1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
|
# Copyright (C) University of Tennessee Health Science Center, Memphis, TN.
#
# This program is free software: you can redistribute it and/or modify it
# under the terms of the GNU Affero General Public License
# as published by the Free Software Foundation, either version 3 of the
# License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
# See the GNU Affero General Public License for more details.
#
# This program is available from Source Forge: at GeneNetwork Project
# (sourceforge.net/projects/genenetwork/).
#
# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010)
# at rwilliams@uthsc.edu and xzhou15@uthsc.edu
#
#
#
# This module is used by GeneNetwork project (www.genenetwork.org)
#
# Created by GeneNetwork Core Team 2010/08/10
#
# Last updated by GeneNetwork Core Team 2010/10/20
# FUTURE PLANS:
# 1. Make the search species independent. Right now, it is fairly hard-coded to work with mouse only. Although it would not be too much trouble to add another species, at the time of writing, we have no
# variant data for anything except mice, so spending time fixing the code with respect to species independence is unnecessary. However, if you expand on the code, you should keep this in mind.
# 2. There needs to be some way to display mutliple strains in the InDel browser.
# 3. We need CNV and Transposon data. This should mostly come from Xusheng, at least for B vs. D, and it should be included in the Variants browser, which may have to either be restructured, or
# maybe just have columns added to it (if we're lucky).
#Code for the Variant Browser module. It's somewhat commented.
from mod_python import Cookie
from htmlgen import HTMLgen2 as HT
import string
import os
import piddle as pid
import time
import pyXLWriter as xl
from types import ListType
import re
import cPickle
#import snpBrowserUtils
from base import webqtlConfig
from base.GeneralObject import GeneralObject
from utility import Plot
from base.templatePage import templatePage
#from GeneListAnnot import GeneListAnnot
from utility import webqtlUtil
from utility.THCell import THCell
from utility.TDCell import TDCell
####################################################################
## SNP Browser
## Prints information about every SNP that lies in a specified range
####################################################################
#get current file path
current_file_name = __file__
pathname = os.path.dirname( current_file_name )
abs_path = os.path.abspath(pathname)
class snpBrowserPage(templatePage):
MAXSNPRETURN = 5000 # This can take an awful long time to load. If there are more than 5000 SNPs, then it loads the SNP density graph instead (which is much faster, but doesn't show the exact data).
MAXMB = 50 # Clips the graph to (Start Mb through Start+50 Mb) if someone searches for a larger region than that
_scriptfile = "main.py?FormID=SnpBrowserResultPage"
def __init__(self, fd):
templatePage.__init__(self,fd)
if not self.openMysql():
return
self.remote_ip = fd.remote_ip
self.formdata = fd.formdata # This is for passing the VARIANT TYPE to the table creation process
self.snp_list = None
submitStatus = self.formdata.getfirst("submitStatus", "")
opt = GeneralObject()
self.initializeDisplayParameters(fd,opt)
info_line=""
snpTable=""
if submitStatus: # For SnpBrowser result page
opt.xls = 1
try:
# for sortable columns, need to build dict for genTableObj function
tblobj = {}
filename= webqtlUtil.genRandStr("snpBrowser_")
snpMatches, tblobj = self.genSnpTable(opt)
if snpMatches >0 and snpMatches <=self.MAXSNPRETURN:
# creat object for result table for sort function
objfile = open('%s.obj' % (webqtlConfig.TMPDIR+filename), 'wb')
cPickle.dump(tblobj, objfile)
objfile.close()
sortby = ("Index", "down")
snpTable = HT.Div(webqtlUtil.genTableObj(tblobj=tblobj, file=filename, sortby=sortby, tableID = "sortable", addIndex = "1"), Id="sortable")
else:
#updated by NL 07-11-2011: density map can not be cPickled
snpTable=tblobj
# This writes the info at top above the search criteria.
strainText = " - among all available strains in the group"
info_line = HT.Paragraph("%d %s(s) on Chr %s: %0.6f - %0.6f (Mb, mm9" % (snpMatches, opt.variant,opt.chromosome, opt.startMb, opt.endMb),
Class="fs14 fwb ffl black")
if self.snp_list:
info_line.contents[0]+= ", SNP: %s)" % opt.geneName
elif opt.geneName:
info_line.contents[0]+= ", Gene: %s)" % opt.geneName
else:
info_line.contents[0]+= ")"
except:
heading = "Variant Browser"
detail = ["No gene or %s record was found that matches %s." % (opt.variant,opt.geneName)]
self.error(heading=heading,detail=detail)
return
else:
opt.use_custom = True
opt.diffAlleles=True
# SnpBrowser default display part
info_link = HT.Input(type="button", value="Info", Class="button", onClick="javascript:openNewWin('/snpbrowser.html');")
if opt.xslFilename:
xlsDownloadButton= HT.Input(type="button", name="submitStatus",value=" Download Table ",onClick= "location.href='/tmp/%s'" % opt.xslFilename, Class='button')
title = HT.Paragraph("Variant Browser ", info_link, " ",xlsDownloadButton, Class="title")
else:
title = HT.Paragraph("Variant Browser ", info_link, Class="title")
newPaddingForm = self.genBrowserForm(opt)
descriptionTable = HT.TableLite(border=0, cellpadding=0, cellspacing=0)
descriptionTable.append(HT.TR(HT.TD(info_line, colspan=3)),
HT.TR(HT.TD("", height="20", colspan=3)),
HT.TR(HT.TD(newPaddingForm,Class="doubleBorder", valign="top", colspan=3)),
HT.TR(HT.TD("", height="20", colspan=3)),
HT.TR(HT.TD(snpTable, colspan=3)))
self.dict['body'] = HT.TD(title, HT.Blockquote(descriptionTable, HT.P()),valign="top",height="200", width="100%")
self.dict['title'] = "Variant Browser"
pass
################################################################
# Initializes all of the snpBrowserPage class parameters,
# acquiring most values from the formdata (fd)
################################################################
def initializeDisplayParameters(self, fd,opt):
# COLUMN 1: items in paddingTab1
opt.variant = self.formdata.getfirst("variant","SNP")
opt.geneName = string.strip(self.formdata.getfirst("geneName", ""))
opt.chromosome = self.formdata.getfirst("chr", "19")
startMb, endMb =self.initialMb()
opt.startMb = startMb
opt.endMb = endMb
# COLUMN 2: items in paddingTab2
opt.allStrainNamesPair = self.getStrainNamePair()
opt.allStrainNameList=[v[0] for v in opt.allStrainNamesPair]
opt.customStrain = self.formdata.getfirst("customStrain",None)
if opt.customStrain:
opt.use_custom = True
else:
opt.use_custom = False
chosenStrains = self.formdata.getfirst("chosenStrains")
strainList=[]
# chosen strain selectbox incudes all strains that will be displayed in the search results if the "Limit to" checkbox is checked.
# by default, chosen strain selectbox includes 9 strains.
# All strains in chosen strain selectbox will be saved into cookie after clicking 'Search' button.
# chosen strain selectbox is set as single choice.
# The original chosenStrains parameter is string type (chosenStrains = self.formdata.getfirst("chosenStrains")),
# then we split it into list if it is not empty ( chosenStrains = list(string.split(chosenStrains,',')) )
# Case 1, no item is in selected status in chosen strain selectbox. chosenStrains is None. No converting to list.
# Case 2, user might have added one strain into chosen strain selectbox or clicked one item in chosen strain selectbox.
# After converting to list type, the chosenStrains list has one item.
# Case 3, other classes might have called snpBrowserPage, such as from ProbeInfoPage,the strains will be passed via 'chosenStrains' parameter.
