aboutsummaryrefslogtreecommitdiff
path: root/wqflask/wqflask/show_trait/SampleList.py
blob: b5110dcd71a5b601b620c8d4daefb38ef4417e04 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import re
import itertools

from wqflask.database import database_connection
from base import webqtlCaseData, webqtlConfig
from pprint import pformat as pf

from utility import Plot
from utility import Bunch
from utility.tools import get_setting

class SampleList:
    def __init__(self,
                 dataset,
                 sample_names,
                 this_trait,
                 sample_group_type="primary",
                 header="Samples"):

        self.dataset = dataset
        self.this_trait = this_trait
        self.sample_group_type = sample_group_type    # primary or other
        self.header = header

        self.sample_list = []  # The actual list
        self.sample_attribute_values = {}

        self.get_attributes()

        if self.this_trait and self.dataset:
            self.get_extra_attribute_values()

        for counter, sample_name in enumerate(sample_names, 1):
            sample_name = sample_name.replace("_2nd_", "")

            # self.this_trait will be a list if it is a Temp trait
            if isinstance(self.this_trait, list):
                sample = webqtlCaseData.webqtlCaseData(name=sample_name)
                if counter <= len(self.this_trait):
                    if isinstance(self.this_trait[counter - 1], (bytes, bytearray)):
                        if (self.this_trait[counter - 1].decode("utf-8").lower() != 'x'):
                            sample = webqtlCaseData.webqtlCaseData(
                                name=sample_name,
                                value=float(self.this_trait[counter - 1]))
                    else:
                        if (self.this_trait[counter - 1].lower() != 'x'):
                            sample = webqtlCaseData.webqtlCaseData(
                                name=sample_name,
                                value=float(self.this_trait[counter - 1]))
            else:
                # If there's no value for the sample/strain,
                # create the sample object (so samples with no value
                # are still displayed in the table)
                try:
                    sample = self.this_trait.data[sample_name]
                except KeyError:
                    sample = webqtlCaseData.webqtlCaseData(name=sample_name)

            sample.extra_info = {}
            if (self.dataset.group.name == 'AXBXA'
                    and sample_name in ('AXB18/19/20', 'AXB13/14', 'BXA8/17')):
                sample.extra_info['url'] = "/mouseCross.html#AXB/BXA"
                sample.extra_info['css_class'] = "fs12"

            sample.this_id = str(counter)

            # For extra attribute columns; currently only used by
            # several datasets
            if self.sample_attribute_values:
                sample.extra_attributes = self.sample_attribute_values.get(
                    sample_name, {})

                # Add a url so RRID case attributes can be displayed as links
                if '36' in sample.extra_attributes:
                    rrid_string = str(sample.extra_attributes['36'])
                    if self.dataset.group.species == "mouse":
                        if len(rrid_string.split(":")) > 1:
                            the_rrid = rrid_string.split(":")[1]
                            sample.extra_attributes['36'] = [
                                rrid_string]
                            sample.extra_attributes['36'].append(
                                webqtlConfig.RRID_MOUSE_URL % the_rrid)
                    elif self.dataset.group.species == "rat":
                        if len(rrid_string):
                            the_rrid = rrid_string.split("_")[1]
                            sample.extra_attributes['36'] = [
                                rrid_string]
                            sample.extra_attributes['36'].append(
                                webqtlConfig.RRID_RAT_URL % the_rrid)

            self.sample_list.append(sample)

        self.se_exists = any(sample.variance for sample in self.sample_list)
        self.num_cases_exists = False
        if (any(sample.num_cases for sample in self.sample_list) and
            any((sample.num_cases and sample.num_cases != "1") for sample in self.sample_list)):
            self.num_cases_exists = True

        first_attr_col = self.get_first_attr_col()
        for sample in self.sample_list:
            sample.first_attr_col = first_attr_col

        self.do_outliers()

    def __repr__(self):
        return "<SampleList> --> %s" % (pf(self.__dict__))

    def do_outliers(self):
        values = [sample.value for sample in self.sample_list
                  if sample.value is not None]
        upper_bound, lower_bound = Plot.find_outliers(values)

        for sample in self.sample_list:
            if sample.value:
                if upper_bound and sample.value > upper_bound:
                    sample.outlier = True
                elif lower_bound and sample.value < lower_bound:
                    sample.outlier = True
                else:
                    sample.outlier = False

    def get_attributes(self):
        """Finds which extra attributes apply to this dataset"""

