aboutsummaryrefslogtreecommitdiff
path: root/gn3/computations/partial_correlations.py
diff options
context:
space:
mode:
Diffstat (limited to 'gn3/computations/partial_correlations.py')
-rw-r--r--gn3/computations/partial_correlations.py194
1 files changed, 194 insertions, 0 deletions
diff --git a/gn3/computations/partial_correlations.py b/gn3/computations/partial_correlations.py
new file mode 100644
index 0000000..ba4de9e
--- /dev/null
+++ b/gn3/computations/partial_correlations.py
@@ -0,0 +1,194 @@
+"""
+This module deals with partial correlations.
+
+It is an attempt to migrate over the partial correlations feature from
+GeneNetwork1.
+"""
+
+from functools import reduce
+from typing import Any, Tuple, Sequence
+from scipy.stats import pearsonr, spearmanr
+
+def control_samples(controls: Sequence[dict], sampleslist: Sequence[str]):
+ """
+ Fetches data for the control traits.
+
+ This migrates `web/webqtl/correlation/correlationFunction.controlStrain` in
+ GN1, with a few modifications to the arguments passed in.
+
+ PARAMETERS:
+ controls: A map of sample names to trait data. Equivalent to the `cvals`
+ value in the corresponding source function in GN1.
+ sampleslist: A list of samples. Equivalent to `strainlst` in the
+ corresponding source function in GN1
+ """
+ def __process_control__(trait_data):
+ def __process_sample__(acc, sample):
+ if sample in trait_data["data"].keys():
+ sample_item = trait_data["data"][sample]
+ val = sample_item["value"]
+ if val is not None:
+ return (
+ acc[0] + (sample,),
+ acc[1] + (val,),
+ acc[2] + (sample_item["variance"],))
+ return acc
+ return reduce(
+ __process_sample__, sampleslist, (tuple(), tuple(), tuple()))
+
+ return reduce(
+ lambda acc, item: (
+ acc[0] + (item[0],),
+ acc[1] + (item[1],),
+ acc[2] + (item[2],),
+ acc[3] + (len(item[0]),),
+ ),
+ [__process_control__(trait_data) for trait_data in controls],
+ (tuple(), tuple(), tuple(), tuple()))
+
+def dictify_by_samples(samples_vals_vars: Sequence[Sequence]) -> Sequence[dict]:
+ """
+ Build a sequence of dictionaries from a sequence of separate sequences of
+ samples, values and variances.
+
+ This is a partial migration of
+ `web.webqtl.correlation.correlationFunction.fixStrains` function in GN1.
+ This implementation extracts code that will find common use, and that will
+ find use in more than one place.
+ """
+ return tuple(
+ {
+ sample: {"sample_name": sample, "value": val, "variance": var}
+ for sample, val, var in zip(*trait_line)
+ } for trait_line in zip(*(samples_vals_vars[0:3])))
+
+def fix_samples(primary_trait: dict, control_traits: Sequence[dict]) -> Sequence[Sequence[Any]]:
+ """
+ Corrects sample_names, values and variance such that they all contain only
+ those samples that are common to the reference trait and all control traits.
+
+ This is a partial migration of the
+ `web.webqtl.correlation.correlationFunction.fixStrain` function in GN1.
+ """
+ primary_samples = tuple(
+ present[0] for present in
+ ((sample, all(sample in control.keys() for control in control_traits))
+ for sample in primary_trait.keys())
+ if present[1])
+ control_vals_vars: tuple = reduce(
+ lambda acc, x: (acc[0] + (x[0],), acc[1] + (x[1],)),
+ ((item["value"], item["variance"])
+ for sublist in [tuple(control.values()) for control in control_traits]
+ for item in sublist),
+ (tuple(), tuple()))
+ return (
+ primary_samples,
+ tuple(primary_trait[sample]["value"] for sample in primary_samples),
+ control_vals_vars[0],
+ tuple(primary_trait[sample]["variance"] for sample in primary_samples),
+ control_vals_vars[1])
+
+def find_identical_traits(
+ primary_name: str, primary_value: float, control_names: Tuple[str, ...],
+ control_values: Tuple[float, ...]) -> Tuple[str, ...]:
+ """
+ Find traits that have the same value when the values are considered to
+ 3 decimal places.