# After converting to list type, the chosenStrains list has two items.
# In case 1 and 2, we will get the chosen strains from cookie or by using default value of 'chosenStrains'.
opt.chosenStrains = self.retrieveCustomStrains(fd)
# in case 3, get strain names from 'chosenStrains' parameter
if chosenStrains:
if (not (type(chosenStrains) is ListType)):
chosenStrains = list(string.split(chosenStrains,','))
if len(chosenStrains)>1 :
for item in chosenStrains:
strainList.append((item,item))
opt.chosenStrains=strainList
opt.diffAlleles =self.formdata.getfirst("diffAlleles", None)
if opt.diffAlleles:
opt.diffAlleles = True
else:
opt.diffAlleles = False
# COLUMN 3: items in paddingTab3
opt.domain = self.formdata.getfirst("domain")
if opt.domain == None or len(opt.domain) == 0:
opt.domain = [""]
elif not type(opt.domain) is ListType:
opt.domain = [opt.domain]
opt.function = self.formdata.getfirst("exonfunction")
if opt.function == None or len(opt.function) == 0:
opt.function = [""]
elif not type(opt.function) is ListType:
opt.function = [opt.function]
opt.chosenSource=self.getSource()
opt.source = self.formdata.getfirst("source")
if opt.source == None or len(opt.source) == 0:
opt.source = [""]
elif not type(opt.source) is ListType:
opt.source = [opt.source]
opt.conservationCriteria = self.formdata.getfirst("criteria",">=")
opt.score = self.formdata.getfirst("score","0.0")
opt.redundant = self.formdata.getfirst("redundant", None)
if opt.redundant:
opt.redundant_checked = True
else:
opt.redundant_checked = False
# initial xsl file name
opt.xslFilename=""
opt.alleleValueList=[]
# SnpBrowser page top part
def genBrowserForm(self, opt):
# COLUMN 1: items in paddingTab1
variantSelect = HT.Select(name="variant", Class="typeDropdownWidth",data=[("SNP", "SNP"), ("InDel", "InDel")], selected=[opt.variant])
geneBox = HT.Input(type="text", Class="typeDropdownWidth",name="geneName", value=opt.geneName, size="12")
selectChrBox = HT.Select(name="chr",Class="typeDropdownWidth", data=[(1,'1'), (2,'2'), (3,'3'), (4,'4'), (5,'5'), (6,'6'), (7,'7'), (8,'8'), (9,'9'), (10,'10'), (11,'11'), (12,'12'), (13,'13'), (14,'14'), (15,'15'), (16,'16'), (17,'17'), (18,'18'), (19,'19'), ('X', 'X')], selected=[opt.chromosome], onChange = "Javascript:this.form.geneName.value=''")
mbStartBox = HT.Input(type="text", Class="typeDropdownWidth",name="start", size="10", value=opt.startMb, onChange = "Javascript:this.form.geneName.value=''")
mbEndBox = HT.Input(type="text", Class="typeDropdownWidth",name="end", value=opt.endMb, size="10", onChange = "Javascript:this.form.geneName.value=''")
submitButton = HT.Input(type="submit", name="submitStatus",value=" Search ", Class="button")
# COLUMN 2: items in paddingTab2
div4 = HT.Div(Id='menu_s3')
strainBox3 = HT.Select(name="s3", data=opt.allStrainNamesPair, Class="customBoxWidth")
div4.append(strainBox3)
addStrainButton = HT.Input(type="button", value="Add", Class="button", onClick="addToList(this.form.s3.options[this.form.s3.selectedIndex].text, this.form.s3.options[this.form.s3.selectedIndex].value, this.form.chosenStrains); this.form.chosenStrains.selectedIndex++")
customStrainBox = HT.Input(type="checkbox", name="customStrain", checked=opt.use_custom, size="100")
customStrainSelect = HT.Select(name="chosenStrains",data=opt.chosenStrains, multiple=False, Class="customBoxWidth", size=11)
removeStrainButton = HT.Input(type="button", value=" Cut ", Class="button", onClick="removeFromList(this.form.chosenStrains.selectedIndex, this.form.chosenStrains)")
diffAlleles = HT.Input(type="checkbox", name="diffAlleles", checked=opt.diffAlleles)
# COLUMN 3: items in paddingTab3
domainBox = HT.Select(name="domain", Class="domainDropdownWidth",data=[("All", ""),("Exon","Exon"),(" 5' UTR","5' UTR"),
(" Coding Region","Coding"),(" 3' UTR","3' UTR"),
("Intron", "Intron"), (" Splice Site", "Splice Site"),(" Nonsplice Site", "Nonsplice Site"),
("Upstream","Upstream"),("Downstream","Downstream"), ("Intergenic","Intergenic")], selected=opt.domain,
multiple=True,size=4,onChange = "Javascript:snpbrowser_function_refresh()")
functionBox = HT.Select(name="exonfunction", data=[("All", ""),("Nonsynonymous","Nonsynonymous"),("Synonymous","Synonymous"),("Start Gained", "Start Gained"),("Start Lost", "Start Lost"),("Stop Gained", "Stop Gained"),("Stop Lost", "Stop Lost")],
selected=opt.function,multiple=True, size=3, Class="domainDropdownWidth",
onChange="Javascript:snpbrowser_domain_refresh()")
filterBox = HT.Select(name="criteria", data=[(">=", ">="), ("=", "=="), ("<=","<=")], selected=[opt.conservationCriteria])
sourceBox = HT.Select(name="source", data=opt.chosenSource, selected=opt.source,Class="domainDropdownWidth")
scoreBox = HT.Input(type="text", name="score", value=opt.score, size="5")
redundantBox = HT.Input(type="checkbox", name="redundant", checked=opt.redundant_checked)
# This is where the actual table is structured, and it displays the variables initialized above
paddingTable = HT.TableLite(border=0)
paddingTab1 = HT.TableLite(border=0)
paddingTab2 = HT.TableLite(border=0)
paddingTab3 = HT.TableLite(border=0)
# COLUMN 1
paddingTab1.append(
HT.TR(HT.TD("Type :", Class="fwb", align="right", NOWRAP=1), HT.TD(variantSelect, NOWRAP=1)),
HT.TR(HT.TD("Gene or ID :", Class="fwb", align="right", NOWRAP=1),HT.TD(geneBox, NOWRAP=1)),
HT.TR(HT.TD(" Or select", Class="fwb cr", colspan=3, align="LEFT")),
HT.TR(HT.TD("Chr :", Class="fwb", align="right", NOWRAP=1), HT.TD(selectChrBox, NOWRAP=1)),HT.TR(HT.TD("Mb :", Class="fwb", align="right", NOWRAP=1), HT.TD(mbStartBox)),
HT.TR(HT.TD(HT.Font(" to", size=-1,),HT.TD(mbEndBox, NOWRAP=1))),
HT.TR(HT.TD(HT.HR(width="99%"), colspan=3, height=10)),
HT.TR(HT.TD(HT.TD(submitButton, NOWRAP=1)))
)
# COLUMN 2
paddingTab2.append(
HT.TR(HT.TD("Strains:", Class="fwb", align="right", NOWRAP=1), HT.TD(width=10),HT.TD(div4),HT.TD(addStrainButton)),
HT.TR(HT.TD("Limit to:", customStrainBox, Class="fwb cr", align="right", NOWRAP=1),HT.TD(width=0),HT.TD(customStrainSelect),HT.TD(removeStrainButton))
)
# COLUMN 3
paddingTab3.append(
HT.TR(HT.TD("Domain:", Class="fwb", align="right", NOWRAP=1),
HT.TD(width=10), HT.TD(domainBox, NOWRAP=1)),
HT.TR(HT.TD("Function:", Class="fwb", align="right", NOWRAP=1),
HT.TD(width=10), HT.TD(functionBox, NOWRAP=1)),
HT.TR(HT.TD("Source:", Class="fwb", align="right", NOWRAP=1),
HT.TD(width=4), HT.TD(sourceBox, NOWRAP=1)),
HT.TR(HT.TD("ConScore:", Class="fwb", align="right", NOWRAP=1),
HT.TD(width=4), HT.TD(filterBox, scoreBox, NOWRAP=1)),
HT.TR(HT.TD(redundantBox, align="right", NOWRAP=1), HT.TD(width=10), HT.TD("Non-redundant SNP Only", NOWRAP=1)),
HT.TR(HT.TD(diffAlleles, align="right", NOWRAP=1),HT.TD(width=10), HT.TD("Different Alleles Only", NOWRAP=1))
)
paddingTable.append(
HT.TR(HT.TD(paddingTab1), HT.TD("", width="0"), HT.TD(paddingTab2),HT.TD(width=0), HT.TD(paddingTab3), valign="top")
)
newPaddingForm = HT.Form(cgi=os.path.join(webqtlConfig.CGIDIR, self._scriptfile), enctype="multipart/form-data", name="newSNPPadding", submit=HT.Input(type="hidden"), onSubmit="Javascript:set_customStrains_cookie();")
newPaddingForm.append(paddingTable)
return newPaddingForm
# This grabs the data from MySQL for display in the table, allowing different sorting options based on the options chosen by the user.
