1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
|
# Copyright (C) University of Tennessee Health Science Center, Memphis, TN.
#
# This program is free software: you can redistribute it and/or modify it
# under the terms of the GNU Affero General Public License
# as published by the Free Software Foundation, either version 3 of the
# License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
# See the GNU Affero General Public License for more details.
#
# This program is available from Source Forge: at GeneNetwork Project
# (sourceforge.net/projects/genenetwork/).
#
# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010)
# at rwilliams@uthsc.edu and xzhou15@uthsc.edu
#
#
#
# This module is used by GeneNetwork project (www.genenetwork.org)
#
# Created by GeneNetwork Core Team 2010/08/10
#
# Last updated by GeneNetwork Core Team 2010/10/20
import string
import piddle as pid
from math import *
import os
import direct
from htmlgen import HTMLgen2 as HT
from utility import Plot
from base.webqtlTrait import webqtlTrait
from base.templatePage import templatePage
from utility import webqtlUtil
from base import webqtlConfig
class DirectPlotPage(templatePage):
def __init__(self, fd):
LRSFullThresh = 30
LRSInteractThresh = 25
templatePage.__init__(self, fd)
if not fd.genotype:
fd.readData()
incVars = 0
_genotype = fd.genotype_1
_strains, _vals, _vars, N = fd.informativeStrains(_genotype.prgy, incVars)
self.dict['title'] = 'Pair-Scan Plot'
if not self.openMysql():
return
iPermuCheck = fd.formdata.getvalue('directPermuCheckbox')
try:
graphtype = int(fd.formdata.getvalue('graphtype'))
except:
graphtype = 1
try:
graphsort = int(fd.formdata.getvalue('graphSort'))
except:
graphsort = 1
try:
returnIntervalPairNum = int(fd.formdata.getvalue('pairScanReturn'))
except:
returnIntervalPairNum = 50
pairIntro = HT.Blockquote("The graph below displays pair-scan results for the trait ",HT.Strong(" %s" % fd.identification))
if not graphsort:
tblIntro = HT.Blockquote('This table lists LRS scores for the top %d pairs of intervals (Interval 1 on the left and Interval 2 on the right). Pairs are sorted by the "LRS Full" column. Both intervals are defined by proximal and distal markers that flank the single best position.' % returnIntervalPairNum)
else:
tblIntro = HT.Blockquote('This table lists LRS scores for the top %d pairs of intervals (Interval 1 on the left and Interval 2 on the right). Pairs are sorted by the "LRS Interaction" column. Both intervals are defined by proximal and distal markers that flank the single best position.' % returnIntervalPairNum)
try:
thisTrait = webqtlTrait(fullname=fd.formdata.getvalue("fullname"), cursor=self.cursor)
pairIntro.append(' from the database ' , thisTrait.db.genHTML())
except:
pass
pairIntro.append('. The upper left half of the plot highlights any epistatic interactions (corresponding to the column labeled "LRS Interact"). In contrast, the lower right half provides a summary of LRS of the full model, representing cumulative effects of linear and non-linear terms (column labeled "LRS Full"). The WebQTL implementation of the scan for 2-locus epistatic interactions is based on the DIRECT global optimization algorithm developed by ',HT.Href(text ="Ljungberg",url='http://user.it.uu.se/~kl/qtl_software.html',target="_blank", Class = "fs14 fwn"),', Holmgren, and Carlborg (',HT.Href(text = "2004",url='http://bioinformatics.oupjournals.org/cgi/content/abstract/bth175?ijkey=21Pp0pgOuBL6Q&keytype=ref', Class = "fs14 fwn"),').')
main_title = HT.Paragraph("Pair-Scan Results: An Analysis of Epistatic Interactions")
main_title.__setattr__("class","title")
subtitle1 = HT.Paragraph("Pair-Scan Graph")
subtitle3 = HT.Paragraph("Pair-Scan Top LRS")
subtitle1.__setattr__("class","subtitle")
subtitle3.__setattr__("class","subtitle")
self.identification = "unnamed trait"
if fd.identification:
self.identification = fd.identification
self.dict['title'] = self.identification + ' / '+self.dict['title']
#####################################
#
# Remove the Parents & F1 data
#
#####################################
if _vals:
if len(_vals) > webqtlConfig.KMININFORMATIVE:
ResultFull = []
ResultInteract = []
ResultAdd = []
#permutation test
subtitle2 = ''
permuTbl = ''
permuIntro = ''
if iPermuCheck:
subtitle2 = HT.Paragraph("Pair-Scan Permutation Results")
subtitle2.__setattr__("class","subtitle")
permuIntro = HT.Blockquote("Phenotypes were randomly permuted 500 times among strains or individuals and reanalyzed using the pair-scan algorithm. We extracted the single highest LRS for the full model for each of these permuted data sets. The histograms of these highest LRS values provide an empirical way to estimate the probability of obtaining an LRS above suggestive or significant thresholds.")
