From 6b147173d514093ec4e461f5843170c968290e5e Mon Sep 17 00:00:00 2001 From: Frederick Muriuki Muriithi Date: Mon, 29 Nov 2021 11:52:26 +0300 Subject: Provide entry-point function for the partial correlations Issue: https://github.com/genenetwork/gn-gemtext-threads/blob/main/topics/gn1-migration-to-gn2/partial-correlations.gmi * Provide the entry-point function to the partial correlation feature. This is the function that ochestrates the fetching of the data, and processing it for output by the API endpoint (to be implemented). --- gn3/computations/partial_correlations.py | 357 +++++++++++++++++++++++++++++-- gn3/db/correlations.py | 11 +- 2 files changed, 350 insertions(+), 18 deletions(-) diff --git a/gn3/computations/partial_correlations.py b/gn3/computations/partial_correlations.py index f43c4d4..869bee4 100644 --- a/gn3/computations/partial_correlations.py +++ b/gn3/computations/partial_correlations.py @@ -6,15 +6,20 @@ GeneNetwork1. """ import math -from functools import reduce +from functools import reduce, partial from typing import Any, Tuple, Union, Sequence -from scipy.stats import pearsonr, spearmanr import pandas import pingouin +from scipy.stats import pearsonr, spearmanr from gn3.settings import TEXTDIR +from gn3.function_helpers import compose from gn3.data_helpers import parse_csv_line +from gn3.db.traits import export_informative +from gn3.db.traits import retrieve_trait_info, retrieve_trait_data +from gn3.db.species import species_name, translate_to_mouse_gene_id +from gn3.db.correlations import get_filename, fetch_all_database_data def control_samples(controls: Sequence[dict], sampleslist: Sequence[str]): """ @@ -112,7 +117,7 @@ def find_identical_traits( return acc + ident[1] def __dictify_controls__(acc, control_item): - ckey = "{:.3f}".format(control_item[0]) + ckey = tuple("{:.3f}".format(item) for item in control_item[0]) return {**acc, ckey: acc.get(ckey, tuple()) + (control_item[1],)} return (reduce(## for identical control traits @@ -212,7 +217,7 @@ def partial_correlations_fast(# pylint: disable=[R0913, R0914] function in GeneNetwork1. """ assert method in ("spearman", "pearson") - with open(f"{TEXTDIR}/{database_filename}", "r") as dataset_file: + with open(database_filename, "r") as dataset_file: dataset = tuple(dataset_file.readlines()) good_dataset_samples = good_dataset_samples_indexes( @@ -286,32 +291,37 @@ def compute_partial( """ # replace the R code with `pingouin.partial_corr` def __compute_trait_info__(target): + targ_vals = target[0] + targ_name = target[1] primary = [ - prim for targ, prim in zip(target, primary_vals) + prim for targ, prim in zip(targ_vals, primary_vals) if targ is not None] + datafrm = build_data_frame( primary, - [targ for targ in target if targ is not None], - [cont for i, cont in enumerate(control_vals) - if target[i] is not None]) + tuple(targ for targ in targ_vals if targ is not None), + tuple(cont for i, cont in enumerate(control_vals) + if target[i] is not None)) covariates = "z" if datafrm.shape[1] == 3 else [ col for col in datafrm.columns if col not in ("x", "y")] ppc = pingouin.partial_corr( - data=datafrm, x="x", y="y", covar=covariates, method=method) - pc_coeff = ppc["r"] + data=datafrm, x="x", y="y", covar=covariates, method=( + "pearson" if "pearson" in method.lower() else "spearman")) + pc_coeff = ppc["r"][0] zero_order_corr = pingouin.corr( - datafrm["x"], datafrm["y"], method=method) + datafrm["x"], datafrm["y"], method=( + "pearson" if "pearson" in method.lower() else "spearman")) if math.isnan(pc_coeff): return ( - target[1], len(primary), pc_coeff, 1, zero_order_corr["r"], - zero_order_corr["p-val"]) + targ_name, len(primary), pc_coeff, 1, zero_order_corr["r"][0], + zero_order_corr["p-val"][0]) return ( - target[1], len(primary), pc_coeff, - (ppc["p-val"] if not math.isnan(ppc["p-val"]) else ( + targ_name, len(primary), pc_coeff, + (ppc["p-val"][0] if not math.isnan(ppc["p-val"][0]) else ( 0 if (abs(pc_coeff - 1) < 0.0000001) else 1)), - zero_order_corr["r"], zero_order_corr["p-val"]) + zero_order_corr["r"][0], zero_order_corr["p-val"][0]) return