# The base option is what kind of variant the user is looking for; the other options are nested within that base option here.
def genSnpTable(self, opt):
# Grabs the Gene info, regardless of the variant type searched. This means you can display it for InDels, Snps, Etc.
# initialize variables
tblobj={} # build dict for genTableObj function; keys include header and body
tblobj_header = [] # value of key 'header'
tblobj_body=[] # value of key 'body'
snpHeaderRow=[] # header row list for tblobj_header (html part)
headerList=[] # includes all headers' name except for strain's value
strainNameRow=[] # header row list for strain names
strainList=[] # includes all strains' value
strainNameList0=[]
strainNameList=[]
geneNameList=[] # for SNP's Gene column
geneIdNameDict={}
domain2=''
headerStyle="fs13 fwb ffl b1 cw cbrb"# style of the header
cellColorStyle = "fs13 b1 fwn c222" # style of the cells
if opt.geneName:
self.cursor.execute("SELECT geneSymbol, chromosome, txStart, txEnd from GeneList where SpeciesId= 1 and geneSymbol = %s", opt.geneName)
result = self.cursor.fetchone()
if result:
opt.geneName, opt.chromosome, opt.startMb, opt.endMb = result
else:
# If GeneName doesn't turn up results, then we'll start looking through SnpAll or Variants to check for other search types (e.g. Rs#, SnpName, or InDel Name)
if opt.variant == "SNP":
if opt.geneName[:2] == 'rs':
self.cursor.execute("SELECT Id, Chromosome, Position, Position+0.000001 from SnpAll where Rs = %s", opt.geneName)
else:
self.cursor.execute("SELECT Id, Chromosome, Position, Position+0.000001 from SnpAll where SpeciesId= 1 and SnpName=%s",opt.geneName)
result_snp = self.cursor.fetchall()
if result_snp:
self.snp_list = [v[0] for v in result_snp]
opt.chromosome = result_snp[0][1];
opt.startMb = result_snp[0][2]
opt.endMb = result_snp[0][3]
else:
return
# Searches through indels by the InDel name.
elif opt.variant == "InDel":
if opt.geneName[0] == 'I':
self.cursor.execute("SELECT Id, Chromosome, Mb_start, Mb_end FROM IndelAll WHERE SpeciesId=1 AND Name=%s", opt.geneName)
result_snp = self.cursor.fetchall()
if result_snp:
self.snp_list = [v[0] for v in result_snp]
opt.chromosome = result_snp[0][1];
opt.startMb = result_snp[0][2]
opt.endMb = result_snp[0][3]
else:
return
if (opt.variant == "SNP"):
#NL 05/13/2010: update query based on new db structure in SnpAll and SnpPattern
query1 = """
SELECT
a.*,b.*
from
SnpAll a, SnpPattern b
where
a.SpeciesId = 1 and a.Chromosome = '%s' AND
a.Position >= %.6f and a.Position < %.6f AND
a.Id = b.SnpId
order by a.Position
"""
elif (opt.variant == "InDel"):
query1 = """
SELECT
distinct a.Name, a.Chromosome, a.SourceId, a.Mb_start, a.Mb_end, a.Strand, a.Type, a.Size, a.InDelSequence, b.Name
from
IndelAll a, SnpSource b
where
a.SpeciesId = '1' and a.Chromosome = '%s' AND
a.Mb_start >= %2.6f and a.Mb_start < (%2.6f+.0010) AND
b.Id = a.SourceId
order by a.Mb_start
"""
self.cursor.execute(query1 % (opt.chromosome, opt.startMb, opt.endMb))
results_all = self.cursor.fetchall()
# This executes the query if CHR, MB_START, MB_END are chosen as the search terms and Gene/SNP is not used
results = self.filterResults(results_all, opt)
# output xls file's name
opt.xslFilename = "SNP_Chr%s_%2.6f-%2.6f" % (opt.chromosome, opt.startMb, opt.endMb)
nnn = len(results)
if nnn == 0:
return nnn, ""
elif nnn > self.MAXSNPRETURN:
gifmap=self.snpDensityMap(opt,query1,results_all)
#07-28-2011 updated by NL: added info part for snp density map
Info="Because the number of results exceeds the limit of 5000, the selected region could not be displayed. "
Info2="Please select a smaller region by clicking the rectangle corresponding with its location in the map below."
densityMap =HT.Span(Info,HT.BR(),Info2,HT.BR(),HT.BR(),gifmap, HT.Image('/image/'+opt.xslFilename+'.png', border=0, usemap='#SNPImageMap'),Class='fwb fs14')
return nnn, densityMap
else:
pass
##############
# Excel file #
##############
# This code is for making the excel output file
if opt.xls:
opt.xslFilename += ".xls"
# Create a new Excel workbook
workbook = xl.Writer(os.path.join(webqtlConfig.TMPDIR, opt.xslFilename))
worksheet = workbook.add_worksheet()
titleStyle = workbook.add_format(align = 'left', bold = 0, size=18, border = 1, border_color="gray")
headingStyle = workbook.add_format(align = 'center', bold = 1, size=13, fg_color = 0x1E, color="white", border = 1, border_color="gray")
headingStyle2 = workbook.add_format(align = 'center', bold = 1, size=13, fg_color = 0x1E, color="white", rotation = 2, border = 1, border_color="gray")
XLSBASECOLORS0 = {"A": "red", "C": 0x18,
"T": 0x22, "G": "green",
"-": 0x21, "":0x2F}
XLSBASECOLORS = {}
for key in XLSBASECOLORS0.keys():
XLSBASECOLORS[key] = workbook.add_format(align = 'center', size=12, fg_color = XLSBASECOLORS0[key], border = 1, border_color="gray")
##Write xls's title Info
worksheet.write([0, 0], "GeneNetwork Variant Browser", titleStyle)
worksheet.write([1, 0], "%s%s" % (webqtlConfig.PORTADDR, os.path.join(webqtlConfig.CGIDIR, self._scriptfile)))
worksheet.write([2, 0], "Date : %s" % time.strftime("%B %d, %Y", time.gmtime()))
worksheet.write([3, 0], "Time : %s GMT" % time.strftime("%H:%M ", time.gmtime()))
worksheet.write([4, 0], "Search by : %s" % self.remote_ip)
if opt.geneName:
worksheet.write([5, 0], "Search term : %s" % opt.geneName)
else:
worksheet.write([5, 0], "view region : Chr %s %2.6f - %2.6f Mb" % (opt.chromosome, opt.startMb, opt.endMb))
nTitleRow = 7
#NL: new way to get header info for each variant
# The next line determines which columns HEADERS show up in the table, depending on which Variant is selected to search the table for. This is for the column HEADERS ONLY; not the data displayed (that comes later).
