_tissue_dict=primary_tissue_dict, target_tissues_data=target_tissues_dict, corr_method=corr_method) return jsonify(results) @correlation.route("/partial", methods=["POST"]) def partial_correlation(): """API endpoint for partial correlations.""" def trait_fullname(trait): return f"{trait['dataset']}::{trait['name']}" def __field_errors__(args): def __check__(acc, field): if args.get(field) is None: return acc + (f"Field '{field}' missing",) return acc return __check__ def __errors__(request_data, fields): errors = tuple() if request_data is None: return ("No request data",) return reduce(__field_errors__(args), fields, errors) class OutputEncoder(json.JSONEncoder): """ Class to encode output into JSON, for objects which the default json.JSONEncoder class does not have default encoding for. """ def default(self, o): if isinstance(o, bytes): return str(o, encoding="utf-8") return json.JSONEncoder.default(self, o) def __build_response__(data): status_codes = {"error": 400, "not-found": 404, "success": 200} response = make_response( json.dumps(data, cls=OutputEncoder), status_codes[data["status"]]) response.headers["Content-Type"] = "application/json" return response args = request.get_json() request_errors = __errors__( args, ("primary_trait", "control_traits", "target_db", "method")) if request_errors: return __build_response__({ "status": "error", "messages": request_errors, "error_type": "Client Error"}) conn, _cursor_object = database_connector() corr_results = partial_correlations_entry( conn, trait_fullname(args["primary_trait"]), tuple(trait_fullname(trait) for trait in args["control_traits"]), args["method"], int(args.get("criteria", 500)), args["target_db"]) return __build_response__(corr_results)