tuple( __compute_trait_info__(target) @@ -360,3 +370,318 @@ def partial_correlations_normal(# pylint: disable=R0913 for idx, item in enumerate(all_correlations))) return len(trait_database), all_correlations + +def partial_corrs( + conn, samples , primary_vals, control_vals, return_number, species, input_trait_geneid, + input_trait_symbol, tissue_probeset_freeze_id, method, dataset, database_filename): + """ + Compute the partial correlations, selecting the fast or normal method + depending on the existence of the database text file. + + This is a partial migration of the + `web.webqtl.correlation.PartialCorrDBPage.__init__` function in + GeneNetwork1. + """ + if database_filename: + return partial_correlations_fast( + samples, primary_vals, control_vals, database_filename, + ( + fetch_literature_correlations( + species, input_trait_geneid, dataset, return_number, conn) + if "literature" in method.lower() else + fetch_tissue_correlations( + dataset, input_trait_symbol, tissue_probeset_freeze_id, + method, return_number, conn)), + method, + ("literature" if method.lower() == "sgo literature correlation" + else ("tissue" if "tissue" in method.lower() else "genetic"))) + + trait_database, data_start_pos = fetch_all_database_data( + conn, species, input_trait_geneid, input_trait_symbol, samples, dataset, + method, return_number, tissue_probeset_freeze_id) + return partial_correlations_normal( + primary_vals, control_vals, input_trait_geneid, trait_database, + data_start_pos, dataset, method) + +def literature_correlation_by_list( + conn: Any, input_trait_mouse_geneid: int, species: str, + trait_list: Tuple[dict]) -> Tuple[dict]: + """ + This is a migration of the + `web.webqtl.correlation.CorrelationPage.getLiteratureCorrelationByList` + function in GeneNetwork1. + """ + if any((lambda t: ( + bool(t.get("tissue_corr")) and + bool(t.get("tissue_p_value"))))(trait) + for trait in trait_list): + temp_table_name = f"LITERATURE{random_string(8)}" + q1 = ( + f"CREATE TEMPORARY TABLE {temporary_table_name} " + "(GeneId1 INT(12) UNSIGNED, GeneId2 INT(12) UNSIGNED PRIMARY KEY, " + "value DOUBLE)") + q2 = ( + f"INSERT INTO {temporary_table_name}(GeneId1, GeneId2, value) " + "SELECT GeneId1, GeneId2, value FROM LCorrRamin3 " + "WHERE GeneId1=%(geneid)s") + q3 = ( + "INSERT INTO {temporary_table_name}(GeneId1, GeneId2, value) " + "SELECT GeneId2, GeneId1, value FROM LCorrRamin3 " + "WHERE GeneId2=%s AND GeneId1 != %(geneid)s") + + def __set_mouse_geneid__(trait): + if trait.get("geneid"): + return { + **trait, + "mouse_geneid": translate_to_mouse_gene_id(trait.get("geneid")) + } + return {**trait, "mouse_geneid": 0} + + def __retrieve_lcorr__(cursor, geneids): + cursor.execute( + f"SELECT GeneId2, value FROM {temporary_table_name} " + "WHERE GeneId2 IN %(geneids)s", + geneids = geneids) + return {geneid: value for geneid, value in cursor.fetchall()} + + with conn.cursor() as cursor: + cursor.execute(q1) + cursor.execute(q2) + cursor.execute(q3) + + traits = tuple(__set_mouse_geneid__(trait) for trait in trait_list) + lcorrs = __retrieve_lcorr__( + cursor, ( + trait["mouse_geneid"] for trait in traits + if (trait["mouse_geneid"] != 0 and + trait["mouse_geneid"].find(";") < 0))) + return tuple( + {**trait, "l_corr": lcorrs.get(trait["mouse_geneid"], None)} + for trait in traits) + + return trait_list + return trait_list + +def tissue_correlation_by_list( + conn: Any, primary_trait_symbol: str, tissue_probeset_freeze_id: int, + method: str, trait_list: Tuple[dict]) -> Tuple[dict]: + """ + This is a migration of the + `web.webqtl.correlation.CorrelationPage.getTissueCorrelationByList` + function in GeneNetwork1. + """ + def __add_tissue_corr__(trait, primary_trait_value, trait_value): + result = pingouin.corr( + primary_trait_values, target_trait_values, + method=("spearman" if "spearman" in method.lower() else "pearson")) + return { + **trait, + "tissue_corr": result["r"], + "tissue_p_value": result["p-val"] + } + + if any((lambda t: bool(t.get("l_corr")))(trait) for trait in trait_list): + prim_trait_symbol_value_dict = fetch_gene_symbol_tissue_value_dict_for_trait( + (primary_trait_symbol,), tissue_probeset_freeze_id, conn) + if primary_trait_symbol.lower() in prim_trait_symbol_value_dict: + primary_trait_value = prim_trait_symbol_value_dict[prim_trait_symbol.lower()] + gene_symbol_list = tuple( + trait for trait in trait_list if "symbol" in trait.keys()) + symbol_value_dict = fetch_gene_symbol_tissue_value_dict_for_trait( + gene_symbol_list, tissue_probeset_freeze_id, conn) + return tuple( + __add_tissue_corr__( + trait, primary_trait_value, + symbol_value_dict[trait["symbol"].lower()]) + for trait in trait_list + if ("symbol" in trait and + bool(trait["symbol"]) and + trait["symbol"].lower() in symbol_value_dict)) + return tuple({ + **trait, + "tissue_corr": None, + "tissue_p_value": None + } for trait in trait_list) + return trait_list + +def partial_correlations_entry( + conn: Any, primary_trait_name: str, + control_trait_names: Tuple[str, ...], method: str, + criteria: int, group: str, target_db_name: str) -> dict: + """ + This is the 'ochestration' function for the partial-correlation feature. + + This function will dispatch the functions doing data fetches from the + database (and various other places) and feed that data to the functions + doing the conversions and computations. It will then return the results of + all of that work. + + This function is doing way too much. Look into splitting out the + functionality into smaller functions that do fewer things. + """ + threshold = 0 + corr_min_informative = 4 + + primary_trait = retrieve_trait_info(threshold, primary_trait_name, conn) + primary_trait_data = retrieve_trait_data(primary_trait, conn) + primary_samples, primary_values, primary_variances = export_informative( + primary_trait_data) + + cntrl_traits = tuple( + retrieve_trait_info(threshold, trait_full_name, conn) + for trait_full_name in control_trait_names) + cntrl_traits_data = tuple( + retrieve_trait_data(cntrl_trait, conn) + for cntrl_trait in cntrl_traits) + species = species_name(conn, group) + + (cntrl_samples, + cntrl_values, + cntrl_variances, + cntrl_ns) = control_samples(cntrl_traits_data, primary_samples) + + common_primary_control_samples = primary_samples + fixed_primary_vals = primary_values + fixed_control_vals = cntrl_values + if not all(cnt_smp == primary_samples for cnt_smp in cntrl_samples): + (common_primary_control_samples, + fixed_primary_vals, + fixed_control_vals, + primary_variances, + cntrl_variances) = fix_samples(primary_trait, cntrl_traits) + + if len(common_primary_control_samples) < corr_min_informative: + return { + "status": "error", + "message": ( + f"Fewer than {corr_min_informative} samples data entered for " + f"{group} dataset. No calculation of correlation has been " + "attempted."), + "error_type": "Inadequate Samples"} + + identical_traits_names = find_identical_traits( + primary_trait_name, primary_values, control_trait_names, cntrl_values) + if len(identical_traits_names) > 0: + return { + "status": "error", + "message": ( + f"{identical_traits_names[0]} and {identical_traits_names[1]} " + "have the same values for the {len(fixed_primary_vals)} " + "samples that will be used to compute the partial correlation " + "(common for all primary and control traits). In such cases, " + "partial correlation cannot be computed. Please re-select your " + "traits."), + "error_type": "Identical Traits"} + + input_trait_geneid = primary_trait.get("geneid") + input_trait_symbol = primary_trait.get("symbol") + input_trait_mouse_geneid = translate_to_mouse_gene_id( + species, input_trait_geneid, conn) + + tissue_probeset_freeze_id = 1 + db_type = primary_trait["db"]["dataset_type"] + db_name = primary_trait["db"]["dataset_name"] + + if db_type == "ProbeSet" and method.lower() in ( + "sgo literature correlation", + "tissue correlation, pearson's r", + "tissue correlation, spearman's rho"): + return { + "status": "error", + "message": ( + "Wrong correlation type: It is not possible to compute the " + f"{method} between your trait and data in the {target_db_name} " + "database. Please