"""Main routing table for GN2""" import MySQLdb import array import base64 import csv import difflib import datetime import flask import io # Todo: Use cStringIO? import json import numpy as np import os import pickle as pickle import random import sqlalchemy import sys import traceback import uuid import xlsxwriter from itertools import groupby from collections import namedtuple from zipfile import ZipFile from zipfile import ZIP_DEFLATED from wqflask import app from gn3.commands import run_cmd from gn3.db import diff_from_dict from gn3.db import fetchall from gn3.db import fetchone from gn3.db import insert from gn3.db import update from gn3.db import update_raw from gn3.db.metadata_audit import MetadataAudit from gn3.db.phenotypes import Phenotype from gn3.db.phenotypes import Probeset from gn3.db.phenotypes import Publication from gn3.db.phenotypes import PublishXRef from gn3.db.phenotypes import probeset_mapping from gn3.db.traits import get_trait_csv_sample_data from flask import current_app from flask import g from flask import flash from flask import Response from flask import request from flask import make_response from flask import render_template from flask import send_from_directory from flask import redirect from flask import url_for from flask import send_file # Some of these (like collect) might contain endpoints, so they're still used. # Blueprints should probably be used instead. from wqflask import collect from wqflask import search_results from wqflask import server_side from base.data_set import create_dataset # Used by YAML in marker_regression from wqflask.show_trait import show_trait from wqflask.show_trait import export_trait_data from wqflask.heatmap import heatmap from wqflask.external_tools import send_to_bnw from wqflask.external_tools import send_to_webgestalt from wqflask.external_tools import send_to_geneweaver from wqflask.comparison_bar_chart import comparison_bar_chart from wqflask.marker_regression import run_mapping from wqflask.marker_regression import display_mapping_results from wqflask.network_graph import network_graph from wqflask.correlation.show_corr_results import set_template_vars from wqflask.correlation.correlation_gn3_api import compute_correlation from wqflask.correlation_matrix import show_corr_matrix from wqflask.correlation import corr_scatter_plot # from wqflask.wgcna import wgcna_analysis # from wqflask.ctl import ctl_analysis from wqflask.snp_browser import snp_browser from wqflask.search_results import SearchResultPage from wqflask.export_traits import export_search_results_csv from wqflask.gsearch import GSearch from wqflask.update_search_results import GSearch as UpdateGSearch from wqflask.docs import Docs, update_text from wqflask.decorators import admin_login_required from wqflask.db_info import InfoPage from utility import temp_data from utility.tools import SQL_URI from utility.tools import TEMPDIR from utility.tools import USE_REDIS from utility.tools import GN_SERVER_URL from utility.tools import GN_VERSION from utility.tools import JS_TWITTER_POST_FETCHER_PATH from utility.tools import JS_GUIX_PATH from utility.helper_functions import get_species_groups from utility.authentication_tools import check_resource_availability from utility.redis_tools import get_redis_conn from base.webqtlConfig import GENERATED_IMAGE_DIR, DEFAULT_PRIVILEGES from utility.benchmark import Bench from pprint import pformat as pf from wqflask.database import db_session import utility.logger Redis = get_redis_conn() logger = utility.logger.getLogger(__name__) @app.before_request def connect_db(): logger.info("@app.before_request connect_db") db = getattr(g, '_database', None) if db is None: g.db = g._database = sqlalchemy.create_engine( SQL_URI, encoding="latin1") logger.debug(g.db) @app.before_request def check_access_permissions(): logger.debug("@app.before_request check_access_permissions") if 'dataset' in request.args: permissions = DEFAULT_PRIVILEGES if request.args['dataset'] != "Temp": dataset = create_dataset(request.args['dataset']) if dataset.type == "Temp": permissions = DEFAULT_PRIVILEGES elif 'trait_id' in request.args: permissions = check_resource_availability( dataset, request.args['trait_id']) elif dataset.type != "Publish": permissions = check_resource_availability(dataset) if type(permissions['data']) is list: if 'view' not in permissions['data']: return redirect(url_for("no_access_page")) else: if permissions['data'] == 'no-access': return redirect(url_for("no_access_page")) @app.teardown_appcontext def shutdown_session(exception=None): db = getattr(g, '_database', None) if db is not None: logger.debug("remove db_session") db_session.remove() g.db = None @app.errorhandler(Exception) def handle_bad_request(e): err_msg = str(e) logger.error(err_msg) logger.error(request.url) # get the stack trace and send it to the logger exc_type, exc_value, exc_traceback = sys.exc_info() logger.error(traceback.format_exc()) now = datetime.datetime.utcnow() time_str = now.strftime('%l:%M%p UTC %b %d, %Y') formatted_lines = [request.url + " (" + time_str + ")"] + traceback.format_exc().splitlines() # Handle random animations # Use a cookie to have one animation on refresh animation = request.cookies.get(err_msg[:32]) if