if (opt.variant == "SNP"):
headerList=['Index','SNP ID','Chr','Mb','Alleles','Source','ConScore','Gene','Transcript','Exon','Domain 1','Domain 2','Function','Details']
elif (opt.variant == "InDel"):
headerList=['Index','ID','Type','InDel Chr','Mb Start','Mb End','Strand','Size','Sequence','Source']
if headerList:
for ncol, item in enumerate(headerList):
if ncol==0:
snpHeaderRow.append(THCell(HT.TD(item, Class=headerStyle, valign='bottom',nowrap='ON'),sort=0))
elif item=="Details" or item=="Function" :
snpHeaderRow.append(THCell(HT.TD(HT.Href(text = HT.Span(item, HT.Sup(' ?', style="color:#f00"),Class=headerStyle),
target = '_blank',url = "/snpbrowser.html#%s"%item),
Class=headerStyle, valign='bottom',nowrap='ON'), text=item, idx=ncol))
else:
snpHeaderRow.append(THCell(HT.TD(item, Class=headerStyle, valign='bottom',nowrap='ON'),text=item, idx=ncol))
#excel file for table headers' names
worksheet.write([nTitleRow, ncol], item, headingStyle)
# This writes the strain column names for the SNPs. The other variants only have data for C57BL6 and DBA2J, so they don't need this information.
if (opt.variant == "SNP"):
if opt.customStrain:
strainNameList = [v for v in opt.chosenStrains]
strainNameList = filter((lambda x: x[0]>=0),strainNameList)
else:
strainNameList=opt.allStrainNamesPair
for j, item in enumerate(strainNameList):
_contents = []
for char in item[0]:
_contents += [char, HT.BR()]
if j % 5 == 0:
strainNameRow.append(THCell(HT.TD(contents =_contents, Class="fs12 fwn ffl b1 cw cbrb", width=2, align="Center", valign="bottom", style="border-left:2px solid black"),sort=0))
else:
strainNameRow.append(THCell(HT.TD(contents =_contents, Class="fs12 fwn ffl b1 cw cbrb", width=2, align="Center", valign="bottom"),sort=0))
#excel file
ncol += 1
worksheet.write([nTitleRow, ncol], item[0], headingStyle2)
worksheet.set_column([ncol, ncol], 3)
snpHeaderRow.extend(strainNameRow)
tblobj_header.append(snpHeaderRow)
tblobj['header']=tblobj_header
#Changes text color of SNP label background. The colors here (e.g. cbgdull) are defined in ../css/general.css
BASECOLORS = {"A": "cbrdull", "C": "cbbdull", "T": "cbydull", "G": "cbgdull", "-": "cbpdull", "":"cbccc","t": "cbg22t", "c": "cbg22c", "a": "cbg22a", "g": "cbg22g"}
# # Code for determining if SNPs are identical (if the location of one SNP is the same as the SNP after it)
try:
self.cursor.execute(query1 % (opt.chromosome, 0, opt.startMb) + " desc limit 1")
firstMb = self.cursor.fetchone()
except:
firstMb =0
if firstMb:
lastMb = firstMb[5]
else:
lastMb = 0
# get geneId Name pair for SNP result
if opt.variant == "SNP":
for item in results:
if item[5]:
geneName=item[5][1]
# eliminate the duplicate geneName
if geneName and (geneName not in geneNameList):
geneNameList.append(geneName)
if len(geneNameList)>0:
geneIdNameDict=self.getGeneIdNameDict(geneNameList)
# This pulls out the 'results' variable and splits it into the sequence of results.
for seq, result in enumerate(results):
result = list(result)
if opt.variant == "SNP":
SnpName, Rs, Chromosome, Mb, Alleles, gene, transcript, exon, domainList, function, functionDetails,SnpSource,ConScore,SnpId = result[:14]
strainNameList=result[14:]
#if domain is intergenic, there's no gene, transcript,exon,function,functionDetails info
if Rs:
SnpHref = HT.Href(text=Rs, url=webqtlConfig.DBSNP % (Rs), target="_blank")
SnpName = Rs
else:
startBp=int(Mb*1000000 -100)
endBp=int(Mb*1000000 +100)
positionInfo="chr%s:%d-%d"%(Chromosome,startBp,endBp)
SnpHref = HT.Href(text=SnpName,url=webqtlConfig.GENOMEBROWSER_URL % (positionInfo), Class="fs12 fwn",target="_blank")
Mb=float(Mb)
MbFormatted = "%2.6f" % Mb
if SnpSource=='Sanger/UCLA':
sourceURL1="http://www.sanger.ac.uk/resources/mouse/genomes/"
sourceURL2="http://mouse.cs.ucla.edu/mousehapmap/beta/wellcome.html"
SnpSourceLink=HT.Href(text="Sanger", url=sourceURL1, Class="fs12 fwn",target="_blank")
SnpSourceLink1= HT.Href(text="UCLA", url=sourceURL2, Class="fs12 fwn",target="_blank")
else:
SnpSourceLink=""
if not ConScore:
ConScore=''
if gene:
geneName=gene[1]
# if geneName has related geneId, then use geneId for NCBI search
if geneIdNameDict.has_key(geneName) and geneIdNameDict[geneName]:
geneId=geneIdNameDict[gene[1]]
ncbiUrl = HT.Href(text="NCBI",target='_blank',url=webqtlConfig.NCBI_LOCUSID % geneId, Class="fs10 fwn")
else:# if geneName can not find related geneId, then use geneName for NCBI search
ncbiUrl = HT.Href(text="NCBI",target='_blank',url="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?CMD=search&DB=gene&term=%s" % geneName, Class="fs10 fwn")
#GN similar trait link
_Species="mouse"
similarTraitUrl = "%s?cmd=sch&gene=%s&alias=1&species=%s" % (os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), geneName, _Species)
gnUrl = HT.Href(text="GN",target='_blank',url=similarTraitUrl, Class="fs10 fwn")
else:
geneName=''
ncbiUrl=''
gnUrl=''
if geneName:
geneNameCol=HT.TD(HT.Italic(geneName), HT.BR(),gnUrl," | ", ncbiUrl, Class=cellColorStyle,nowrap='ON')
else:
geneNameCol=HT.TD(Class=cellColorStyle,nowrap='ON')
if transcript:
transcriptHref=HT.Href(text=transcript, url=webqtlConfig.ENSEMBLETRANSCRIPT_URL % (transcript), Class="fs12 fwn",target="_blank")