        # Get attribute names and distinct values for each attribute
        with database_connection(get_setting("SQL_URI")) as conn, conn.cursor() as cursor:
            cursor.execute(
                "SELECT DISTINCT CaseAttribute.CaseAttributeId, "
                "CaseAttribute.Name, CaseAttribute.Description, "
                "CaseAttributeXRefNew.Value FROM "
                "CaseAttribute, CaseAttributeXRefNew WHERE "
                "CaseAttributeXRefNew.CaseAttributeId = CaseAttribute.CaseAttributeId "
                "AND CaseAttributeXRefNew.InbredSetId = %s "
                "ORDER BY CaseAttribute.CaseAttributeId", (str(self.dataset.group.id),)
            )

            self.attributes = {}
            for attr, values in itertools.groupby(
                    cursor.fetchall(), lambda row: (row[0], row[1], row[2])
            ):
                key, name, description = attr
                self.attributes[key] = Bunch()
                self.attributes[key].id = key
                self.attributes[key].name = name
                self.attributes[key].description = description
                self.attributes[key].distinct_values = [
                    item[3] for item in values]
                self.attributes[key].distinct_values = natural_sort(
                    self.attributes[key].distinct_values)
                all_numbers = True
                for value in self.attributes[key].distinct_values:
                    try:
                        val_as_float = float(value)
                    except:
                        all_numbers = False
                        break

                if all_numbers:
                    self.attributes[key].alignment = "right"
                else:
                    self.attributes[key].alignment = "left"

    def get_extra_attribute_values(self):
        if self.attributes:
            with database_connection(get_setting("SQL_URI")) as conn, conn.cursor() as cursor:
                cursor.execute(
                    "SELECT Strain.Name AS SampleName, "
                    "CaseAttributeId AS Id, "
                    "CaseAttributeXRefNew.Value FROM Strain, "
                    "StrainXRef, InbredSet, CaseAttributeXRefNew "
                    "WHERE StrainXRef.StrainId = Strain.Id "
                    "AND InbredSet.Id = StrainXRef.InbredSetId "
                    "AND CaseAttributeXRefNew.StrainId = Strain.Id "
                    "AND InbredSet.Id = CaseAttributeXRefNew.InbredSetId "
                    "AND CaseAttributeXRefNew.InbredSetId = %s "
                    "ORDER BY SampleName", (self.dataset.group.id,)
                )

                for sample_name, items in itertools.groupby(
                        cursor.fetchall(), lambda row: row[0]
                ):
                    attribute_values = {}
                    # Make a list of attr IDs without values (that have values for other samples)
                    valueless_attr_ids = [self.attributes[key].id for key in self.attributes.keys()]
                    for item in items:
                        sample_name, _id, value = item
                        valueless_attr_ids.remove(_id)
                        attribute_value = value

                        # If it's an int, turn it into one for sorting
                        # (for example, 101 would be lower than 80 if
                        # they're strings instead of ints)
                        try:
                            attribute_value = int(attribute_value)
                        except ValueError:
                            pass

                        attribute_values[str(_id)] = attribute_value
                    for attr_id in valueless_attr_ids:
                        attribute_values[str(attr_id)] = ""

                    self.sample_attribute_values[sample_name] = attribute_values

    def get_first_attr_col(self):
        first_attr_col = 4
        if self.se_exists:
            first_attr_col += 2
        if self.num_cases_exists:
            first_attr_col += 1

        return first_attr_col


def natural_sort(a_list, key=lambda s: s):
    """
    Sort the list into natural alphanumeric order.
    """
    def get_alphanum_key_func(key):
        def convert(text): return int(text) if text.isdigit() else text
        return lambda s: [convert(c) for c in re.split('([0-9]+)', key(s))]
    sort_key = get_alphanum_key_func(key)
    sorted_list = sorted(a_list, key=sort_key)
    return sorted_list