not animation: list = [fn for fn in os.listdir( "./wqflask/static/gif/error") if fn.endswith(".gif")] animation = random.choice(list) resp = make_response(render_template("error.html", message=err_msg, stack=formatted_lines, error_image=animation, version=GN_VERSION)) # logger.error("Set cookie %s with %s" % (err_msg, animation)) resp.set_cookie(err_msg[:32], animation) return resp @app.route("/authentication_needed") def no_access_page(): return render_template("new_security/not_authenticated.html") @app.route("/") def index_page(): logger.info("Sending index_page") logger.info(request.url) params = request.args if 'import_collections' in params: import_collections = params['import_collections'] if import_collections == "true": g.user_session.import_traits_to_user(params['anon_id']) return render_template("index_page.html", version=GN_VERSION) @app.route("/tmp/") def tmp_page(img_path): logger.info("In tmp_page") logger.info("img_path:", img_path) logger.info(request.url) initial_start_vars = request.form logger.info("initial_start_vars:", initial_start_vars) imgfile = open(GENERATED_IMAGE_DIR + img_path, 'rb') imgdata = imgfile.read() imgB64 = base64.b64encode(imgdata) bytesarray = array.array('B', imgB64) return render_template("show_image.html", img_base64=bytesarray) @app.route("/js/") def js(filename): js_path = JS_GUIX_PATH name = filename if 'js_alt/' in filename: js_path = js_path.replace('genenetwork2/javascript', 'javascript') name = name.replace('js_alt/', '') return send_from_directory(js_path, name) @app.route("/css/") def css(filename): js_path = JS_GUIX_PATH name = filename if 'js_alt/' in filename: js_path = js_path.replace('genenetwork2/javascript', 'javascript') name = name.replace('js_alt/', '') return send_from_directory(js_path, name) @app.route("/twitter/") def twitter(filename): return send_from_directory(JS_TWITTER_POST_FETCHER_PATH, filename) @app.route("/search", methods=('GET',)) def search_page(): logger.info("in search_page") logger.info(request.url) result = None if USE_REDIS: with Bench("Trying Redis cache"): key = "search_results:v1:" + \ json.dumps(request.args, sort_keys=True) logger.debug("key is:", pf(key)) result = Redis.get(key) if result: logger.info("Redis cache hit on search results!") result = pickle.loads(result) else: logger.info("Skipping Redis cache (USE_REDIS=False)") logger.info("request.args is", request.args) the_search = SearchResultPage(request.args) result = the_search.__dict__ valid_search = result['search_term_exists'] if USE_REDIS and valid_search: Redis.set(key, pickle.dumps(result, pickle.HIGHEST_PROTOCOL)) Redis.expire(key, 60 * 60) if valid_search: return render_template("search_result_page.html", **result) else: return render_template("search_error.html") @app.route("/search_table", methods=('GET',)) def search_page_table(): logger.info("in search_page table") logger.info(request.url) logger.info("request.args is", request.args) the_search = search_results.SearchResultPage(request.args) logger.info(type(the_search.trait_list)) logger.info(the_search.trait_list) current_page = server_side.ServerSideTable( len(the_search.trait_list), the_search.trait_list, the_search.header_data_names, request.args, ).get_page() return flask.jsonify(current_page) @app.route("/gsearch", methods=('GET',)) def gsearchact(): logger.info(request.url) result = GSearch(request.args).__dict__ type = request.args['type'] if type == "gene": return render_template("gsearch_gene.html", **result) elif type == "phenotype": return render_template("gsearch_pheno.html", **result) @app.route("/gsearch_table", methods=('GET',)) def gsearchtable(): logger.info(request.url) gsearch_table_data = GSearch(request.args) current_page = server_side.ServerSideTable( gsearch_table_data.trait_count, gsearch_table_data.trait_list, gsearch_table_data.header_data_names, request.args, ).get_page() return flask.jsonify(current_page) @app.route("/gsearch_updating", methods=('POST',)) def gsearch_updating(): logger.info("REQUEST ARGS:", request.values) logger.info(request.url) result = UpdateGSearch(request.args).__dict__ return result['results'] @app.route("/docedit") def docedit(): logger.info(request.url) try: if g.user_session.record['user_email_address'] == "zachary.a.sloan@gmail.com" or g.user_session.record['user_email_address'] == "labwilliams@gmail.com": doc = Docs(request.args['entry'], request.args) return render_template("docedit.html", **doc.__dict__) else: return "You shouldn't be here!" except: return "You shouldn't be here!" @app.route('/generated/') def generated_file(filename): logger.info(request.url) return send_from_directory(GENERATED_IMAGE_DIR, filename) @app.route("/help") def help(): logger.info(request.url) doc = Docs("help", request.args) return render_template("docs.html", **doc.