else:
transcriptHref=transcript
if exon:
exon=exon[1]#exon[0] is exonId;exon[1] is exonRank
else:
exon=''
if domainList:
domain=domainList[0]
domain2=domainList[1]
if domain=='Exon':
domain=domain+" "+exon
funcList=[]
if functionDetails:
funcList=string.split(string.strip(functionDetails),',')
funcList=map(string.strip,funcList)
funcList[0]=funcList[0].title()
functionDetails=', '.join(item for item in funcList)
functionDetails=functionDetails.replace("_", " ");
functionDetails=functionDetails.replace("/", " -> ");
if functionDetails=="Biotype: Protein Coding":
functionDetails =functionDetails+", Coding Region Unknown"
# build SnpRow for SNP basic information\
SnpRow=[]
# first column of table
SnpRow.append(TDCell(HT.TD(HT.Input(type="checkbox", Class="checkbox", name="index",value=seq+1, onClick="highlight(this)"), align='right',Class=cellColorStyle,nowrap='ON'),text=seq+1))
SnpRow.append(TDCell(HT.TD(SnpHref, Class=cellColorStyle,nowrap='ON'),SnpName, SnpName))
SnpRow.append(TDCell(HT.TD(Chromosome, Class=cellColorStyle, align="center",nowrap='ON'),Chromosome, Chromosome))
SnpRow.append(TDCell(HT.TD(MbFormatted, Class=cellColorStyle, align="center",nowrap='ON'),MbFormatted, MbFormatted))
SnpRow.append(TDCell(HT.TD(Alleles, Class=cellColorStyle, align="center",nowrap='ON'),Alleles, Alleles))
if SnpSource=='Sanger/UCLA':
SnpRow.append(TDCell(HT.TD(SnpSourceLink,'/',SnpSourceLink1, Class=cellColorStyle,nowrap='ON'),SnpSource, SnpSource))
else:
SnpRow.append(TDCell(HT.TD(SnpSource, Class=cellColorStyle,nowrap='ON'),SnpSource, SnpSource))
SnpRow.append(TDCell(HT.TD(ConScore, Class=cellColorStyle,align="center",nowrap='ON'),ConScore, ConScore))
SnpRow.append(TDCell(geneNameCol,geneName, geneName))
SnpRow.append(TDCell(HT.TD(transcriptHref, Class=cellColorStyle,nowrap='ON'),transcript, transcript))
SnpRow.append(TDCell(HT.TD(exon, Class=cellColorStyle,align="center",nowrap='ON'),exon, exon))
SnpRow.append(TDCell(HT.TD(domain, Class=cellColorStyle, align="center",nowrap='ON'),domain, domain))
SnpRow.append(TDCell(HT.TD(domain2, Class=cellColorStyle, align="center",nowrap='ON'),domain2, domain2))
SnpRow.append(TDCell(HT.TD(function, Class=cellColorStyle,nowrap='ON'),function, function))
SnpRow.append(TDCell(HT.TD(functionDetails, Class=cellColorStyle,nowrap='ON'),functionDetails, functionDetails))
# excel file
worksheet.write([nTitleRow+seq+1, 0], seq+1)
worksheet.write([nTitleRow+seq+1, 1], SnpName)
worksheet.write([nTitleRow+seq+1, 2], Chromosome)
worksheet.write([nTitleRow+seq+1, 3], MbFormatted)
worksheet.write([nTitleRow+seq+1, 4], Alleles)
worksheet.write([nTitleRow+seq+1, 5], SnpSource)
worksheet.write([nTitleRow+seq+1, 6], ConScore)
worksheet.write([nTitleRow+seq+1, 7], geneName)
worksheet.write([nTitleRow+seq+1, 8], transcript)
worksheet.write([nTitleRow+seq+1, 9], exon)
worksheet.write([nTitleRow+seq+1, 10], domain)
worksheet.write([nTitleRow+seq+1, 11], domain2)
worksheet.write([nTitleRow+seq+1, 12], function)
worksheet.write([nTitleRow+seq+1, 13], functionDetails)
#ncol here should be the last ncol + 1
ncol = 14
# This puts the Allele data into the table if SNP is selected
BASE=""
bcolor = 'fs13 b1 cbw c222'
for j , item in enumerate(strainNameList):
if item:
BASE =item
bcolor = BASECOLORS[BASE] + " b1"
else:
BASE = ""
bcolor = 'fs13 b1 cbeee c222' #This changes text color of SNPs
if j % 5 == 0:
SnpRow.append(TDCell(HT.TD(BASE, Class=bcolor, align="center", style="border-left:2px solid black"),BASE,BASE))
else:
SnpRow.append(TDCell(HT.TD(BASE, Class=bcolor, align="center"),BASE,BASE))
# #excel for strains' value
if BASE in XLSBASECOLORS.keys():
xbcolor = XLSBASECOLORS[BASE]
else:
xbcolor = XLSBASECOLORS[""]
worksheet.write([nTitleRow+seq+1, ncol], BASE, xbcolor)
ncol += 1
tblobj_body.append(SnpRow)
lastMb = Mb
elif opt.variant == "InDel":
indelName, indelChr, indelMb_s, indelMb_e, indelStrand, indelType, indelSize, indelSequence, sourceName = result
# build SnpRow for Indel basic information\
SnpRow=[]
# first column of table
SnpRow.append(TDCell(HT.TD(HT.Input(type="checkbox", Class="checkbox", name="index",value=seq+1, onClick="highlight(this)"), align='right',Class=cellColorStyle,nowrap='ON'),text=seq+1))
SnpRow.append(TDCell(HT.TD(indelName, Class=cellColorStyle,nowrap='ON'),indelName, indelName))# Name of the InDel (e.g. Indel_1350)
SnpRow.append(TDCell(HT.TD(indelType, Class=cellColorStyle, align="center",nowrap='ON'),indelType, indelType))# E.g. Insertion or Deletion
SnpRow.append(TDCell(HT.TD(indelChr, Class=cellColorStyle, align="center",nowrap='ON'),indelChr, indelChr))# Indel Chromosome (e.g. 1)
SnpRow.append(TDCell(HT.TD(indelMb_s, Class=cellColorStyle, align="center",nowrap='ON'),indelMb_s, indelMb_s))
SnpRow.append(TDCell(HT.TD(indelMb_e, Class=cellColorStyle, align="center",nowrap='ON'),indelMb_e, indelMb_e))
SnpRow.append(TDCell(HT.TD(indelStrand, Class=cellColorStyle, align="center",nowrap='ON'),indelStrand, indelStrand))
SnpRow.append(TDCell(HT.TD(indelSize, Class=cellColorStyle,align="center",nowrap='ON'),indelSize, indelSize))
