1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
|
from __future__ import absolute_import, print_function, division
from flask import Flask, g
from base import webqtlCaseData
from utility import webqtlUtil, Plot, Bunch
from base.trait import GeneralTrait
import numpy as np
from scipy import stats
from pprint import pformat as pf
class SampleList(object):
def __init__(self,
dataset,
sample_names,
this_trait,
sample_group_type,
header):
self.dataset = dataset
self.this_trait = this_trait
self.sample_group_type = sample_group_type # primary or other
self.header = header
self.sample_list = [] # The actual list
try:
self.get_attributes()
except Exception:
print("failed to get attributes")
self.attributes = {}
print("camera: attributes are:", pf(self.attributes))
for counter, sample_name in enumerate(sample_names, 1):
sample_name = sample_name.replace("_2nd_", "")
#ZS - If there's no value for the sample/strain, create the sample object (so samples with no value are still displayed in the table)
try:
sample = self.this_trait.data[sample_name]
except KeyError:
print("No sample %s, let's create it now" % sample_name)
sample = webqtlCaseData.webqtlCaseData(sample_name)
#sampleNameAdd = ''
#if fd.RISet == 'AXBXA' and sampleName in ('AXB18/19/20','AXB13/14','BXA8/17'):
# sampleNameAdd = HT.Href(url='/mouseCross.html#AXB/BXA', text=HT.Sup('#'), Class='fs12', target="_blank")
sample.extra_info = {}
if self.dataset.group.name == 'AXBXA' and sample_name in ('AXB18/19/20','AXB13/14','BXA8/17'):
sample.extra_info['url'] = "/mouseCross.html#AXB/BXA"
sample.extra_info['css_class'] = "fs12"
print(" type of sample:", type(sample))
if sample_group_type == 'primary':
sample.this_id = "Primary_" + str(counter)
else:
sample.this_id = "Other_" + str(counter)
#### For extra attribute columns; currently only used by several datasets - Zach
if self.this_trait and self.dataset and self.dataset.type == 'ProbeSet':
sample.extra_attributes = self.get_extra_attribute_values(sample_name)
print("sample.extra_attributes is", pf(sample.extra_attributes))
self.sample_list.append(sample)
print("self.attributes is", pf(self.attributes))
self.get_z_scores()
self.do_outliers()
#do_outliers(the_samples)
print("*the_samples are [%i]: %s" % (len(self.sample_list), pf(self.sample_list)))
for sample in self.sample_list:
print("apple:", type(sample), sample)
#return the_samples
def __repr__(self):
return "<SampleList> --> %s" % (pf(self.__dict__))
#def get_z_scores(self):
# values = [sample.value for sample in self.sample_list if sample.value != None]
# dataX = values[:]
# dataX.sort(webqtlUtil.cmpOrder)
# dataY=webqtlUtil.U(len(dataX))
# z_scores=map(webqtlUtil.inverseCumul, dataY)
#
# print("self.sample_list:", [sample for sample in self.sample_list if sample.value != None])
# print("z_scores:", len(z_scores))
# for i, sample in enumerate([sample for sample in self.sample_list if sample.value != None]):
# print("sample is:", sample)
# sample.z_score = z_scores[i]
#def get_z_scores(self):
# values = [sample.value for sample in self.sample_list if sample.value != None]
# z_scores = z_score(values)
#
# print("self.sample_list:", [sample for sample in self.sample_list if sample.value != None])
# print("z_scores:", len(z_scores))
# for i, sample in enumerate([sample for sample in self.sample_list if sample.value != None]):
# print("sample is:", sample)
# sample.z_score = z_scores[i]
def get_z_scores(self):
values = [sample.value for sample in self.sample_list if sample.value != None]
numpy_array = np.array(values)
prob_plot = stats.probplot(numpy_array)[0]
print("prob_plot:", prob_plot)
values = prob_plot[1]