__dict__) @app.route("/wgcna_setup", methods=('POST',)) def wcgna_setup(): # We are going to get additional user input for the analysis logger.info("In wgcna, request.form is:", request.form) logger.info(request.url) # Display them using the template return render_template("wgcna_setup.html", **request.form) # @app.route("/wgcna_results", methods=('POST',)) # def wcgna_results(): # logger.info("In wgcna, request.form is:", request.form) # logger.info(request.url) # # Start R, load the package and pointers and create the analysis # wgcna = wgcna_analysis.WGCNA() # # Start the analysis, a wgcnaA object should be a separate long running thread # wgcnaA = wgcna.run_analysis(request.form) # # After the analysis is finished store the result # result = wgcna.process_results(wgcnaA) # # Display them using the template # return render_template("wgcna_results.html", **result) @app.route("/ctl_setup", methods=('POST',)) def ctl_setup(): # We are going to get additional user input for the analysis logger.info("In ctl, request.form is:", request.form) logger.info(request.url) # Display them using the template return render_template("ctl_setup.html", **request.form) # @app.route("/ctl_results", methods=('POST',)) # def ctl_results(): # logger.info("In ctl, request.form is:", request.form) # logger.info(request.url) # # Start R, load the package and pointers and create the analysis # ctl = ctl_analysis.CTL() # # Start the analysis, a ctlA object should be a separate long running thread # ctlA = ctl.run_analysis(request.form) # # After the analysis is finished store the result # result = ctl.process_results(ctlA) # # Display them using the template # return render_template("ctl_results.html", **result) @app.route("/intro") def intro(): doc = Docs("intro", request.args) return render_template("docs.html", **doc.__dict__) @app.route("/tutorials") def tutorials(): return render_template("tutorials.html") @app.route("/credits") def credits(): return render_template("credits.html") @app.route("/update_text", methods=('POST',)) def update_page(): update_text(request.form) doc = Docs(request.form['entry_type'], request.form) return render_template("docs.html", **doc.__dict__) @app.route("/submit_trait") def submit_trait_form(): logger.info(request.url) species_and_groups = get_species_groups() return render_template( "submit_trait.html", species_and_groups=species_and_groups, gn_server_url=GN_SERVER_URL, version=GN_VERSION) @app.route("/trait//edit/phenotype-id/") @admin_login_required def edit_phenotype(name, phenotype_id): conn = MySQLdb.Connect(db=current_app.config.get("DB_NAME"), user=current_app.config.get("DB_USER"), passwd=current_app.config.get("DB_PASS"), host=current_app.config.get("DB_HOST")) publish_xref = fetchone( conn=conn, table="PublishXRef", where=PublishXRef(id_=name, phenotype_id=phenotype_id)) phenotype_ = fetchone( conn=conn, table="Phenotype", where=Phenotype(id_=publish_xref.phenotype_id)) publication_ = fetchone( conn=conn, table="Publication", where=Publication(id_=publish_xref.publication_id)) json_data = fetchall( conn, "metadata_audit", where=MetadataAudit(dataset_id=publish_xref.id_)) Edit = namedtuple("Edit", ["field", "old", "new", "diff"]) Diff = namedtuple("Diff", ["author", "diff", "timestamp"]) diff_data = [] for data in json_data: json_ = json.loads(data.json_data) timestamp = json_.get("timestamp") author = json_.get("author") for key, value in json_.items(): if isinstance(value, dict): for field, data_ in value.items(): diff_data.append( Diff(author=author, diff=Edit(field, data_.get("old"), data_.get("new"), "\n".join(difflib.ndiff( [data_.get("old")], [data_.get("new")]))), timestamp=timestamp)) diff_data_ = None if len(diff_data) > 0: diff_data_ = groupby(diff_data, lambda x: x.timestamp) return render_template( "edit_phenotype.html", diff=diff_data_, publish_xref=publish_xref, phenotype=phenotype_, publication=publication_, version=GN_VERSION, ) @app.route("/trait/edit/probeset-name/") # @admin_login_required def edit_probeset(dataset_name): conn = MySQLdb.Connect(db=current_app.config.get("DB_NAME"), user=current_app.config.get("DB_USER"), passwd=current_app.config.get("DB_PASS"), host=current_app.config.get("DB_HOST")) probeset_ = fetchone(conn=conn, table="ProbeSet", columns=list(probeset_mapping.values()), where=Probeset(name=dataset_name)) json_data = fetchall( conn, "metadata_audit", where=MetadataAudit(dataset_id=probeset_.id_)) Edit = namedtuple("Edit", ["field", "old", "new", "diff"]) Diff = namedtuple("Diff", ["author", "diff", "timestamp"]) diff_data = [] for data in json_data: json_ = json.loads(data.json_data) timestamp = json_.get("timestamp") author = json_.get("author") for key, value in json_.items(): if isinstance(value, dict): for field, data_ in value.items(): diff_data.append( Diff(author=author, diff=Edit(field, data_.get("old"), data_.get("new"), "\n".join(difflib.ndiff( [data_.get("old")], [data_.get("new")]))), timestamp=timestamp)) diff_data_ = None if len(diff_data) > 0: diff_data_ = groupby(diff_data, lambda x: x.timestamp) return render_template( "edit_probeset.html", diff=diff_data_, probeset=probeset_) @app.route("/trait/update", methods=["POST"]) @admin_login_required def update_phenotype(): conn = MySQLdb.Connect(db=current_app.config.get("DB_NAME"), user=current_app.config.get("DB_USER"), passwd=current_app.config.get("DB_PASS"), host=current_app.config.get("DB_HOST")) data_ = request.form.to_dict() author = g.user_session.record.get(b'user_name') if 'file' not in request.files: flash("No sample data has been uploaded") else: file_ = request.files['file'] trait_name = str(data_.get('dataset-name')) phenotype_id = str(data_.get('phenotype-id', 35)) SAMPLE_DATADIR = "/tmp/sample-data/" if not os.path.exists(SAMPLE_DATADIR): os.makedirs(SAMPLE_DATADIR) if not os.path.exists(os.path.join(SAMPLE_DATADIR, "diffs")): os.makedirs(os.path.join(SAMPLE_DATADIR, "diffs")) if not os.path.exists(os.path.join(SAMPLE_DATADIR, "updated")): os.makedirs(os.path.join(SAMPLE_DATADIR, "updated")) current_time = str(datetime.datetime.now().isoformat()) new_file_name = ("/tmp/sample-data/updated/" f"{author.decode('utf-8')}." f"{trait_name}.