prtmuTblIntro1 = HT.Paragraph("The following table gives threshold values for Suggestive (P=0.63) and Significant associations (P=0.05) defined by Lander & Kruglyak and for the slightly more stringent P=0.01 level. (The Highly Significant level of Lander & Kruglyak corresponds to P=0.001 and cannot be estimated with 500 permutations.)")
prtmuTblIntro2 = HT.Paragraph("If the full model exceeds the permutation-based Significant threshold, then different models for those locations can be tested by conventional chi-square tests at P<0.01. Interaction is significant if LRS Interact exceeds 6.64 for RI strains or 13.28 for an F2. If interaction is not significant, the two-QTL model is better than a one-QTL model if LRS Additive exceeds LRS 1 or LRS 2 by 6.64 for RI strains or 9.21 for an F2.")
ResultFull, ResultInteract, ResultAdd = direct.permu(webqtlConfig.GENODIR, _vals, _strains, fd.RISet, 500) #XZ, 08/14/2008: add module name webqtlConfig
ResultFull.sort()
ResultInteract.sort()
ResultAdd.sort()
nPermuResult = len(ResultFull)
# draw Histogram
cFull = pid.PILCanvas(size=(400,300))
Plot.plotBar(cFull, ResultFull,XLabel='LRS',YLabel='Frequency',title=' Histogram of LRS Full')
#plotBar(cFull,10,10,390,290,ResultFull,XLabel='LRS',YLabel='Frequency',title=' Histogram of LRS Full')
filename= webqtlUtil.genRandStr("Pair_")
cFull.save(webqtlConfig.IMGDIR+filename, format='gif')
imgFull=HT.Image('/image/'+filename+'.gif',border=0,alt='Histogram of LRS Full')
superPermuTbl = HT.TableLite(border=0, cellspacing=0, cellpadding=0,bgcolor ='#999999')
permuTbl2 = HT.TableLite(border=0, cellspacing= 1, cellpadding=5)
permuTbl2.append(HT.TR(HT.TD(HT.Font('LRS', color = '#FFFFFF')), HT.TD(HT.Font('p = 0.63', color = '#FFFFFF'), width = 150, align='Center'), HT.TD(HT.Font('p = 0.05', color = '#FFFFFF'), width = 150, align='Center'), HT.TD(HT.Font('p = 0.01', color = '#FFFFFF'), width = 150, align='Center'),bgColor='royalblue'))
permuTbl2.append(HT.TR(HT.TD('Full'), HT.TD('%2.1f' % ResultFull[int(nPermuResult*0.37 -1)], align="Center"), HT.TD('%2.1f' % ResultFull[int(nPermuResult*0.95 -1)], align="Center"), HT.TD('%2.1f' % ResultFull[int(nPermuResult*0.99 -1)], align="Center"),bgColor="#eeeeee"))
superPermuTbl.append(HT.TD(HT.TD(permuTbl2)))
permuTbl1 = HT.TableLite(border=0, cellspacing= 0, cellpadding=5,width='100%')
permuTbl1.append(HT.TR(HT.TD(imgFull, align="Center", width = 410), HT.TD(prtmuTblIntro1, superPermuTbl, prtmuTblIntro2, width = 490)))
permuTbl = HT.Center(permuTbl1, HT.P())
#permuTbl.append(HT.TR(HT.TD(HT.BR(), 'LRS Full = %2.1f, ' % ResultFull[int(nPermuResult*0.37 -1)], 'LRS Full = %2.1f, ' % ResultFull[int(nPermuResult*0.95 -1)], 'LRS Full highly significant (p=0.001) = %2.1f, ' % ResultFull[int(nPermuResult*0.999 -1)] , HT.BR(), 'LRS Interact suggestive (p=0.63) = %2.1f, ' % ResultInteract[int(nPermuResult*0.37 -1)], 'LRS Interact significant (p=0.05) = %2.1f, ' % ResultInteract[int(nPermuResult*0.95 -1)], 'LRS Interact = %2.1f, ' % ResultInteract[int(nPermuResult*0.999 -1)] , HT.BR(),'LRS Additive suggestive (p=0.63) = %2.1f, ' % ResultAdd[int(nPermuResult*0.37 -1)], 'LRS Additive significant (p=0.05) = %2.1f, ' % ResultAdd[int(nPermuResult*0.95 -1)], 'LRS Additive highly significant (p=0.001) = %2.1f, ' % ResultAdd[int(nPermuResult*0.999 -1)], HT.BR(), 'Total number of permutation is %d' % nPermuResult, HT.BR(), HT.BR(),colspan=2)))
