1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
|
# Copyright (C) University of Tennessee Health Science Center, Memphis, TN.
#
# This program is free software: you can redistribute it and/or modify it
# under the terms of the GNU Affero General Public License
# as published by the Free Software Foundation, either version 3 of the
# License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
# See the GNU Affero General Public License for more details.
#
# This program is available from Source Forge: at GeneNetwork Project
# (sourceforge.net/projects/genenetwork/).
#
# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010)
# at rwilliams@uthsc.edu and xzhou15@uthsc.edu
#
#
#
# This module is used by GeneNetwork project (www.genenetwork.org)
#
# Created by GeneNetwork Core Team 2010/08/10
#
# Last updated by GeneNetwork Core Team 2010/10/20
import os
import string
import piddle as pid
import cPickle
from htmlgen import HTMLgen2 as HT
from base.templatePage import templatePage
from base import webqtlConfig
from base.webqtlTrait import webqtlTrait
from utility import webqtlUtil
from utility import Plot
import slink
# XZ, 09/09/2008: After adding several traits to collection, click "QTL Heatmap" button,
# XZ, 09/09/2008: This class will generate what you see.
#########################################
# QTL heatmap Page
#########################################
class heatmapPage(templatePage):
labelFont=pid.Font(ttf="tahoma",size=14,bold=0)
topHeight = 0
def __init__(self,fd):
templatePage.__init__(self, fd)
if not self.openMysql():
return
if not fd.genotype:
fd.readGenotype()
self.searchResult = fd.formdata.getvalue('searchResult')
if not self.searchResult:
templatePage.__init__(self, fd)
heading = 'QTL Heatmap'
detail = ['You need to select at least two traits in order to generate correlation matrix.']
self.error(heading=heading,detail=detail)
return
if type("1") == type(self.searchResult):
self.searchResult = string.split(self.searchResult,'\t')
if self.searchResult:
if len(self.searchResult) > webqtlConfig.MAXCORR:
heading = 'QTL Heatmap'
detail = ['In order to display the QTL heat map properly, do not select more than %d traits for analysis.' % webqtlConfig.MAXCORR]
self.error(heading=heading,detail=detail)
return
traitList = []
traitDataList = []
for item in self.searchResult:
thisTrait = webqtlTrait(fullname=item, cursor=self.cursor)
thisTrait.retrieveInfo()
thisTrait.retrieveData(fd.strainlist)
traitList.append(thisTrait)
traitDataList.append(thisTrait.exportData(fd.strainlist))
else:
heading = 'QTL Heatmap'
detail = [HT.Font('Error : ',color='red'),HT.Font('Error occurs while retrieving data from database.',color='black')]
self.error(heading=heading,detail=detail)
return
self.colorScheme = fd.formdata.getvalue('colorScheme')
if not self.colorScheme:
self.colorScheme = '1'
self.dict['title'] = 'QTL heatmap'
NNN = len(traitList)
if NNN == 0:
heading = "QTL Heatmap"
detail = ['No trait was selected for %s data set. No QTL heatmap was generated.' % fd.RISet]
self.error(heading=heading,detail=detail)
return
elif NNN < 2:
templatePage.__init__(self, fd)
heading = 'QTL Heatmap'
detail = ['You need to select at least two traits in order to generate QTL heatmap.']