{phenotype_id}." f"{current_time}.csv") uploaded_file_name = ("/tmp/sample-data/updated/" f"updated.{author.decode('utf-8')}." f"{trait_name}.{phenotype_id}." f"{current_time}.csv") file_.save(new_file_name) csv_ = get_trait_csv_sample_data(conn=conn, trait_name=str(trait_name), phenotype_id=str(phenotype_id)) with open(uploaded_file_name, "w") as f_: f_.write(csv_) r = run_cmd(cmd=("/home/bonface/opt/genenetwork3/bin/csvdiff " f"'{uploaded_file_name}' '{new_file_name}' " "--format json")) diff_output = ("/tmp/sample-data/diffs/" f"{trait_name}." f"{phenotype_id}.{current_time}.json") with open(diff_output, "w") as f: print(r.get("output")) dict_ = json.loads(r.get("output")) dict_.update({"author": author.decode('utf-8')}) dict_.update({"timestamp": datetime.datetime.now().strftime( "%Y-%m-%d %H:%M:%S")}) f.write(json.dumps(dict_)) # Run updates: phenotype_ = { "pre_pub_description": data_.get("pre-pub-desc"), "post_pub_description": data_.get("post-pub-desc"), "original_description": data_.get("orig-desc"), "units": data_.get("units"), "pre_pub_abbreviation": data_.get("pre-pub-abbrev"), "post_pub_abbreviation": data_.get("post-pub-abbrev"), "lab_code": data_.get("labcode"), "submitter": data_.get("submitter"), "owner": data_.get("owner"), "authorized_users": data_.get("authorized-users"), } updated_phenotypes = update( conn, "Phenotype", data=Phenotype(**phenotype_), where=Phenotype(id_=data_.get("phenotype-id"))) diff_data = {} if updated_phenotypes: diff_data.update({"Phenotype": diff_from_dict(old={ k: data_.get(f"old_{k}") for k, v in phenotype_.items() if v is not None}, new=phenotype_)}) publication_ = { "abstract": data_.get("abstract"), "authors": data_.get("authors"), "title": data_.get("title"), "journal": data_.get("journal"), "volume": data_.get("volume"), "pages": data_.get("pages"), "month": data_.get("month"), "year": data_.get("year") } updated_publications = update( conn, "Publication", data=Publication(**publication_), where=Publication(id_=data_.get("pubmed-id", data_.get("old_id_")))) if updated_publications: diff_data.update({"Publication": diff_from_dict(old={ k: data_.get(f"old_{k}") for k, v in publication_.items() if v is not None}, new=publication_)}) if diff_data: diff_data.update({"dataset_id": data_.get("dataset-name")}) diff_data.update({"author": author.decode('utf-8')}) diff_data.update({"timestamp": datetime.datetime.now().strftime( "%Y-%m-%d %H:%M:%S")}) insert(conn, table="metadata_audit", data=MetadataAudit(dataset_id=data_.get("dataset-name"), editor=author.decode("utf-8"), json_data=json.dumps(diff_data))) return redirect(f"/trait/{data_.get('dataset-name')}" f"/edit/phenotype-id/{data_.get('phenotype-id')}") @app.route("/probeset/update", methods=["POST"]) @admin_login_required def update_probeset(): conn = MySQLdb.Connect(db=current_app.config.get("DB_NAME"), user=current_app.config.get("DB_USER"), passwd=current_app.config.get("DB_PASS"), host=current_app.config.get("DB_HOST")) data_ = request.form.to_dict() probeset_ = { "id_": data_.get("id"), "symbol": data_.get("symbol"), "description": data_.get("description"), "probe_target_description": data_.get("probe_target_description"), "chr_": data_.get("chr"), "mb": data_.get("mb"), "alias": data_.get("alias"), "geneid": data_.get("geneid"), "homologeneid": data_.get("homologeneid"), "unigeneid": data_.get("unigeneid"), "omim": data_.get("OMIM"), "refseq_transcriptid": data_.get("refseq_transcriptid"), "blatseq": data_.get("blatseq"), "targetseq": data_.get("targetseq"), "strand_probe": data_.get("Strand_Probe"), "probe_set_target_region": data_.get("probe_set_target_region"), "probe_set_specificity": data_.get("probe_set_specificity"), "probe_set_blat_score": data_.get("probe_set_blat_score"), "probe_set_blat_mb_start": data_.get("probe_set_blat_mb_start"), "probe_set_blat_mb_end": data_.get("probe_set_blat_mb_end"), "probe_set_strand": data_.get("probe_set_strand"), "probe_set_note_by_rw": data_.get("probe_set_note_by_rw"), "flag": data_.get("flag") } updated_probeset = update( conn, "ProbeSet", data=Probeset(**probeset_), where=Probeset(id_=data_.get("id"))) diff_data = {} author = g.user_session.record.get(b'user_name') if updated_probeset: diff_data.update({"Probeset": diff_from_dict(old={ k: data_.get(f"old_{k}") for k, v in probeset_.items() if v is not None}, new=probeset_)}) if diff_data: diff_data.update({"probeset_name": data_.get("probeset_name")}) diff_data.update({"author": author.decode('utf-8')}) diff_data.update({"timestamp": datetime.datetime.now().strftime( "%Y-%m-%d %H:%M:%S")}) insert(conn, table="metadata_audit", data=MetadataAudit(dataset_id=data_.get("id"), editor=author.decode("utf-8"), json_data=json.dumps(diff_data))) return redirect(f"/trait/edit/probeset-name/{data_.get('probeset_name')}") @app.route("/create_temp_trait", methods=('POST',)) def create_temp_trait(): logger.info(request.url) doc = Docs("links") return render_template("links.html", **doc.