SnpRow.append(TDCell(HT.TD(indelSequence, Class=cellColorStyle,align="center",nowrap='ON'),indelSequence, indelSequence))
SnpRow.append(TDCell(HT.TD(sourceName, Class=cellColorStyle,nowrap='ON'),sourceName, sourceName))
if opt.xls:
worksheet.write([nTitleRow+seq+1,0], seq+1)
worksheet.write([nTitleRow+seq+1,1], indelName)
worksheet.write([nTitleRow+seq+1,2], indelType)
worksheet.write([nTitleRow+seq+1,3], indelChr)
worksheet.write([nTitleRow+seq+1,4], indelMb_s)
worksheet.write([nTitleRow+seq+1,5], indelMb_e)
worksheet.write([nTitleRow+seq+1,6], indelStrand)
worksheet.write([nTitleRow+seq+1,7], indelSize)
worksheet.write([nTitleRow+seq+1,8], indelSequence)
worksheet.write([nTitleRow+seq+1,9], sourceName)
tblobj_body.append(SnpRow)
else:
pass
tblobj['body']=tblobj_body
workbook.close() # close here is important, otherwise xls file will not be generated
return len(results), tblobj
# initialize the value of start Mb and end Mb
def initialMb(self):
try:
startMb = abs(float(self.formdata.getfirst("start", "30.1")))
endMb = abs(float(self.formdata.getfirst("end", "30.12")))
except:
startMb = endMb = 30.0
if startMb > endMb:
temp = endMb
endMb = startMb
startMb = temp
if startMb == endMb:
endMb = startMb + 2 # DO NOT MAKE THIS LESS THAN 2 MB. YOU WILL BREAK EVERYTHING BECAUSE NO DEFAULT VARIANT IS SELECTED
if endMb - startMb > self.MAXMB:
endMb = self.MAXMB + startMb
return startMb,endMb
# get customStrains from cookie
def retrieveCustomStrains(self,fd):
cookie = fd.cookies
custom_strains = []
if cookie.has_key('customstrains1') and cookie['customstrains1']:
strain_cookie = cookie['customstrains1']
alloptions = string.split(strain_cookie,',')
for one in alloptions:
sname_value = string.split(one,':')
if len(sname_value) == 2:
custom_strains.append( (sname_value[0],sname_value[0]))
else:
custom_strains=[('C57BL/6J', 'C57BL/6J'),('DBA/2J','DBA/2J'),('A/J','A/J'),('129S1/SvImJ','129S1/SvImJ'),('NOD/ShiLtJ','NOD/ShiLtJ'),('NZO/HlLtJ','NZO/HlLtJ'),('WSB/EiJ','WSB/EiJ'),('PWK/PhJ','PWK/PhJ'),('CAST/EiJ','CAST/EiJ')]
return custom_strains
# get geneId Name pair, key is geneName, value is geneId
def getGeneIdNameDict(self, geneNameList):
geneIdNameDict={}
if len(geneNameList)==0:
return ""
geneNameStrList =["'"+geneName+"'" for geneName in geneNameList]
geneNameStr=string.join(geneNameStrList,',')
query = """
SELECT geneId, geneSymbol from GeneList
where SpeciesId=1 and geneSymbol in (%s)
""" % geneNameStr
self.cursor.execute(query)
results = self.cursor.fetchall()
if len(results)>0:
for item in results:
geneIdNameDict[item[1]]=item[0]
else:
pass
return geneIdNameDict
# This grabs the mySQL query results and filters them for use when SNP Variants are searched for.
def filterResults(self, results, opt):
filtered = []
strainIdexList=[]
last_mb = -1
if opt.customStrain and opt.chosenStrains:
for item in opt.chosenStrains:
index =opt.allStrainNameList.index(item[0])
strainIdexList.append(index)
for seq, result in enumerate(results):
result = list(result)
if opt.variant == "SNP":
displayStains=[]
# The order of variables here is the order they are selected from in genSnpTable
SnpId,SpeciesId,SnpName, Rs, Chromosome, Mb, Alleles, SnpSource,ConservationScore = result[:9]
effct =result[9:25]
#result[25] is SnpId;
opt.alleleValueList =result[26:]
if opt.customStrain and opt.chosenStrains:
for index in strainIdexList:
displayStains.append(result[26+index])
opt.alleleValueList =displayStains
effectInfoDict=self.getEffectInfo(effct)
codingDomainList=['Start Gained','Start Lost','Stop Gained','Stop Lost','Nonsynonymous','Synonymous']
intronDomainList=['Splice Site','Nonsplice Site']
for key in effectInfoDict:
if key in codingDomainList:
domain=['Exon','Coding']
elif key in ['3\' UTR','5\' UTR']:
domain=['Exon',key]
elif key in ['Unknown Effect In Exon']:
domain=['Exon','']
elif key in intronDomainList:
domain=['Intron',key]
else:
domain =[key,'']
if 'Intergenic' in domain:
gene=''
transcript=''
exon=''
function=''
functionDetails=''
if not opt.redundant or last_mb != Mb: # filter redundant or not
if self.filterIn(domain, function,SnpSource, ConservationScore,opt):
generalInfoList =[SnpName, Rs, Chromosome, Mb, Alleles, gene,transcript,exon,domain,function,functionDetails,SnpSource,ConservationScore,SnpId]
generalInfoList.extend(opt.alleleValueList)
filtered.append(generalInfoList)
last_mb = Mb
else:
geneList,transcriptList,exonList,functionList,functionDetailsList=effectInfoDict[key]
for index, item in enumerate(geneList):
gene=item
transcript=transcriptList[index]
if exonList:
exon=exonList[index]
else:
exon=""
if functionList:
function=functionList[index]
if function=='Unknown Effect In Exon':
function="Unknown"
else:
function=""
if functionDetailsList:
functionDetails='Biotype: '+functionDetailsList[index]
else:
functionDetails=""
if not opt.redundant or last_mb != Mb: # filter redundant or not
if self.filterIn(domain, function,SnpSource, ConservationScore,opt):
generalInfoList =[SnpName, Rs, Chromosome, Mb, Alleles, gene,transcript,exon,domain,function,functionDetails,SnpSource,ConservationScore,SnpId]
generalInfoList.extend(opt.alleleValueList)
filtered.append(generalInfoList)
last_mb = Mb
elif opt.variant =="InDel":