#tblIntro.append(HT.P(), HT.Center(permuTbl))
#print vals, strains, fd.RISet
d = direct.direct(webqtlConfig.GENODIR, _vals, _strains, fd.RISet, 8000)#XZ, 08/14/2008: add module name webqtlConfig
chrsInfo = d[2]
sum = 0
offsets = [0]
i = 0
for item in chrsInfo:
if i > 0:
offsets.append(sum)
sum += item[0]
i += 1
offsets.append(sum)
#print sum,offset,d[2]
canvasWidth = 880
canvasHeight = 880
if graphtype:
colorAreaWidth = 230
else:
colorAreaWidth = 0
c = pid.PILCanvas(size=(canvasWidth + colorAreaWidth ,canvasHeight))
xoffset = 40
yoffset = 40
width = canvasWidth - xoffset*2
height = canvasHeight - yoffset*2
xscale = width/sum
yscale = height/sum
rectInfo = d[1]
rectInfo.sort(webqtlUtil.cmpLRSFull)
finecolors = Plot.colorSpectrum(250)
finecolors.reverse()
regLRS = [0]*height
#draw LRS Full
for item in rectInfo:
LRSFull,LRSInteract,LRSa,LRSb,chras,chram,chrae,chrbs,chrbm,chrbe,chra,chrb,flanka,flankb = item
if LRSFull > 30:
dcolor = pid.red
elif LRSFull > 20:
dcolor = pid.orange
elif LRSFull > 10:
dcolor = pid.olivedrab
elif LRSFull > 0:
dcolor = pid.grey
else:
LRSFull = 0
dcolor = pid.grey
chras += offsets[chra]
chram += offsets[chra]
chrae += offsets[chra]
chrbs += offsets[chrb]
chrbm += offsets[chrb]
chrbe += offsets[chrb]
regLRSD = int(chram*yscale)
if regLRS[regLRSD] < LRSa:
regLRS[regLRSD] = LRSa
regLRSD = int(chrbm*yscale)
if regLRS[regLRSD] < LRSb:
regLRS[regLRSD] = LRSb
if graphtype:
colorIndex = int(LRSFull *250 /LRSFullThresh)
if colorIndex >= 250:
colorIndex = 249
dcolor = finecolors[colorIndex]
if chra != chrb or ((chrbe - chrae) > 10 and (chrbs - chras) > 10):
c.drawRect(xoffset+chrbs*xscale,yoffset+height-chras*yscale,xoffset+chrbe*xscale,yoffset+height-chrae*yscale,edgeColor=dcolor,fillColor=dcolor,edgeWidth = 0)
else:
c.drawPolygon([(xoffset+chrbs*xscale,yoffset+height-chras*yscale),(xoffset+chrbe*xscale,yoffset+height-chras*yscale),(xoffset+chrbe*xscale,yoffset+height-chrae*yscale)],edgeColor=dcolor,fillColor=dcolor,edgeWidth = 0,closed =1)
else:
c.drawCross(xoffset+chrbm*xscale,yoffset+height-chram*yscale,color=dcolor,size=2)
#draw Marker Regression LRS
if graphtype:
"""
maxLRS = max(regLRS)
pts = []
i = 0
for item in regLRS:
pts.append((xoffset+width+35+item*50/maxLRS, yoffset+height-i))
i += 1
c.drawPolygon(pts,edgeColor=pid.blue,edgeWidth=1,closed=0)
"""
LRS1Thresh = 16.2
i = 0
for item in regLRS:
colorIndex = int(item *250 /LRS1Thresh)
if colorIndex >= 250:
colorIndex = 249
dcolor = finecolors[colorIndex]
c.drawLine(xoffset+width+35,yoffset+height-i,xoffset+width+55,yoffset+height-i,color=dcolor)
i += 1
labelFont=pid.Font(ttf="arial",size=20,bold=0)
c.drawString('Single Locus Regression',xoffset+width+90,yoffset+height, font = labelFont,color=pid.dimgray,angle=90)
#draw LRS Interact
rectInfo.sort(webqtlUtil.cmpLRSInteract)