__dict__) @app.route('/export_trait_excel', methods=('POST',)) def export_trait_excel(): """Excel file consisting of the sample data from the trait data and analysis page""" logger.info("In export_trait_excel") logger.info("request.form:", request.form) logger.info(request.url) trait_name, sample_data = export_trait_data.export_sample_table( request.form) logger.info("sample_data - type: %s -- size: %s" % (type(sample_data), len(sample_data))) buff = io.BytesIO() workbook = xlsxwriter.Workbook(buff, {'in_memory': True}) worksheet = workbook.add_worksheet() for i, row in enumerate(sample_data): for j, column in enumerate(row): worksheet.write(i, j, row[j]) workbook.close() excel_data = buff.getvalue() buff.close() return Response(excel_data, mimetype='application/vnd.ms-excel', headers={"Content-Disposition": "attachment;filename=" + trait_name + ".xlsx"}) @app.route('/export_trait_csv', methods=('POST',)) def export_trait_csv(): """CSV file consisting of the sample data from the trait data and analysis page""" logger.info("In export_trait_csv") logger.info("request.form:", request.form) logger.info(request.url) trait_name, sample_data = export_trait_data.export_sample_table( request.form) logger.info("sample_data - type: %s -- size: %s" % (type(sample_data), len(sample_data))) buff = io.StringIO() writer = csv.writer(buff) for row in sample_data: writer.writerow(row) csv_data = buff.getvalue() buff.close() return Response(csv_data, mimetype='text/csv', headers={"Content-Disposition": "attachment;filename=" + trait_name + ".csv"}) @app.route('/export_traits_csv', methods=('POST',)) def export_traits_csv(): """CSV file consisting of the traits from the search result page""" logger.info("In export_traits_csv") logger.info("request.form:", request.form) logger.info(request.url) file_list = export_search_results_csv(request.form) if len(file_list) > 1: now = datetime.datetime.now() time_str = now.strftime('%H:%M_%d%B%Y') filename = "export_{}".format(time_str) memory_file = io.BytesIO() with ZipFile(memory_file, mode='w', compression=ZIP_DEFLATED) as zf: for the_file in file_list: zf.writestr(the_file[0], the_file[1]) memory_file.seek(0) return send_file(memory_file, attachment_filename=filename + ".zip", as_attachment=True) else: return Response(file_list[0][1], mimetype='text/csv', headers={"Content-Disposition": "attachment;filename=" + file_list[0][0]}) @app.route('/export_perm_data', methods=('POST',)) def export_perm_data(): """CSV file consisting of the permutation data for the mapping results""" logger.info(request.url) perm_info = json.loads(request.form['perm_info']) now = datetime.datetime.now() time_str = now.strftime('%H:%M_%d%B%Y') file_name = "Permutation_" + \ perm_info['num_perm'] + "_" + perm_info['trait_name'] + "_" + time_str the_rows = [ ["#Permutation Test"], ["#File_name: " + file_name], ["#Metadata: From GeneNetwork.org"], ["#Trait_ID: " + perm_info['trait_name']], ["#Trait_description: " + perm_info['trait_description']], ["#N_permutations: " + str(perm_info['num_perm'])], ["#Cofactors: " + perm_info['cofactors']], ["#N_cases: " + str(perm_info['n_samples'])], ["#N_genotypes: " + str(perm_info['n_genotypes'])], ["#Genotype_file: " + perm_info['genofile']], ["#Units_linkage: " + perm_info['units_linkage']], ["#Permutation_stratified_by: " + ", ".join([str(cofactor) for cofactor in perm_info['strat_cofactors']])], ["#RESULTS_1: Suggestive LRS(p=0.63) = " + str(np.percentile(np.array(perm_info['perm_data']), 67))], ["#RESULTS_2: Significant LRS(p=0.05) = " + str( np.percentile(np.array(perm_info['perm_data']), 95))], ["#RESULTS_3: Highly Significant LRS(p=0.01) = " + str( np.percentile(np.array(perm_info['perm_data']), 99))], ["#Comment: Results sorted from low to high peak linkage"] ] buff = io.StringIO() writer = csv.writer(buff) writer.writerows(the_rows) for item in perm_info['perm_data']: writer.writerow([item]) csv_data = buff.getvalue() buff.close() return Response(csv_data, mimetype='text/csv', headers={"Content-Disposition": "attachment;filename=" + file_name + ".csv"}) @app.route("/show_temp_trait", methods=('POST',)) def show_temp_trait_page(): logger.info(request.url) template_vars = show_trait.ShowTrait(request.form) template_vars.js_data = json.dumps(template_vars.js_data, default=json_default_handler, indent=" ") return render_template("show_trait.html", **template_vars.__dict__) @app.route("/show_trait") def show_trait_page(): logger.info(request.url) template_vars = show_trait.ShowTrait(request.args) template_vars.js_data = json.dumps(template_vars.js_data, default=json_default_handler, indent=" ") return render_template("show_trait.html", **template_vars.