+
+ This is a migration of the
+ `web.webqtl.correlation.correlationFunction.findIdenticalTraits` function in
+ GN1.
+ """
+ def __merge_identicals__(
+ acc: Tuple[str, ...],
+ ident: Tuple[str, Tuple[str, ...]]) -> Tuple[str, ...]:
+ return acc + ident[1]
+
+ def __dictify_controls__(acc, control_item):
+ ckey = "{:.3f}".format(control_item[0])
+ return {**acc, ckey: acc.get(ckey, tuple()) + (control_item[1],)}
+
+ return (reduce(## for identical control traits
+ __merge_identicals__,
+ (item for item in reduce(# type: ignore[var-annotated]
+ __dictify_controls__, zip(control_values, control_names),
+ {}).items() if len(item[1]) > 1),
+ tuple())
+ or
+ reduce(## If no identical control traits, try primary and controls
+ __merge_identicals__,
+ (item for item in reduce(# type: ignore[var-annotated]
+ __dictify_controls__,
+ zip((primary_value,) + control_values,
+ (primary_name,) + control_names), {}).items()
+ if len(item[1]) > 1),
+ tuple()))
+
+def tissue_correlation(
+ primary_trait_values: Tuple[float, ...],
+ target_trait_values: Tuple[float, ...],
+ method: str) -> Tuple[float, float]:
+ """
+ Compute the correlation between the primary trait values, and the values of
+ a single target value.
+
+ This migrates the `cal_tissue_corr` function embedded in the larger
+ `web.webqtl.correlation.correlationFunction.batchCalTissueCorr` function in
+ GeneNetwork1.
+ """
+ def spearman_corr(*args):
+ result = spearmanr(*args)
+ return (result.correlation, result.pvalue)
+
+ method_fns = {"pearson": pearsonr, "spearman": spearman_corr}
+
+ assert len(primary_trait_values) == len(target_trait_values), (
+ "The lengths of the `primary_trait_values` and `target_trait_values` "
+ "must be equal")
+ assert method in method_fns.keys(), (
+ "Method must be one of: {}".format(",".join(method_fns.keys())))
+
+ corr, pvalue = method_fns[method](primary_trait_values, target_trait_values)
+ return (round(corr, 10), round(pvalue, 10))
+
+def batch_computed_tissue_correlation(
+ primary_trait_values: Tuple[float, ...], target_traits_dict: dict,
+ method: str) -> Tuple[dict, dict]:
+ """
+ This is a migration of the
+ `web.webqtl.correlation.correlationFunction.batchCalTissueCorr` function in
+ GeneNetwork1
+ """
+ def __corr__(acc, target):
+ corr = tissue_correlation(primary_trait_values, target[1], method)
+ return ({**acc[0], target[0]: corr[0]}, {**acc[0], target[1]: corr[1]})
+ return reduce(__corr__, target_traits_dict.items(), ({}, {}))
+
+def correlations_of_all_tissue_traits(
+ primary_trait_symbol_value_dict: dict, symbol_value_dict: dict,
+ method: str) -> Tuple[dict, dict]:
+ """
+ Computes and returns the correlation of all tissue traits.
+
+ This is a migration of the
+ `web.webqtl.correlation.correlationFunction.calculateCorrOfAllTissueTrait`
+ function in GeneNetwork1.
+ """
+ primary_trait_values = tuple(primary_trait_symbol_value_dict.values())[0]
+ return batch_computed_tissue_correlation(
+ primary_trait_values, symbol_value_dict, method)
+
+def good_dataset_samples_indexes(
+ samples: Tuple[str, ...],
+ samples_from_file: Tuple[str, ...]) -> Tuple[int, ...]:
+ """
+ Return the indexes of the items in `samples_from_files` that are also found
+ in `samples`.
+
+ This is a partial migration of the
+ `web.webqtl.correlation.PartialCorrDBPage.getPartialCorrelationsFast`
+ function in GeneNetwork1.
+ """
+ return tuple(sorted(
+ samples_from_file.index(good) for good in
+ set(samples).intersection(set(samples_from_file))))