z_scores = prob_plot[0]
print("z_scores:", z_scores)
print("self.sample_list:", [sample for sample in self.sample_list if sample.value != None])
for i, sample in enumerate([sample for sample in self.sample_list if sample.value != None]):
print("sample is:", sample)
sample.z_score = z_scores[i]
sample.prob_plot_value = values[i]
def do_outliers(self):
values = [sample.value for sample in self.sample_list if sample.value != None]
upper_bound, lower_bound = Plot.find_outliers(values)
for sample in self.sample_list:
if sample.value:
if upper_bound and sample.value > upper_bound:
sample.outlier = True
elif lower_bound and sample.value < lower_bound:
sample.outlier = True
else:
sample.outlier = False
def get_attributes(self):
"""Finds which extra attributes apply to this dataset"""
#ZS: Id and name values for this trait's extra attributes
case_attributes = g.db.execute('''SELECT CaseAttribute.Id, CaseAttribute.Name
FROM CaseAttribute, CaseAttributeXRef
WHERE CaseAttributeXRef.ProbeSetFreezeId = %s AND
CaseAttribute.Id = CaseAttributeXRef.CaseAttributeId
group by CaseAttributeXRef.CaseAttributeId''',
(str(self.dataset.id),))
self.attributes = {}
for key, value in case_attributes.fetchall():
print("radish: %s - %s" % (key, value))
self.attributes[key] = Bunch()
self.attributes[key].name = value
attribute_values = g.db.execute('''SELECT DISTINCT CaseAttributeXRef.Value
FROM CaseAttribute, CaseAttributeXRef
WHERE CaseAttribute.Name = %s AND
CaseAttributeXRef.CaseAttributeId = CaseAttribute.Id''', (value,))
self.attributes[key].distinct_values = [item[0] for item in attribute_values.fetchall()]
self.attributes[key].distinct_values.sort(key=natural_sort_key)
def get_extra_attribute_values(self, sample_name):
attribute_values = {}
if self.attributes:
#ZS: Get StrainId value for the next query
result = g.db.execute("""SELECT Strain.Id
FROM Strain, StrainXRef, InbredSet
WHERE Strain.Name = %s and
StrainXRef.StrainId = Strain.Id and
InbredSet.Id = StrainXRef.InbredSetId and
InbredSet.Name = %s""", (sample_name,
self.dataset.group.name))
sample_id = result.fetchone().Id
for attribute in self.attributes:
#ZS: Add extra case attribute values (if any)
result = g.db.execute("""SELECT Value
FROM CaseAttributeXRef
WHERE ProbeSetFreezeId = %s AND
StrainId = %s AND
CaseAttributeId = %s
group by CaseAttributeXRef.CaseAttributeId""", (
self.this_trait.dataset.id, sample_id, str(attribute)))
attribute_value = result.fetchone().Value #Trait-specific attributes, if any
#ZS: If it's an int, turn it into one for sorting
#(for example, 101 would be lower than 80 if they're strings instead of ints)
try:
attribute_value = int(attribute_value)
except ValueError:
pass
attribute_values[self.attributes[attribute].name] = attribute_value
return attribute_values
def se_exists(self):
"""Returns true if SE values exist for any samples, otherwise false"""
return any(sample.variance for sample in self.sample_list)
#def z_score(vals):
# vals_array = np.array(vals)
# mean = np.mean(vals_array)
# stdv = np.std(vals_array)
#
# z_scores = []
# for val in vals_array:
# z_score = (val - mean)/stdv
# z_scores.append(z_score)
#
#
#
# return z_scores
#def z_score(row):
# L = [n for n in row if not np.isnan(n)]
# m = np.mean(L)
# s = np.std(L)
# zL = [1.0 * (n - m) / s for n in L]
# if len(L) == len(row): return zL
# # deal with nan
# retL = list()
# for n in row:
# if np.isnan(n):
# retL.append(nan)
# else:
# retL.append(zL.pop(0))
# assert len(zL) == 0
# return retL
def natural_sort_key(x):
"""Get expected results when using as a key for sort - ints or strings are sorted properly"""
try:
x = int(x)
except ValueError:
pass
return x
|