__dict__) @app.route("/heatmap", methods=('POST',)) def heatmap_page(): logger.info("In heatmap, request.form is:", pf(request.form)) logger.info(request.url) start_vars = request.form temp_uuid = uuid.uuid4() traits = [trait.strip() for trait in start_vars['trait_list'].split(',')] if traits[0] != "": version = "v5" key = "heatmap:{}:".format( version) + json.dumps(start_vars, sort_keys=True) logger.info("key is:", pf(key)) with Bench("Loading cache"): result = Redis.get(key) if result: logger.info("Cache hit!!!") with Bench("Loading results"): result = pickle.loads(result) else: logger.info("Cache miss!!!") template_vars = heatmap.Heatmap(request.form, temp_uuid) template_vars.js_data = json.dumps(template_vars.js_data, default=json_default_handler, indent=" ") result = template_vars.__dict__ for item in list(template_vars.__dict__.keys()): logger.info( " ---**--- {}: {}".format(type(template_vars.__dict__[item]), item)) pickled_result = pickle.dumps(result, pickle.HIGHEST_PROTOCOL) logger.info("pickled result length:", len(pickled_result)) Redis.set(key, pickled_result) Redis.expire(key, 60 * 60) with Bench("Rendering template"): rendered_template = render_template("heatmap.html", **result) else: rendered_template = render_template( "empty_collection.html", **{'tool': 'Heatmap'}) return rendered_template @app.route("/bnw_page", methods=('POST',)) def bnw_page(): logger.info("In run BNW, request.form is:", pf(request.form)) logger.info(request.url) start_vars = request.form traits = [trait.strip() for trait in start_vars['trait_list'].split(',')] if traits[0] != "": template_vars = send_to_bnw.SendToBNW(request.form) result = template_vars.__dict__ rendered_template = render_template("bnw_page.html", **result) else: rendered_template = render_template( "empty_collection.html", **{'tool': 'BNW'}) return rendered_template @app.route("/webgestalt_page", methods=('POST',)) def webgestalt_page(): logger.info("In run WebGestalt, request.form is:", pf(request.form)) logger.info(request.url) start_vars = request.form traits = [trait.strip() for trait in start_vars['trait_list'].split(',')] if traits[0] != "": template_vars = send_to_webgestalt.SendToWebGestalt(request.form) result = template_vars.__dict__ rendered_template = render_template("webgestalt_page.html", **result) else: rendered_template = render_template( "empty_collection.html", **{'tool': 'WebGestalt'}) return rendered_template @app.route("/geneweaver_page", methods=('POST',)) def geneweaver_page(): logger.info("In run WebGestalt, request.form is:", pf(request.form)) logger.info(request.url) start_vars = request.form traits = [trait.strip() for trait in start_vars['trait_list'].split(',')] if traits[0] != "": template_vars = send_to_geneweaver.SendToGeneWeaver(request.form) result = template_vars.__dict__ rendered_template = render_template("geneweaver_page.html", **result) else: rendered_template = render_template( "empty_collection.html", **{'tool': 'GeneWeaver'}) return rendered_template @app.route("/comparison_bar_chart", methods=('POST',)) def comp_bar_chart_page(): logger.info("In comp bar chart, request.form is:", pf(request.form)) logger.info(request.url) start_vars = request.form traits = [trait.strip() for trait in start_vars['trait_list'].split(',')] if traits[0] != "": template_vars = comparison_bar_chart.ComparisonBarChart(request.form) template_vars.js_data = json.dumps(template_vars.js_data, default=json_default_handler, indent=" ") result = template_vars.__dict__ rendered_template = render_template( "comparison_bar_chart.html", **result) else: rendered_template = render_template( "empty_collection.html", **{'tool': 'Comparison Bar Chart'}) return rendered_template @app.route("/mapping_results_container") def mapping_results_container_page(): return render_template("mapping_results_container.html") @app.route("/loading", methods=('POST',)) def loading_page(): # logger.info(request.url) initial_start_vars = request.form start_vars_container = {} n_samples = 0 # ZS: So it can be displayed on loading page if 'wanted_inputs' in initial_start_vars: wanted = initial_start_vars['wanted_inputs'].split(",") start_vars = {} for key, value in list(initial_start_vars.items()): if key in wanted: start_vars[key] = value if 'n_samples' in start_vars: n_samples = int(start_vars['n_samples']) else: sample_vals_dict = json.loads(start_vars['sample_vals']) if 'group' in start_vars: dataset = create_dataset( start_vars['dataset'], group_name=start_vars['group']) else: dataset = create_dataset(start_vars['dataset']) samples = start_vars['primary_samples'].split(",") if 'genofile' in start_vars: if start_vars['genofile'] != "": genofile_string = start_vars['genofile'] dataset.group.genofile = genofile_string.split(":")[0] genofile_samples = run_mapping.get_genofile_samplelist( dataset) if len(genofile_samples) > 1: samples = genofile_samples for sample in samples: if sample in sample_vals_dict: if sample_vals_dict[sample] != "x": n_samples += 1 start_vars['n_samples'] = n_samples start_vars['wanted_inputs'] = initial_start_vars['wanted_inputs'] start_vars_container['start_vars'] = start_vars else: start_vars_container['start_vars'] = initial_start_vars rendered_template = render_template("loading.html", **start_vars_container) return rendered_template @app.route("/run_mapping", methods=('POST',)) def mapping_results_page(): initial_start_vars = request.form logger.info(request.url) temp_uuid = initial_start_vars['temp_uuid'] wanted = ( 'trait_id', 'dataset', 'group', 'species', 'samples', 'vals', 'sample_vals', 'first_run', 'output_files', 'geno_db_exists', 'method', 'mapping_results_path', 