# The ORDER of variables here IS IMPORTANT.
# THIS IS FOR ANYTHING YOU BRING OUT OF THE VARIANT TABLE USING InDel
indelName, indelChr, sourceId, indelMb_s, indelMb_e, indelStrand, indelType, indelSize, indelSequence, sourceName = result
indelType=indelType.title()
if not opt.redundant or last_mb != indelMb_s: # filter redundant or not
gene = "No Gene"
domain = ConservationScore = SnpId = SnpName = Rs = flank3 =flank5 = ncbi =function = ''
if self.filterIn(domain, function,sourceName , ConservationScore, opt):
filtered.append([indelName, indelChr, indelMb_s, indelMb_e, indelStrand, indelType, indelSize, indelSequence, sourceName])
last_mb = indelMb_s
else:
filtered.append(result)
return filtered
# decide whether need to add this record or not
def filterIn(self, domain, function, SnpSource,ConservationScore,opt):
domainSatisfied = True
functionSatisfied = True
differentAllelesSatisfied = True
sourceSatisfied= True
if domain:
if len(domain) == 0:
if opt.domain[0] != "": # unknown and not searching for "All"
domainSatisfied = False #True
else:
domainSatisfied = False
for onechoice in opt.domain:
if domain[0].startswith(onechoice) or domain[1].startswith(onechoice):
domainSatisfied = True
else:
if opt.domain[0] != "": # when the info is unknown but the users is not searching for "All"
domainSatisfied = False
if SnpSource:
if len(SnpSource) ==0: # not available
if len(opt.source[0]) > 0: # and not searching for "All"
sourceSatisfied = False #True
else:
sourceSatisfied = False
for choice in opt.source:
if SnpSource.startswith(choice):
sourceSatisfied = True
else:
if len(opt.source[0]) > 0: # when the source is unknown but the users is not searching for "All"
sourceSatisfied = False
if function:
if len(function) ==0: # not available
if len(opt.function[0]) > 0: # and not searching for "All"
functionSatisfied = False #True
else:
functionSatisfied = False
for choice in opt.function:
if function.startswith(choice):
functionSatisfied = True
else:
if len(opt.function[0]) > 0: # when the function is unknown but the users is not searching for "All"
functionSatisfied = False
if ConservationScore:
con_score = float(ConservationScore)
if len(opt.score) > 0:
opt_score_float = float(opt.score)
else:
opt_score_float = 0.0
if opt.conservationCriteria == '>=':
if con_score >= opt_score_float:
scoreSatisfied = True
else:
scoreSatisfied = False
elif opt.conservationCriteria == '==':
if con_score == opt_score_float:
scoreSatisfied = True
else:
scoreSatisfied = False
elif opt.conservationCriteria == '<=':
if con_score <= opt_score_float:
scoreSatisfied = True
else:
scoreSatisfied = False
else:
if float(opt.score)>0:
scoreSatisfied = False
else:
scoreSatisfied = True # allow null value
# when diffAlleles function has been chose;
# decide whether need to show this record based on strains' allele value
if opt.variant == "SNP" and opt.diffAlleles:
totalCount =0
aList=[]
for x in opt.alleleValueList:
if x and (x.lower() not in aList) and ( x != "-"):
aList.append(x.lower())
totalCount= len(aList)
if totalCount <= 1:
differentAllelesSatisfied= False
else:
differentAllelesSatisfied= True
else:
differentAllelesSatisfied = True
return domainSatisfied and functionSatisfied and sourceSatisfied and scoreSatisfied and differentAllelesSatisfied
#snpDensityMap will display when the max return is greater than default value
# pay attention to the order of drawing canvas, the latter one will overlap the former one
def snpDensityMap(self,opt,query,results):
snpCanvas = pid.PILCanvas(size=(900,200))
xLeftOffset, xRightOffset, yTopOffset, yBottomOffset = (30, 30, 40, 50)
cWidth = snpCanvas.size[0]
cHeight = snpCanvas.size[1]
plotWidth = cWidth - xLeftOffset - xRightOffset
plotHeight = cHeight - yTopOffset - yBottomOffset
yZero = yTopOffset + plotHeight/2
plotXScale = plotWidth/(opt.endMb - opt.startMb)
#draw clickable map
#Image map
gifmap = HT.Map(name='SNPImageMap')
NCLICK = 80.0
clickStep = plotWidth/NCLICK
clickMbStep = (opt.endMb - opt.startMb)/NCLICK
for i in range(NCLICK):
#updated by NL 07-11-2011: change the parameters to make clickable function work properly.
HREF = os.path.join(webqtlConfig.CGIDIR, "%s&submitStatus=1&diffAlleles=True&customStrain=True"%self._scriptfile) + \
"&chr=%s&start=%2.6f&end=%2.6f" % (opt.chromosome, opt.startMb+i*clickMbStep, opt.startMb+(i+1)*clickMbStep)
COORDS0 = (xLeftOffset+i*clickStep, yTopOffset-18, xLeftOffset+(i+1)*clickStep-2, yTopOffset+plotHeight)
snpCanvas.drawRect(COORDS0[0],COORDS0[1],COORDS0[2],COORDS0[3], edgeColor=pid.white)
COORDS0 = "%d,%d,%d,%d" % COORDS0
Areas1 = HT.Area(shape='rect',coords=COORDS0,href=HREF)
gifmap.areas.append(Areas1)
COORDS = (xLeftOffset+i*clickStep, yTopOffset-18, xLeftOffset+(i+1)*clickStep-2, yTopOffset-10)
snpCanvas.drawRect(COORDS[0],COORDS[1],COORDS[2],COORDS[3]+5, edgeColor=pid.wheat, fillColor=pid.wheat)
COORDS = "%d,%d,%d,%d" % COORDS
Areas = HT.Area(shape='rect',coords=COORDS)
gifmap.areas.append(Areas)
snpCanvas.drawString("Click to view the corresponding section of the SNP map",
xLeftOffset, yTopOffset-25, font=pid.Font(ttf="verdana", size=14, bold=0), color=pid.black)
###draw SNPs
snpCounts = []
stepMb = 1.0/plotXScale
startMb = opt.startMb
for i in range(plotWidth):
self.cursor.execute(query % (opt.chromosome, startMb, startMb + stepMb))
snpCounts.append(len(self.cursor.fetchall()))
startMb += stepMb
maxCounts = max(snpCounts)
sfactor = plotHeight/(2.0*maxCounts)
for i in range(plotWidth):
sheight = sfactor*snpCounts[i]
snpCanvas.drawLine(i+xLeftOffset, yZero-sheight, i+xLeftOffset, yZero+sheight, color = pid.orange)
###draw X axis
snpCanvas.drawLine(xLeftOffset, yZero, xLeftOffset+plotWidth, yZero, color=pid.black)
XScale = Plot.detScale(opt.startMb, opt.endMb)
XStart, XEnd, XStep = XScale
if XStep < 8:
XStep *= 2
spacingAmtX = spacingAmt = (XEnd-XStart)/XStep
j = 0
while abs(spacingAmtX -int(spacingAmtX)) >= spacingAmtX/100.0 and j < 6:
j += 1
spacingAmtX *= 10
formatStr = '%%2.%df' % j
MBLabelFont = pid.Font(ttf="verdana", size=12, bold=0)
NUM_MINOR_TICKS = 5
xMinorTickHeight = 4
xMajorTickHeight = 5
for counter, _Mb in enumerate(Plot.frange(XStart, XEnd, spacingAmt / NUM_MINOR_TICKS)):
if _Mb < opt.startMb or _Mb > opt.endMb:
continue
Xc = xLeftOffset + plotXScale*(_Mb - opt.startMb)
if counter % NUM_MINOR_TICKS == 0: # Draw a MAJOR mark, not just a minor tick mark
snpCanvas.drawLine(Xc, yZero, Xc, yZero+xMajorTickHeight, width=2, color=pid.black) # Draw the MAJOR tick mark
labelStr = str(formatStr % _Mb) # What Mbase location to put on the label
strWidth = snpCanvas.stringWidth(labelStr, font=MBLabelFont)
drawStringXc = (Xc - (strWidth / 2.0))
snpCanvas.drawString(labelStr, drawStringXc, yZero +20, font=MBLabelFont, angle=0, color=pid.black)
else:
snpCanvas.drawLine(Xc, yZero, Xc, yZero+xMinorTickHeight, color=pid.black) # Draw the MINOR tick mark
# end else
xLabelFont = pid.Font(ttf="verdana", size=20, bold=0)
xLabel = "SNP Density Map : Chr%s %2.6f-%2.6f Mb" % (opt.chromosome, opt.startMb, opt.endMb)