for item in rectInfo:
LRSFull,LRSInteract,LRSa,LRSb,chras,chram,chrae,chrbs,chrbm,chrbe,chra,chrb,flanka,flankb = item
if LRSInteract > 30:
dcolor = pid.red
elif LRSInteract > 20:
dcolor = pid.orange
elif LRSInteract > 10:
dcolor = pid.olivedrab
elif LRSInteract > 0:
dcolor = pid.grey
else:
LRSInteract = 0
dcolor = pid.grey
chras += offsets[chra]
chram += offsets[chra]
chrae += offsets[chra]
chrbs += offsets[chrb]
chrbm += offsets[chrb]
chrbe += offsets[chrb]
if graphtype:
colorIndex = int(LRSInteract *250 / LRSInteractThresh )
if colorIndex >= 250:
colorIndex = 249
dcolor = finecolors[colorIndex]
if chra != chrb or ((chrbe - chrae) > 10 and (chrbs - chras) > 10):
c.drawRect(xoffset+chras*xscale,yoffset+height-chrbs*yscale,xoffset+chrae*xscale,yoffset+height-chrbe*yscale,edgeColor=dcolor,fillColor=dcolor,edgeWidth = 0)
else:
c.drawPolygon([(xoffset+chras*xscale,yoffset+height-chrbs*yscale),(xoffset+chras*xscale,yoffset+height-chrbe*yscale),(xoffset+chrae*xscale,yoffset+height-chrbe*yscale)],edgeColor=dcolor,fillColor=dcolor,edgeWidth = 0,closed =1)
else:
c.drawCross(xoffset+chram*xscale,yoffset+height-chrbm*yscale,color=dcolor,size=2)
#draw chromosomes label
labelFont=pid.Font(ttf="tahoma",size=24,bold=0)
i = 0
for item in chrsInfo:
strWidth = c.stringWidth(item[1],font=labelFont)
c.drawString(item[1],xoffset+offsets[i]*xscale +(item[0]*xscale-strWidth)/2,canvasHeight -15,font = labelFont,color=pid.dimgray)
c.drawString(item[1],xoffset+offsets[i]*xscale +(item[0]*xscale-strWidth)/2,yoffset-10,font = labelFont,color=pid.dimgray)
c.drawString(item[1],xoffset-strWidth-5,yoffset+height - offsets[i]*yscale -(item[0]*yscale-22)/2,font = labelFont,color=pid.dimgray)
c.drawString(item[1],canvasWidth-xoffset+5,yoffset+height - offsets[i]*yscale -(item[0]*yscale-22)/2,font = labelFont,color=pid.dimgray)
i += 1
c.drawRect(xoffset,yoffset,xoffset+width,yoffset+height)
for item in offsets:
c.drawLine(xoffset,yoffset+height-item*yscale,xoffset+width,yoffset+height-item*yscale)
c.drawLine(xoffset+item*xscale,yoffset,xoffset+item*xscale,yoffset+height)
#draw pngMap
pngMap = HT.Map(name='pairPlotMap')
#print offsets, len(offsets)
for i in range(len(offsets)-1):
for j in range(len(offsets)-1):
COORDS = "%d,%d,%d,%d" %(xoffset+offsets[i]*xscale, yoffset+height-offsets[j+1]*yscale, xoffset+offsets[i+1]*xscale, yoffset+height-offsets[j]*yscale)
HREF = "javascript:showPairPlot(%d,%d);" % (i,j)
Areas = HT.Area(shape='rect',coords=COORDS,href=HREF)
pngMap.areas.append(Areas)
#draw spectrum
if graphtype:
i = 0
labelFont=pid.Font(ttf="tahoma",size=14,bold=0)
middleoffsetX = 180
for dcolor in finecolors:
if i % 50 == 0:
c.drawLine(xoffset+ width +middleoffsetX-15 , height + yoffset -i, xoffset+ width +middleoffsetX-20,height + yoffset -i, color=pid.black)
c.drawString('%d' % int(LRSInteractThresh*i/250.0),xoffset+ width+ middleoffsetX-40,height + yoffset -i +5, font = labelFont,color=pid.black)
c.drawLine(xoffset+ width +middleoffsetX+15 , height + yoffset -i, xoffset+ width +middleoffsetX+20 ,height + yoffset -i, color=pid.black)