'trimmed_markers', 'selected_chr', 'chromosomes', 'mapping_scale', 'plotScale', 'score_type', 'suggestive', 'significant', 'num_perm', 'permCheck', 'perm_strata', 'strat_var', 'categorical_vars', 'perm_output', 'num_bootstrap', 'bootCheck', 'bootstrap_results', 'LRSCheck', 'covariates', 'maf', 'use_loco', 'manhattan_plot', 'color_scheme', 'manhattan_single_color', 'control_marker', 'do_control', 'genofile', 'genofile_string', 'pair_scan', 'startMb', 'endMb', 'graphWidth', 'lrsMax', 'additiveCheck', 'showSNP', 'showGenes', 'viewLegend', 'haplotypeAnalystCheck', 'mapmethod_rqtl_geno', 'mapmodel_rqtl_geno', 'temp_trait', 'reaper_version', 'n_samples', 'transform' ) start_vars = {} for key, value in list(initial_start_vars.items()): if key in wanted: start_vars[key] = value version = "v3" key = "mapping_results:{}:".format( version) + json.dumps(start_vars, sort_keys=True) with Bench("Loading cache"): result = None # Just for testing #result = Redis.get(key) #logger.info("************************ Starting result *****************") #logger.info("result is [{}]: {}".format(type(result), result)) #logger.info("************************ Ending result ********************") if result: logger.info("Cache hit!!!") with Bench("Loading results"): result = pickle.loads(result) else: logger.info("Cache miss!!!") with Bench("Total time in RunMapping"): try: template_vars = run_mapping.RunMapping(start_vars, temp_uuid) if template_vars.no_results: rendered_template = render_template("mapping_error.html") return rendered_template except: rendered_template = render_template("mapping_error.html") return rendered_template template_vars.js_data = json.dumps(template_vars.js_data, default=json_default_handler, indent=" ") result = template_vars.__dict__ if result['pair_scan']: with Bench("Rendering template"): img_path = result['pair_scan_filename'] logger.info("img_path:", img_path) initial_start_vars = request.form logger.info("initial_start_vars:", initial_start_vars) imgfile = open(TEMPDIR + img_path, 'rb') imgdata = imgfile.read() imgB64 = base64.b64encode(imgdata) bytesarray = array.array('B', imgB64) result['pair_scan_array'] = bytesarray rendered_template = render_template( "pair_scan_results.html", **result) else: gn1_template_vars = display_mapping_results.DisplayMappingResults( result).__dict__ with Bench("Rendering template"): rendered_template = render_template( "mapping_results.html", **gn1_template_vars) return rendered_template @app.route("/export_mapping_results", methods=('POST',)) def export_mapping_results(): logger.info("request.form:", request.form) logger.info(request.url) file_path = request.form.get("results_path") results_csv = open(file_path, "r").read() response = Response(results_csv, mimetype='text/csv', headers={"Content-Disposition": "attachment;filename=mapping_results.csv"}) return response @app.route("/export_corr_matrix", methods=('POST',)) def export_corr_matrix(): file_path = request.form.get("export_filepath") file_name = request.form.get("export_filename") results_csv = open(file_path, "r").read() response = Response(results_csv, mimetype='text/csv', headers={"Content-Disposition": "attachment;filename=" + file_name + ".csv"}) return response @app.route("/export", methods=('POST',)) def export(): logger.info("request.form:", request.form) logger.info(request.url) svg_xml = request.form.get("data", "Invalid data") filename = request.form.get("filename", "manhattan_plot_snp") response = Response(svg_xml, mimetype="image/svg+xml") response.headers["Content-Disposition"] = "attachment; filename=%s" % filename return response @app.route("/export_pdf", methods=('POST',)) def export_pdf(): import cairosvg logger.info("request.form:", request.form) logger.info(request.url) svg_xml = request.form.get("data", "Invalid data") logger.info("svg_xml:", svg_xml) filename = request.form.get("filename", "interval_map_pdf") pdf_file = cairosvg.svg2pdf(bytestring=svg_xml) response = Response(pdf_file, mimetype="application/pdf") response.headers["Content-Disposition"] = "attachment; filename=%s" % filename return response @app.route("/network_graph", methods=('POST',)) def network_graph_page(): logger.info("In network_graph, request.form is:", pf(request.form)) logger.info(request.url) start_vars = request.form traits = [trait.strip() for trait in start_vars['trait_list'].split(',')] if traits[0] != "": template_vars = network_graph.NetworkGraph(start_vars) template_vars.js_data = json.dumps(template_vars.js_data, default=json_default_handler, indent=" ") return render_template("network_graph.html", **template_vars.__dict__) else: return render_template("empty_collection.html", **{'tool': 'Network Graph'}) @app.route("/corr_compute", methods=('POST',)) def corr_compute_page(): correlation_results = compute_correlation(request.form, compute_all=True) correlation_results = set_template_vars(request.form, correlation_results) return render_template("correlation_page.html", **correlation_results) @app.route("/test_corr_compute", methods=["POST"]) def test_corr_compute_page(): correlation_data = compute_correlation(request.form, compute_all=True) return render_template("test_correlation_page.html", **correlation_data) @app.route("/corr_matrix", methods=('POST',)) def corr_matrix_page(): logger.info("In corr_matrix, request.form is:", pf(request.form)) logger.info(request.url) start_vars = request.form traits = [trait.strip() for trait in start_vars['trait_list'].split(',')] if len(traits) > 1: template_vars = show_corr_matrix.CorrelationMatrix(start_vars) template_vars.js_data = json.dumps(template_vars.js_data, default=json_default_handler, indent=" ") return render_template("correlation_matrix.html", **template_vars.