self.error(heading=heading,detail=detail)
return
else:
#XZ: It's necessory to define canvas here
canvas = pid.PILCanvas(size=(80+NNN*20,880))
names = map(webqtlTrait.displayName, traitList)
self.targetDescriptionChecked = fd.formdata.getvalue('targetDescriptionCheck', '')
#XZ, 7/29/2009: create trait display and find max strWidth
strWidth = 0
for j in range(len(names)):
thisTrait = traitList[j]
if self.targetDescriptionChecked:
if thisTrait.db.type == 'ProbeSet':
if thisTrait.probe_target_description:
names[j] += ' [%s at Chr %s @ %2.3fMB, %s]' % (thisTrait.symbol, thisTrait.chr, thisTrait.mb, thisTrait.probe_target_description)
else:
names[j] += ' [%s at Chr %s @ %2.3fMB]' % (thisTrait.symbol, thisTrait.chr, thisTrait.mb)
elif thisTrait.db.type == 'Geno':
names[j] += ' [Chr %s @ %2.3fMB]' % (thisTrait.chr, thisTrait.mb)
elif thisTrait.db.type == 'Publish':
if thisTrait.abbreviation:
names[j] += ' [%s]' % (thisTrait.abbreviation)
else:
pass
else:
pass
i = canvas.stringWidth(names[j],font=self.labelFont)
if i > strWidth:
strWidth = i
width = NNN*20
xoffset = 40
yoffset = 40
cellHeight = 3
nLoci = reduce(lambda x,y: x+y, map(lambda x: len(x),fd.genotype),0)
if nLoci > 2000:
cellHeight = 1
elif nLoci > 1000:
cellHeight = 2
elif nLoci < 200:
cellHeight = 10
else:
pass
pos = range(NNN)
neworder = []
BWs = Plot.BWSpectrum()
colors100 = Plot.colorSpectrum()
colors = Plot.colorSpectrum(130)
finecolors = Plot.colorSpectrum(250)
colors100.reverse()
colors.reverse()
finecolors.reverse()
scaleFont=pid.Font(ttf="tahoma",size=10,bold=0)
self.clusterChecked = fd.formdata.getvalue('clusterCheck', '')
if not self.clusterChecked: #XZ: this part is for original order
for i in range(len(names)):
neworder.append((xoffset+20*(i+1), i))
canvas = pid.PILCanvas(size=(80+NNN*20+240,80+ self.topHeight +5+5+strWidth+nLoci*cellHeight+80+20*cellHeight))
self.drawTraitNameBottom(canvas,names,yoffset,neworder,strWidth)
else: #XZ: this part is to cluster traits
self.topHeight = 400
canvas = pid.PILCanvas(size=(80+NNN*20+240,80+ self.topHeight +5+5+strWidth+nLoci*cellHeight+80+20*cellHeight))
corArray = [([0] * (NNN))[:] for i in range(NNN)]
nnCorr = len(fd.strainlist)
#XZ, 08/04/2009: I commented out pearsonArray, spearmanArray
for i, thisTrait in enumerate(traitList):
names1 = [thisTrait.db.name, thisTrait.name, thisTrait.cellid]
for j, thisTrait2 in enumerate(traitList):
names2 = [thisTrait2.db.name, thisTrait2.name, thisTrait2.cellid]
if j < i:
corr,nOverlap = webqtlUtil.calCorrelation(traitDataList[i],traitDataList[j],nnCorr)
if (1-corr) < 0:
distance = 0.0
else:
distance = 1-corr
corArray[i][j] = distance
corArray[j][i] = distance
elif j == i:
corArray[i][j] = 0.0
else:
pass
#XZ, 7/29/2009: The parameter d has info of cluster (group member and distance). The format of d is tricky. Print it out to see it's format.
d = slink.slink(corArray)
#XZ, 7/29/2009: Attention: The 'neworder' is changed by the 'draw' function
#XZ, 7/30/2009: Only toppos[1][0] and top[1][1] are used later. Then what toppos[0] is used for?