try again after selecting another type of " + "correlation."), + "error_type": "Correlation Type"} + + if (method.lower() == "sgo literature correlation" and ( + input_trait_geneid is None or + check_for_literature_info(conn, input_trait_mouse_geneid))): + return { + "status": "error", + "message": ( + "No Literature Information: This gene does not have any " + "associated Literature Information."), + "error_type": "Literature Correlation"} + + if (method.lower() in ( + "tissue correlation, pearson's r", + "tissue correlation, spearman's rho") + and input_trait_symbol is None): + return { + "status": "error", + "message": ( + "No Tissue Correlation Information: This gene does not have " + "any associated Tissue Correlation Information."), + "error_type": "Tissue Correlation"} + + if (method.lower() in ( + "tissue correlation, pearson's r", + "tissue correlation, spearman's rho") + and check_symbol_for_tissue_correlation( + conn, tissue_probeset_freeze_id, input_trait_symbol)): + return { + "status": "error", + "message": ( + "No Tissue Correlation Information: This gene does not have " + "any associated Tissue Correlation Information."), + "error_type": "Tissue Correlation"} + + database_filename = get_filename(conn, target_db_name, TEXTDIR) + total_traits, all_correlations = partial_corrs( + conn, common_primary_control_samples, fixed_primary_vals, + fixed_control_vals, len(fixed_primary_vals), species, + input_trait_geneid, input_trait_symbol, tissue_probeset_freeze_id, + method, primary_trait["db"], database_filename) + + + def __make_sorter__(method): + def __sort_6__(x): + return x[6] + + def __sort_3__(x): + return x[3] + + if "literature" in method.lower(): + return __sort_6__ + + if "tissue" in method.lower(): + return __sort_6__ + + return __sort_3__ + + sorted_correlations = sorted( + all_correlations, key=__make_sorter__(method)) + + add_lit_corr_and_tiss_corr = compose( + partial( + literature_correlation_by_list, conn, input_trait_mouse_geneid, + species), + partial( + tissue_correlation_by_list, conn, input_trait_symbol, + tissue_probeset_freeze_id, method)) + + trait_list = add_lit_corr_and_tiss_corr(tuple( + { + **retrieve_trait_info( + threshold, + f"{primary_trait['db']['dataset_name']}::{item[0]}", + conn), + "noverlap": item[1], + "partial_corr": item[2], + "partial_corr_p_value": item[3], + "corr": item[4], + "corr_p_value": item[5], + "rank_order": (1 if "spearman" in method.lower() else 0), + **({ + "tissue_corr": item[6], + "tissue_p_value": item[7]} + if len(item) == 8 else {}), + **({"l_corr": item[6]} + if len(item) == 7 else {}) + } + for item in + sorted_correlations[:min(criteria, len(all_correlations))])) + + return trait_list diff --git a/gn3/db/correlations.py b/gn3/db/correlations.py index 401fd91..2a38bae 100644 --- a/gn3/db/correlations.py +++ b/gn3/db/correlations.py @@ -10,8 +10,6 @@ from gn3.random import random_string from gn3.data_helpers import partition_all from gn3.db.species import translate_to_mouse_gene_id -from gn3.computations.partial_correlations import correlations_of_all_tissue_traits - def get_filename(conn: Any, target_db_name: str, text_files_dir: str) -> Union[ str, bool]: """ @@ -282,6 +280,15 @@ def build_temporary_tissue_correlations_table( # We should probably pass the `correlations_of_all_tissue_traits` function # as an argument to this function and get rid of the one call immediately # following this comment. + from gn3.computations.partial_correlations import correlations_of_all_tissue_traits + # This import above is necessary within the function to avoid + # circular-imports. + # + # + # This import above is indicative of convoluted code, with the computation + # being interwoven with the data retrieval. This needs to be changed, such + # that the function being imported here is no longer necessary, or have the + # imported function passed to this function as an argument. symbol_corr_dict, symbol_p_value_dict = correlations_of_all_tissue_traits( fetch_gene_symbol_tissue_value_dict_for_trait( (trait_symbol,), probeset_freeze_id, conn), -- cgit v1.2.3