__dict__) else: return render_template("empty_collection.html", **{'tool': 'Correlation Matrix'}) @app.route("/corr_scatter_plot") def corr_scatter_plot_page(): logger.info(request.url) template_vars = corr_scatter_plot.CorrScatterPlot(request.args) template_vars.js_data = json.dumps(template_vars.js_data, default=json_default_handler, indent=" ") return render_template("corr_scatterplot.html", **template_vars.__dict__) @app.route("/snp_browser", methods=('GET',)) def snp_browser_page(): logger.info(request.url) template_vars = snp_browser.SnpBrowser(request.args) return render_template("snp_browser.html", **template_vars.__dict__) @app.route("/db_info", methods=('GET',)) def db_info_page(): template_vars = InfoPage(request.args) return render_template("info_page.html", **template_vars.__dict__) @app.route("/snp_browser_table", methods=('GET',)) def snp_browser_table(): logger.info(request.url) snp_table_data = snp_browser.SnpBrowser(request.args) current_page = server_side.ServerSideTable( snp_table_data.rows_count, snp_table_data.table_rows, snp_table_data.header_data_names, request.args, ).get_page() return flask.jsonify(current_page) @app.route("/tutorial/WebQTLTour", methods=('GET',)) def tutorial_page(): # ZS: Currently just links to GN1 logger.info(request.url) return redirect("http://gn1.genenetwork.org/tutorial/WebQTLTour/") @app.route("/tutorial/security", methods=('GET',)) def security_tutorial_page(): # ZS: Currently just links to GN1 logger.info(request.url) return render_template("admin/security_help.html") @app.route("/submit_bnw", methods=('POST',)) def submit_bnw(): logger.info(request.url) return render_template("empty_collection.html", **{'tool': 'Correlation Matrix'}) # Take this out or secure it before putting into production @app.route("/get_temp_data") def get_temp_data(): logger.info(request.url) temp_uuid = request.args['key'] return flask.jsonify(temp_data.TempData(temp_uuid).get_all()) @app.route("/browser_input", methods=('GET',)) def browser_inputs(): """ Returns JSON from tmp directory for the purescript genome browser""" filename = request.args['filename'] with open("{}/gn2/".format(TEMPDIR) + filename + ".json", "r") as the_file: file_contents = json.load(the_file) return flask.jsonify(file_contents) def json_default_handler(obj): """Based on http://stackoverflow.com/a/2680060/1175849""" # Handle datestamps if hasattr(obj, 'isoformat'): return obj.isoformat() # Handle integer keys for dictionaries elif isinstance(obj, int) or isinstance(obj, uuid.UUID): return str(obj) # Handle custom objects if hasattr(obj, '__dict__'): return obj.__dict__ else: raise TypeError('Object of type %s with value of %s is not JSON serializable' % ( type(obj), repr(obj))) @app.route("/trait//sampledata/") def get_sample_data_as_csv(trait_name: int, phenotype_id: int): conn = MySQLdb.Connect(db=current_app.config.get("DB_NAME"), user=current_app.config.get("DB_USER"), passwd=current_app.config.get("DB_PASS"), host=current_app.config.get("DB_HOST")) csv_ = get_trait_csv_sample_data(conn, str(trait_name), str(phenotype_id)) return Response( csv_, mimetype="text/csv", headers={"Content-disposition": "attachment; filename=myplot.csv"} ) @app.route("/data/approve/") def display_diffs_admin(): DIFF_DIR = "/tmp/sample-data/diffs" files = [] if os.path.exists(DIFF_DIR): files = filter(lambda x: not(x.endswith((".approved", ".rejected"))), os.listdir(DIFF_DIR)) return render_template("display_files.html", files=files) @app.route("/data-samples/approve/") def approve_data(name): sample_data = {} conn = MySQLdb.Connect(db=current_app.config.get("DB_NAME"), user=current_app.config.get("DB_USER"), passwd=current_app.config.get("DB_PASS"), host=current_app.config.get("DB_HOST")) with open(os.path.join("/tmp/sample-data/diffs", name), 'r') as myfile: sample_data = json.load(myfile) modifications = [d for d in sample_data.get("Modifications")] for modification in modifications: if modifications.get("current"): (strain_id, publish_id, strain_name, value, se, count) = modification.get("Current").split(",") row_counts = update_sample_data( conn=conn, strain_name=strain_name, strain_id=int(strain_id), publish_data_id=int(PUBLISH_ID), value=value, error=se, count=int(count) ) insert(conn, table="metadata_audit", data=MetadataAudit( dataset_id=sample_data.get("publishdata_id"), editor=sample_data.get("author"), json_data=json.dumps(sample_data))) # Once data is approved, rename it! os.rename(os.path.join("/tmp/sample-data/diffs", name), os.path.join("/tmp/sample-data/diffs", f"{name}.approved")) return redirect("/data/approve/") @app.route("/display-file/") def display_file(name): with open(os.path.join("/tmp/sample-data/diffs", name), 'r') as myfile: content = myfile.read() return Response(content, mimetype='text/json')