aboutsummaryrefslogtreecommitdiff
path: root/gn3/heatmaps.py
diff options
context:
space:
mode:
Diffstat (limited to 'gn3/heatmaps.py')
-rw-r--r--gn3/heatmaps.py36
1 files changed, 14 insertions, 22 deletions
diff --git a/gn3/heatmaps.py b/gn3/heatmaps.py
index bf9dfd1..91437bb 100644
--- a/gn3/heatmaps.py
+++ b/gn3/heatmaps.py
@@ -40,16 +40,15 @@ def trait_display_name(trait: Dict):
if trait["db"]["dataset_type"] == "Temp":
desc = trait["description"]
if desc.find("PCA") >= 0:
- return "%s::%s" % (
- trait["db"]["displayname"],
- desc[desc.rindex(':')+1:].strip())
- return "%s::%s" % (
- trait["db"]["displayname"],
- desc[:desc.index('entered')].strip())
- prefix = "%s::%s" % (
- trait["db"]["dataset_name"], trait["trait_name"])
+ return (
+ f'{trait["db"]["displayname"]}::'
+ f'{desc[desc.rindex(":")+1:].strip()}')
+ return (
+ f'{trait["db"]["displayname"]}::'
+ f'{desc[:desc.index("entered")].strip()}')
+ prefix = f'{trait["db"]["dataset_name"]}::{trait["trait_name"]}'
if trait["cellid"]:
- return "%s::%s" % (prefix, trait["cellid"])
+ return '{prefix}::{trait["cellid"]}'
return prefix
return trait["description"]
@@ -64,11 +63,7 @@ def cluster_traits(traits_data_list: Sequence[Dict]):
def __compute_corr(tdata_i, tdata_j):
if tdata_i[0] == tdata_j[0]:
return 0.0
- corr_vals = compute_correlation(tdata_i[1], tdata_j[1])
- corr = corr_vals[0]
- if (1 - corr) < 0:
- return 0.0
- return 1 - corr
+ return 1 - compute_correlation(tdata_i[1], tdata_j[1])[0]
def __cluster(tdata_i):
return tuple(
@@ -136,8 +131,7 @@ def build_heatmap(
traits_order = compute_traits_order(slinked)
samples_and_values = retrieve_samples_and_values(
traits_order, samples, exported_traits_data_list)
- traits_filename = "{}/traits_test_file_{}.txt".format(
- TMPDIR, random_string(10))
+ traits_filename = f"{TMPDIR}/traits_test_file_{random_string(10)}.txt"
generate_traits_file(
samples_and_values[0][1],
[t[2] for t in samples_and_values],
@@ -314,7 +308,7 @@ def clustered_heatmap(
vertical_spacing=0.010,
horizontal_spacing=0.001,
subplot_titles=["" if vertical else x_axis["label"]] + [
- "Chromosome: {}".format(chromo) if vertical else chromo
+ f"Chromosome: {chromo}" if vertical else chromo
for chromo in x_axis_data],#+ x_axis_data,
figure=ff.create_dendrogram(
np.array(clustering_data),
@@ -336,7 +330,7 @@ def clustered_heatmap(
col=(1 if vertical else (i + 2)))
axes_layouts = {
- "{axis}axis{count}".format(
+ "{axis}axis{count}".format( # pylint: disable=[C0209]
axis=("y" if vertical else "x"),
count=(i+1 if i > 0 else "")): {
"mirror": False,
@@ -345,12 +339,10 @@ def clustered_heatmap(
}
for i in range(num_plots)}
- print("vertical?: {} ==> {}".format("T" if vertical else "F", axes_layouts))
-
fig.update_layout({
"width": 800 if vertical else 4000,
"height": 4000 if vertical else 800,
- "{}axis".format("x" if vertical else "y"): {
+ "{}axis".format("x" if vertical else "y"): { # pylint: disable=[C0209]
"mirror": False,
"ticks": "",
"side": "top" if vertical else "left",
@@ -358,7 +350,7 @@ def clustered_heatmap(
"tickangle": 90 if vertical else 0,
"ticklabelposition": "outside top" if vertical else "outside left"
},
- "{}axis".format("y" if vertical else "x"): {
+ "{}axis".format("y" if vertical else "x"): { # pylint: disable=[C0209]
"mirror": False,
"showgrid": True,
"title": "Distance",