toppos = self.draw(canvas,names,d,xoffset,yoffset,neworder)
self.drawTraitNameTop(canvas,names,yoffset,neworder,strWidth)
#XZ, 7/29/2009: draw the top vertical line
canvas.drawLine(toppos[1][0],toppos[1][1],toppos[1][0],yoffset)
#XZ: draw string 'distance = 1-r'
canvas.drawString('distance = 1-r',neworder[-1][0] + 50, self.topHeight*3/4,font=self.labelFont,angle=90)
#draw Scale
scaleFont=pid.Font(ttf="tahoma",size=10,bold=0)
x = neworder[-1][0]
canvas.drawLine(x+5, self.topHeight+yoffset, x+5, yoffset, color=pid.black)
y = 0
while y <=2:
canvas.drawLine(x+5, self.topHeight*y/2.0+yoffset, x+10, self.topHeight*y/2.0+yoffset)
canvas.drawString('%2.1f' % (2-y), x+12, self.topHeight*y/2.0+yoffset, font=scaleFont)
y += 0.5
chrname = 0
chrnameFont=pid.Font(ttf="tahoma",size=24,bold=0)
Ncol = 0
gifmap = HT.Map(name='traitMap')
nearestMarkers = self.getNearestMarker(traitList, fd.genotype)
# import cPickle
sessionfile = fd.formdata.getvalue("session")
if sessionfile:
fp = open(os.path.join(webqtlConfig.TMPDIR, sessionfile + '.session'), 'rb')
permData = cPickle.load(fp)
fp.close()
else:
permData = {}
#XZ, 7/31/2009: This for loop is to generate the heatmap
#XZ: draw trait by trait instead of marker by marker
for order in neworder:
#startHeight = 40+400+5+5+strWidth
startHeight = self.topHeight + 40+5+5+strWidth
startWidth = order[0]-5
if Ncol and Ncol % 5 == 0:
drawStartPixel = 8
else:
drawStartPixel = 9
tempVal = traitDataList[order[1]]
_vals = []
_strains = []
for i in range(len(fd.strainlist)):
if tempVal[i] != None:
_strains.append(fd.strainlist[i])
_vals.append(tempVal[i])
qtlresult = fd.genotype.regression(strains = _strains, trait = _vals)
if sessionfile:
LRSArray = permData[str(traitList[order[1]])]
else:
LRSArray = fd.genotype.permutation(strains = _strains, trait = _vals, nperm = 1000)
permData[str(traitList[order[1]])] = LRSArray
sugLRS = LRSArray[369]
sigLRS = LRSArray[949]
prechr = 0
chrstart = 0
nearest = nearestMarkers[order[1]]
midpoint = []
for item in qtlresult:
if item.lrs > webqtlConfig.MAXLRS:
adjustlrs = webqtlConfig.MAXLRS
else:
adjustlrs = item.lrs
if item.locus.chr != prechr:
if prechr:
canvas.drawRect(startWidth-drawStartPixel, startHeight, startWidth+10, startHeight+3,edgeColor=pid.white, edgeWidth=0, fillColor=pid.white)
startHeight+= 3
if not chrname:
canvas.drawString(prechr,xoffset-20,(chrstart+startHeight)/2,font = chrnameFont,color=pid.dimgray)
prechr = item.locus.chr
chrstart = startHeight
if self.colorScheme == '0':
if adjustlrs <= sugLRS:
colorIndex = int(65*adjustlrs/sugLRS)
else:
colorIndex = int(65 + 35*(adjustlrs-sugLRS)/(sigLRS-sugLRS))
if colorIndex > 99:
colorIndex = 99
colorIndex = colors100[colorIndex]
elif self.colorScheme == '1':
sugLRS = LRSArray[369]/2.0
if adjustlrs <= sugLRS:
colorIndex = BWs[20+int(50*adjustlrs/sugLRS)]
else:
if item.additive > 0:
colorIndex = int(80 + 50*(adjustlrs-sugLRS)/(sigLRS-sugLRS))
else:
colorIndex = int(50 - 50*(adjustlrs-sugLRS)/(sigLRS-sugLRS))
if colorIndex > 129:
colorIndex = 129
if colorIndex < 0:
colorIndex = 0
colorIndex = colors[colorIndex]
elif self.colorScheme == '2':
if item.additive > 0:
colorIndex = int(150 + 100*(adjustlrs/sigLRS))