snpCanvas.drawString(xLabel, xLeftOffset + (plotWidth -snpCanvas.stringWidth(xLabel, font=xLabelFont))/2,
yTopOffset +plotHeight +30, font=xLabelFont, color=pid.black)
snpCanvas.save(os.path.join(webqtlConfig.IMGDIR, opt.xslFilename), format='png')
return gifmap
#NL 05-13-2011: rewrite to get field_names in query
def getStrainNamePair(self):
# add by NL ^-^ 05-13/2011
# get field_names in query
strainNamePair=[]
query ='SELECT * FROM SnpPattern limit 1'
self.cursor.execute(query)
num_fields = len(self.cursor.description)
field_names = [i[0] for i in self.cursor.description]
strainsNameList=field_names[1:]
# index for strain name starts from 1
for index, name in enumerate(strainsNameList):
strainNamePair.append((name,name))
return strainNamePair
def getEffectDetailsByCategory(self, effectName=None, effectValue=None):
geneList=[]
transcriptList=[]
exonList=[]
funcList=[]
funcDetailList=[]
tmpList=[]
geneGroupList =['Upstream','Downstream','Splice Site','Nonsplice Site','3\' UTR']
biotypeGroupList=['Unknown Effect In Exon','Start Gained','Start Lost','Stop Gained','Stop Lost','Nonsynonymous','Synonymous']
newCodonGroupList=['Start Gained']
codonEffectGroupList=['Start Lost','Stop Gained','Stop Lost','Nonsynonymous','Synonymous']
# split data in effect by using '|' into groups
effectDetailList = string.split(string.strip(effectValue),'|')
effectDetailList = map(string.strip, effectDetailList)
# if there are more than one group of data, then traversing each group and retrieve each item in the group
for index, item in enumerate(effectDetailList):
itemList =string.split(string.strip(item),',')
itemList = map(string.strip, itemList)
geneId=itemList[0]
geneName=itemList[1]
geneList.append([geneId,geneName])
transcriptList.append(itemList[2])
if effectName not in geneGroupList:
exonId=itemList[3]
exonRank=itemList[4]
exonList.append([exonId,exonRank])
if effectName in biotypeGroupList:
biotype=itemList[5]
funcList.append(effectName)
if effectName in newCodonGroupList:
newCodon=itemList[6]
tmpList=[biotype,newCodon]
funcDetailList.append(string.join(tmpList, ", "))
elif effectName in codonEffectGroupList:
old_new_AA=itemList[6]
old_new_Codon=itemList[7]
codon_num=itemList[8]
tmpList=[biotype,old_new_AA,old_new_Codon,codon_num]
funcDetailList.append(string.join(tmpList, ", "))
else:
funcDetailList.append(biotype)
return [geneList,transcriptList,exonList,funcList,funcDetailList]
def getEffectInfo(self, effectList):
Domain=''
effectDetailList=[]
effectInfoDict={}
Prime3_UTR,Prime5_UTR,Upstream,Downstream,Intron,Nonsplice_Site,Splice_Site,Intergenic=effectList[:8]
Exon,Non_Synonymous_Coding,Synonymous_Coding,Start_Gained,Start_Lost,Stop_Gained,Stop_Lost,Unknown_Effect_In_Exon=effectList[8:]
if Intergenic:
Domain='Intergenic'
effectInfoDict[Domain]=''
else:
# if not Exon:
# get geneList, transcriptList info.
if Upstream:
Domain='Upstream'
effectDetailList=self.getEffectDetailsByCategory(effectName='Upstream', effectValue=Upstream)
effectInfoDict[Domain]=effectDetailList
if Downstream:
Domain='Downstream'
effectDetailList=self.getEffectDetailsByCategory(effectName='Downstream', effectValue=Downstream)
effectInfoDict[Domain]=effectDetailList
if Intron:
if Splice_Site:
Domain='Splice Site'
effectDetailList=self.getEffectDetailsByCategory(effectName='Splice Site', effectValue=Splice_Site)
effectInfoDict[Domain]=effectDetailList
if Nonsplice_Site:
Domain='Nonsplice Site'
effectDetailList=self.getEffectDetailsByCategory(effectName='Nonsplice Site', effectValue=Nonsplice_Site)
effectInfoDict[Domain]=effectDetailList
# get gene, transcriptList and exon info.
if Prime3_UTR:
Domain='3\' UTR'
effectDetailList=self.getEffectDetailsByCategory(effectName='3\' UTR', effectValue=Prime3_UTR)
effectInfoDict[Domain]=effectDetailList
if Prime5_UTR:
Domain='5\' UTR'
effectDetailList=self.getEffectDetailsByCategory(effectName='5\' UTR', effectValue=Prime5_UTR)
effectInfoDict[Domain]=effectDetailList
if Start_Gained:
Domain='5\' UTR'
effectDetailList=self.getEffectDetailsByCategory(effectName='Start Gained', effectValue=Start_Gained)
effectInfoDict[Domain]=effectDetailList
if Unknown_Effect_In_Exon:
Domain='Unknown Effect In Exon'
effectDetailList=self.getEffectDetailsByCategory(effectName='Unknown Effect In Exon', effectValue=Unknown_Effect_In_Exon)
effectInfoDict[Domain]=effectDetailList
if Start_Lost:
Domain='Start Lost'
effectDetailList=self.getEffectDetailsByCategory(effectName='Start Lost', effectValue=Start_Lost)
effectInfoDict[Domain]=effectDetailList
if Stop_Gained:
Domain='Stop Gained'
effectDetailList=self.getEffectDetailsByCategory(effectName='Stop Gained', effectValue=Stop_Gained)
effectInfoDict[Domain]=effectDetailList
if Stop_Lost:
Domain='Stop Lost'
effectDetailList=self.getEffectDetailsByCategory(effectName='Stop Lost', effectValue=Stop_Lost)
effectInfoDict[Domain]=effectDetailList
if Non_Synonymous_Coding:
Domain='Nonsynonymous'
effectDetailList=self.getEffectDetailsByCategory(effectName='Nonsynonymous', effectValue=Non_Synonymous_Coding)
effectInfoDict[Domain]=effectDetailList
if Synonymous_Coding:
Domain='Synonymous'
effectDetailList=self.getEffectDetailsByCategory(effectName='Synonymous', effectValue=Synonymous_Coding)
effectInfoDict[Domain]=effectDetailList
return effectInfoDict
def getSortedStrainList(self, strainList):
sortedStrainList=[]
removeList=['C57BL/6J','DBA/2J']
for item in removeList:
strainList.remove(item)
sortedStrainList=removeList+strainList
return sortedStrainList
# build header and footer parts for export excel file
def createExcelFileWithTitleAndFooter(self, workbook=None, datasetName=None,returnNumber=None):
worksheet = workbook.add_worksheet()
titleStyle = workbook.add_format(align = 'left', bold = 0, size=14, border = 1, border_color="gray")
##Write title Info
worksheet.write([1, 0], "Citations: Please see %s/reference.html" % webqtlConfig.PORTADDR, titleStyle)
worksheet.write([2, 0], "Dataset : %s" % datasetName, titleStyle)
worksheet.write([3, 0], "Date : %s" % time.strftime("%B %d, %Y", time.gmtime()), titleStyle)
worksheet.write([4, 0], "Time : %s GMT" % time.strftime("%H:%M ", time.gmtime()), titleStyle)
worksheet.write([5, 0], "Status of data ownership: Possibly unpublished data; please see %s/statusandContact.html for details on sources, ownership, and usage of these data." % webqtlConfig.PORTADDR, titleStyle)
#Write footer info
worksheet.write([8 + returnNumber, 0], "Funding for The GeneNetwork: NIAAA (U01AA13499, U24AA13513), NIDA, NIMH, and NIAAA (P20-DA21131), NCI MMHCC (U01CA105417), and NCRR (U01NR 105417)", titleStyle)
worksheet.write([9 + returnNumber, 0], "PLEASE RETAIN DATA SOURCE INFORMATION WHENEVER POSSIBLE", titleStyle)
return worksheet
def getSource(self):
sourceQuery ="select distinct Source from SnpAll"
self.cursor.execute(sourceQuery)
result =self.cursor.fetchall()
sourceList=[("All", "")]
try:
for item in result:
item=item[0]
sourceList.append((item,item))
except:
sourceList=[]
return sourceList
|