c.drawString('%d' % int(LRSFullThresh*i/250.0),xoffset+ width + middleoffsetX+25,height + yoffset -i +5, font = labelFont,color=pid.black)
c.drawLine(xoffset+ width +middleoffsetX-15 , height + yoffset -i, xoffset+ width +middleoffsetX+15 ,height + yoffset -i, color=dcolor)
i += 1
if i % 50 == 0:
i -= 1
c.drawLine(xoffset+ width +middleoffsetX-15 , height + yoffset -i, xoffset+ width +middleoffsetX-20,height + yoffset -i, color=pid.black)
c.drawString('%d' % ceil(LRSInteractThresh*i/250.0),xoffset+ width + middleoffsetX-40,height + yoffset -i +5, font = labelFont,color=pid.black)
c.drawLine(xoffset+ width +middleoffsetX+15 , height + yoffset -i, xoffset+ width +middleoffsetX+20 ,height + yoffset -i, color=pid.black)
c.drawString('%d' % ceil(LRSFullThresh*i/250.0),xoffset+ width + middleoffsetX+25,height + yoffset -i +5, font = labelFont,color=pid.black)
labelFont=pid.Font(ttf="verdana",size=20,bold=0)
c.drawString('LRS Interaction',xoffset+ width + middleoffsetX-50,height + yoffset, font = labelFont,color=pid.dimgray,angle=90)
c.drawString('LRS Full',xoffset+ width + middleoffsetX+50,height + yoffset, font = labelFont,color=pid.dimgray,angle=90)
filename= webqtlUtil.genRandStr("Pair_")
c.save(webqtlConfig.IMGDIR+filename, format='png')
img2=HT.Image('/image/'+filename+'.png',border=0,usemap='#pairPlotMap')
form0 = HT.Form( cgi= os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), enctype='multipart/form-data', name='showPairPlot', submit=HT.Input(type='hidden'))
hddn0 = {'FormID':'pairPlot','Chr_A':'_','Chr_B':'','idata':string.join(map(str, _vals), ','),'istrain':string.join(_strains, ','),'RISet':fd.RISet}
for key in hddn0.keys():
form0.append(HT.Input(name=key, value=hddn0[key], type='hidden'))
form0.append(img2, pngMap)
mainfmName = webqtlUtil.genRandStr("fm_")
txtform = HT.Form( cgi= os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), enctype='multipart/form-data', name=mainfmName, submit=HT.Input(type='hidden'))
hddn = {'FormID':'showDatabase','ProbeSetID':'_','database':fd.RISet+"Geno",'CellID':'_','RISet':fd.RISet}
#XZ, Aug 11, 2010: The variable traitStrains is not assigned right values before (should not be assigned fd.strainlist).
#hddn['traitStrains'] = string.join(fd.strainlist, ',')
hddn['traitStrains'] = string.join(_strains, ',')
hddn['traitValues'] = string.join(map(str, _vals), ',')
hddn['interval1'] = ''
hddn['interval2'] = ''
if fd.incparentsf1:
hddn['incparentsf1']='ON'
for key in hddn.keys():
txtform.append(HT.Input(name=key, value=hddn[key], type='hidden'))
tbl = HT.TableLite(Class="collap", cellspacing=1, cellpadding=5,width=canvasWidth + colorAreaWidth)
c1 = HT.TD('Interval 1',colspan=3,align="Center", Class="fs13 fwb ffl b1 cw cbrb")
c2 = HT.TD('Interval 2',colspan=3,align="Center", Class="fs13 fwb ffl b1 cw cbrb")
c11 = HT.TD('Position',rowspan=2,align="Center", Class="fs13 fwb ffl b1 cw cbrb")
c12 = HT.TD('Flanking Markers',colspan=2,align="Center", Class="fs13 fwb ffl b1 cw cbrb")
c111 = HT.TD('Proximal',align="Center", Class="fs13 fwb ffl b1 cw cbrb")
c112 = HT.TD('Distal',align="Center", Class="fs13 fwb ffl b1 cw cbrb")