else:
colorIndex = int(100 - 100*(adjustlrs/sigLRS))
if colorIndex > 249:
colorIndex = 249
if colorIndex < 0:
colorIndex = 0
colorIndex = finecolors[colorIndex]
else:
colorIndex = pid.white
if startHeight > 1:
canvas.drawRect(startWidth-drawStartPixel, startHeight, startWidth+10, startHeight+cellHeight,edgeColor=colorIndex, edgeWidth=0, fillColor=colorIndex)
else:
canvas.drawLine(startWidth-drawStartPixel, startHeight, startWidth+10, startHeight, Color=colorIndex)
if item.locus.name == nearest:
midpoint = [startWidth,startHeight-5]
startHeight+=cellHeight
#XZ, map link to trait name and band
COORDS = "%d,%d,%d,%d" %(startWidth-drawStartPixel,self.topHeight+40,startWidth+10,startHeight)
HREF = "javascript:showDatabase2('%s','%s','%s');" % (traitList[order[1]].db.name, traitList[order[1]].name, traitList[order[1]].cellid)
Areas = HT.Area(shape='rect',coords=COORDS,href=HREF, title='%s' % names[order[1]])
gifmap.areas.append(Areas)
if midpoint:
traitPixel = ((midpoint[0],midpoint[1]),(midpoint[0]-6,midpoint[1]+12),(midpoint[0]+6,midpoint[1]+12))
canvas.drawPolygon(traitPixel,edgeColor=pid.black,fillColor=pid.orange,closed=1)
if not chrname:
canvas.drawString(prechr,xoffset-20,(chrstart+startHeight)/2,font = chrnameFont,color=pid.dimgray)
chrname = 1
Ncol += 1
#draw Spectrum
startSpect = neworder[-1][0] + 30
startHeight = self.topHeight + 40+5+5+strWidth
if self.colorScheme == '0':
for i in range(100):
canvas.drawLine(startSpect+i,startHeight+20,startSpect+i,startHeight+40,color=colors100[i])
scaleFont=pid.Font(ttf="tahoma",size=10,bold=0)
canvas.drawLine(startSpect,startHeight+45,startSpect,startHeight+39,color=pid.black)
canvas.drawString('LRS = 0',startSpect,startHeight+55,font=scaleFont)
canvas.drawLine(startSpect+64,startHeight+45,startSpect+64,startHeight+39,color=pid.black)
canvas.drawString('Suggestive LRS',startSpect+64,startHeight+55,font=scaleFont)
canvas.drawLine(startSpect+99,startHeight+45,startSpect+99,startHeight+39,color=pid.black)
canvas.drawString('Significant LRS',startSpect+105,startHeight+40,font=scaleFont)
elif self.colorScheme == '1':
for i in range(50):
canvas.drawLine(startSpect+i,startHeight,startSpect+i,startHeight+40,color=BWs[20+i])
for i in range(50,100):
canvas.drawLine(startSpect+i,startHeight,startSpect+i,startHeight+20,color=colors[100-i])
canvas.drawLine(startSpect+i,startHeight+20,startSpect+i,startHeight+40,color=colors[30+i])
canvas.drawLine(startSpect,startHeight+45,startSpect,startHeight+39,color=pid.black)
canvas.drawString('LRS = 0',startSpect,startHeight+60,font=scaleFont)
canvas.drawLine(startSpect+50,startHeight+45,startSpect+50,startHeight+39,color=pid.black)
canvas.drawString('0.5*Suggestive LRS',startSpect+50,startHeight+ 60,font=scaleFont)
canvas.drawLine(startSpect+99,startHeight+45,startSpect+99,startHeight+39,color=pid.black)
canvas.drawString('Significant LRS',startSpect+105,startHeight+50,font=scaleFont)
textFont=pid.Font(ttf="verdana",size=18,bold=0)
canvas.drawString('%s +' % fd.ppolar,startSpect+120,startHeight+ 35,font=textFont,color=pid.red)
canvas.drawString('%s +' % fd.mpolar,startSpect+120,startHeight+ 15,font=textFont,color=pid.blue)
elif self.colorScheme == '2':
for i in range(100):
canvas.drawLine(startSpect+i,startHeight,startSpect+i,startHeight+20,color=finecolors[100-i])
canvas.drawLine(startSpect+i,startHeight+20,startSpect+i,startHeight+40,color=finecolors[150+i])
canvas.drawLine(startSpect,startHeight+45,startSpect,startHeight+39,color=pid.black)
canvas.drawString('LRS = 0',startSpect,startHeight+60,font=scaleFont)
canvas.drawLine(startSpect+99,startHeight+45,startSpect+99,startHeight+39,color=pid.black)
canvas.drawString('Significant LRS',startSpect+105,startHeight+50,font=scaleFont)
textFont=pid.Font(ttf="verdana",size=18,bold=0)
canvas.drawString('%s +' % fd.ppolar,startSpect+120,startHeight+ 35,font=textFont,color=pid.red)
canvas.drawString('%s +' % fd.mpolar,startSpect+120,startHeight+ 15,font=textFont,color=pid.blue)
filename= webqtlUtil.genRandStr("Heatmap_")
canvas.save(webqtlConfig.IMGDIR+filename, format='png')
img2=HT.Image('/image/'+filename+'.png',border=0,usemap='#traitMap')
imgUrl = 'Right-click or control-click on the link to download this graph as a <a href="/image/%s.png" class="normalsize" target="_blank">PNG file</a>' % filename
form = HT.Form(cgi= os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), enctype='multipart/form-data', name='showDatabase', submit=HT.Input(type='hidden'))
hddn = {'FormID':'showDatabase','ProbeSetID':'_','database':fd.RISet+"Geno",'CellID':'_','RISet':fd.RISet,'searchResult':string.join(self.searchResult,'\t')}
if fd.incparentsf1:
hddn['incparentsf1']='ON'
for key in hddn.keys():
form.append(HT.Input(name=key, value=hddn[key], type='hidden'))
heatmap = HT.Input(type='button' ,name='mintmap',value='Redraw QTL Heatmap', onClick="databaseFunc(this.form,'heatmap');",Class="button")
spects = {'0':'Single Spectrum','1':'Grey + Blue + Red','2':'Blue + Red'}
schemeMenu = HT.Select(name='colorScheme')
schemeMenu.append(('Single Spectrum',0))
schemeMenu.append(('Grey + Blue + Red',1))
schemeMenu.append(('Blue + Red',2))
schemeMenu.selected.append(spects[self.colorScheme])
clusterCheck= HT.Input(type='checkbox', Class='checkbox', name='clusterCheck',checked=0)
targetDescriptionCheck = HT.Input(type='checkbox', Class='checkbox', name='targetDescriptionCheck',checked=0)
form.append(gifmap,schemeMenu, heatmap, HT.P(), clusterCheck, ' Cluster traits ', targetDescriptionCheck, ' Add description', HT.P(),img2, HT.P(), imgUrl)
if not sessionfile:
filename = webqtlUtil.generate_session()
webqtlUtil.dump_session(permData, os.path.join(webqtlConfig.TMPDIR, filename +'.session'))
sessionfile=filename
form.append(HT.Input(name='session', value=sessionfile, type='hidden'))
heatmapHelp = HT.Input(type='button' ,name='heatmapHelpButton',value='Info', onClick="openNewWin('/heatmap.html');",Class="button")
heatmapHeading = HT.Paragraph('QTL Heatmap ', heatmapHelp, Class="title")
TD_LR = HT.TD(colspan=2,height=200,width="100%",bgColor='#eeeeee')
TD_LR.append(heatmapHeading, HT.P(),HT.P(),HT.P(),HT.P(),HT.P(),form)
self.dict['body'] = str(TD_LR)
#XZ, 7/31/2009: This function put the order of traits into parameter neworder,
#XZ: return the position of the top vertical line of the hierarchical tree, draw the hierarchical tree.