c3 = HT.TD('LRS Full',rowspan=3,align="Center", Class="fs13 fwb ffl b1 cw cbrb")
c4 = HT.TD('LRS Additive',rowspan=3,align="Center", Class="fs13 fwb ffl b1 cw cbrb")
c5 = HT.TD('LRS Interact',rowspan=3,align="Center", Class="fs13 fwb ffl b1 cw cbrb")
c6 = HT.TD('LRS 1',rowspan=3,align="Center", Class="fs13 fwb ffl b1 cw cbrb")
c7 = HT.TD('LRS 2',rowspan=3,align="Center", Class="fs13 fwb ffl b1 cw cbrb")
tbl.append(HT.TR(c1,c3,c4,c5,c6,c7,c2))
tbl.append(HT.TR(c11,c12,c11,c12))
tbl.append(HT.TR(c111,c112,c111,c112))
if not graphsort: #Sort by LRS Full
rectInfo.sort(webqtlUtil.cmpLRSFull)
rectInfoReturned = rectInfo[len(rectInfo) - returnIntervalPairNum:]
rectInfoReturned.reverse()
for item in rectInfoReturned:
LRSFull,LRSInteract,LRSa,LRSb,chras,chram,chrae,chrbs,chrbm,chrbe,chra,chrb,flanka,flankb = item
LRSAdditive = LRSFull - LRSInteract
flanka1,flanka2 = string.split(flanka)
flankb1,flankb2 = string.split(flankb)
urla1 = HT.Href(text = flanka1, url = "javascript:showTrait('%s','%s');" % (mainfmName, flanka1),Class= "fs12 fwn")
urla2 = HT.Href(text = flanka2, url = "javascript:showTrait('%s','%s');" % (mainfmName, flanka2),Class= "fs12 fwn")
urlb1 = HT.Href(text = flankb1, url = "javascript:showTrait('%s','%s');" % (mainfmName, flankb1),Class= "fs12 fwn")
urlb2 = HT.Href(text = flankb2, url = "javascript:showTrait('%s','%s');" % (mainfmName, flankb2),Class= "fs12 fwn")
urlGenGraph = HT.Href(text = "Plot", url = "javascript:showCateGraph('%s', '%s %s %2.3f', '%s %s %2.3f');" % (mainfmName, flanka1, flanka2, chram, flankb1, flankb2, chrbm),Class= "fs12 fwn")
tr1 = HT.TR(
HT.TD('Chr %s @ %2.1f cM ' % (chrsInfo[chra][1],chram),Class= "fs12 b1 fwn"),
HT.TD(urla1,Class= "fs12 b1 fwn"),
HT.TD(urla2,Class= "fs12 b1 fwn"),
HT.TD('%2.3f ' % LRSFull, urlGenGraph,Class= "fs12 b1 fwn"),
HT.TD('%2.3f' % LRSAdditive,Class= "fs12 b1 fwn"),
HT.TD('%2.3f' % LRSInteract,Class= "fs12 b1 fwn"),
HT.TD('%2.3f' % LRSa,Class= "fs12 b1 fwn"),
HT.TD('%2.3f' % LRSb,Class= "fs12 b1 fwn"),
HT.TD('Chr %s @ %2.1f cM' % (chrsInfo[chrb][1],chrbm),Class= "fs12 b1 fwn"),
HT.TD(urlb1,Class= "fs12 b1 fwn"),
HT.TD(urlb2,Class= "fs12 b1 fwn"))
tbl.append(tr1)
plotType1 = HT.Input(type="radio", name="plotType", value ="Dot", checked=1)
plotType2 = HT.Input(type="radio", name="plotType", value ="Box")
plotText = HT.Paragraph("Plot Type : ", plotType1, " Dot ", plotType2, " Box", )
txtform.append(plotText, tbl)
TD_LR = HT.TD(colspan=2,height=200,width="100%",bgColor='#eeeeee')
TD_LR.append(main_title,HT.Blockquote(subtitle1, pairIntro, HT.P(), HT.Center(form0,HT.P())),HT.Blockquote(subtitle2, permuIntro,HT.P(), HT.Center(permuTbl)), HT.Blockquote(subtitle3, tblIntro, HT.P(),HT.Center(txtform), HT.P()))
self.dict['body'] = str(TD_LR)
else:
heading = "Direct Plot"
detail = ['Fewer than %d strain data were entered for %s data set. No statitical analysis has been attempted.' % (webqtlConfig.KMININFORMATIVE, fd.RISet)]
self.error(heading=heading,detail=detail)
return
else:
heading = "Direct Plot"
detail = ['Empty data set, please check your data.']
self.error(heading=heading,detail=detail)
return
|