def draw(self,canvas,names,d,xoffset,yoffset,neworder):
maxDistance = self.topHeight
fontoffset = 4 #XZ, 7/31/2009: used only for drawing tree
if type(d[0]) == type(1) and type(d[1]) == type(1):
neworder.append((xoffset+20,d[0]))
neworder.append((xoffset+40,d[1]))
height = d[2]*maxDistance/2
canvas.drawLine(xoffset+20-fontoffset,maxDistance+yoffset,xoffset+20-fontoffset,maxDistance-height+yoffset)
canvas.drawLine(xoffset+40-fontoffset,maxDistance+yoffset,xoffset+40-fontoffset,maxDistance-height+yoffset)
canvas.drawLine(xoffset+40-fontoffset,maxDistance+yoffset-height,xoffset+20-fontoffset,maxDistance-height+yoffset)
return (40,(xoffset+30-fontoffset,maxDistance-height+yoffset))
elif type(d[0]) == type(1):
neworder.append((xoffset+20,d[0]))
d2 = self.draw(canvas,names,d[1],xoffset+20,yoffset,neworder)
height = d[2]*maxDistance/2
canvas.drawLine(xoffset+20-fontoffset,maxDistance+yoffset,xoffset+20-fontoffset,maxDistance-height+yoffset)
canvas.drawLine(d2[1][0],d2[1][1],d2[1][0],maxDistance-height+yoffset)
canvas.drawLine(d2[1][0],maxDistance-height+yoffset,xoffset+20-fontoffset,maxDistance-height+yoffset)
return (20+d2[0],((d2[1][0]+xoffset+20-fontoffset)/2,maxDistance-height+yoffset))
elif type(d[1]) == type(1):
d1 = self.draw(canvas,names,d[0],xoffset,yoffset,neworder)
neworder.append((xoffset+d1[0]+20,d[1]))
height = d[2]*maxDistance/2
canvas.drawLine(xoffset+d1[0]+20-fontoffset,maxDistance+yoffset,xoffset+d1[0]+20-fontoffset,maxDistance-height+yoffset)
canvas.drawLine(d1[1][0],d1[1][1],d1[1][0],maxDistance-height+yoffset)
canvas.drawLine(d1[1][0],maxDistance-height+yoffset,xoffset+d1[0]+20-fontoffset,maxDistance-height+yoffset)
return (d1[0]+20,((d1[1][0]+xoffset+d1[0]+20-fontoffset)/2,maxDistance-height+yoffset))
else:
d1 = self.draw(canvas,names,d[0],xoffset,yoffset,neworder)
d2 = self.draw(canvas,names,d[1],xoffset+d1[0],yoffset,neworder)
height = d[2]*maxDistance/2
canvas.drawLine(d2[1][0],d2[1][1],d2[1][0],maxDistance-height+yoffset)
canvas.drawLine(d1[1][0],d1[1][1],d1[1][0],maxDistance-height+yoffset)
canvas.drawLine(d1[1][0],maxDistance-height+yoffset,d2[1][0],maxDistance-height+yoffset)
return (d1[0]+d2[0],((d1[1][0]+d2[1][0])/2,maxDistance-height+yoffset))
#XZ, 7/31/2009: dras trait names
def drawTraitNameBottom (self,canvas,names,yoffset,neworder,strWidth):
maxDistance = self.topHeight
for oneOrder in neworder:
canvas.drawString(names[oneOrder[1]],oneOrder[0]-5,maxDistance+yoffset+5+strWidth-canvas.stringWidth(names[oneOrder[1]],font=self.labelFont),font=self.labelFont,color=pid.black,angle=270)
def drawTraitNameTop (self,canvas,names,yoffset,neworder,strWidth):
maxDistance = self.topHeight
for oneOrder in neworder:
canvas.drawString(names[oneOrder[1]],oneOrder[0]-5,maxDistance+yoffset+5,font=self.labelFont,color=pid.black,angle=270)
def getNearestMarker(self,traitList, genotype):
out = []
if not genotype.Mbmap:
return [None]* len(traitList)
for item in traitList:
try:
nearest = None
for _chr in genotype:
if _chr.name != item.chr:
continue
distance = 1e30
for _locus in _chr:
if abs(_locus.Mb-item.mb) < distance:
distance = abs(_locus.Mb-item.mb)
nearest = _locus.name
out.append(nearest)
except:
out.append(None)
return out
|