# -*- coding: utf-8 -*- # # Main routing table for GN2 from __future__ import absolute_import, division, print_function import traceback # for error page import os # for error gifs import random # for random error gif import datetime # for errors import time # for errors import sys import csv import xlsxwriter import StringIO # Todo: Use cStringIO? import gc import cPickle as pickle import uuid import simplejson as json import yaml #Switching from Redis to StrictRedis; might cause some issues import redis Redis = redis.StrictRedis() import flask import base64 import array import sqlalchemy from wqflask import app from flask import g, Response, request, make_response, render_template, send_from_directory, jsonify, redirect from wqflask import search_results from wqflask import export_traits from wqflask import gsearch from wqflask import update_search_results from wqflask import docs from wqflask import news from wqflask.submit_bnw import get_bnw_input from base.data_set import DataSet # Used by YAML in marker_regression from wqflask.show_trait import show_trait from wqflask.show_trait import export_trait_data from wqflask.heatmap import heatmap from wqflask.comparison_bar_chart import comparison_bar_chart from wqflask.marker_regression import marker_regression from wqflask.marker_regression import marker_regression_gn1 from wqflask.network_graph import network_graph from wqflask.correlation import show_corr_results from wqflask.correlation_matrix import show_corr_matrix from wqflask.correlation import corr_scatter_plot from wqflask.wgcna import wgcna_analysis from wqflask.ctl import ctl_analysis #from wqflask.trait_submission import submit_trait from utility import temp_data from utility.tools import SQL_URI,TEMPDIR,USE_REDIS,USE_GN_SERVER,GN_SERVER_URL,GN_VERSION,JS_TWITTER_POST_FETCHER_PATH,JS_GUIX_PATH, CSS_PATH from utility.helper_functions import get_species_groups from base.webqtlConfig import GENERATED_IMAGE_DIR from utility.benchmark import Bench from pprint import pformat as pf from wqflask import user_manager from wqflask import collect from wqflask.database import db_session import werkzeug import utility.logger logger = utility.logger.getLogger(__name__ ) @app.before_request def connect_db(): db = getattr(g, '_database', None) if db is None: logger.debug("Get new database connector") g.db = g._database = sqlalchemy.create_engine(SQL_URI) logger.debug(g.db) @app.teardown_appcontext def shutdown_session(exception=None): db = getattr(g, '_database', None) if db is not None: logger.debug("remove db_session") db_session.remove() g.db = None @app.errorhandler(Exception) def handle_bad_request(e): err_msg = str(e) logger.error(err_msg) logger.error(request.url) # get the stack trace and send it to the logger exc_type, exc_value, exc_traceback = sys.exc_info() logger.error(traceback.format_exc()) now = datetime.datetime.utcnow() time_str = now.strftime('%l:%M%p UTC %b %d, %Y') formatted_lines = [request.url + " ("+time_str+")"]+traceback.format_exc().splitlines() # Handle random animations # Use a cookie to have one animation on refresh animation = request.cookies.get(err_msg[:32]) if not animation: list = [fn for fn in os.listdir("./wqflask/static/gif/error") if fn.endswith(".gif") ] animation = random.choice(list) resp = make_response(render_template("error.html",message=err_msg,stack=formatted_lines,error_image=animation,version=GN_VERSION)) # logger.error("Set cookie %s with %s" % (err_msg, animation)) resp.set_cookie(err_msg[:32],animation) return resp @app.route("/") def index_page(): logger.info("Sending index_page") logger.info(request.url) params = request.args if 'import_collections' in params: import_collections = params['import_collections'] if import_collections == "true": g.cookie_session.import_traits_to_user() if USE_GN_SERVER: # The menu is generated using GN_SERVER return render_template("index_page.html", gn_server_url = GN_SERVER_URL, version=GN_VERSION) else: # Old style static menu (OBSOLETE) return render_template("index_page_orig.html", version=GN_VERSION) @app.route("/tmp/") def tmp_page(img_path): logger.info("In tmp_page") logger.info("img_path:", img_path) logger.info(request.url) initial_start_vars = request.form logger.info("initial_start_vars:", initial_start_vars) imgfile = open(GENERATED_IMAGE_DIR + img_path, 'rb') imgdata = imgfile.read() imgB64 = imgdata.encode("base64") bytesarray = array.array('B', imgB64) return render_template("show_image.html", img_base64 = bytesarray ) @app.route("/js/") def js(filename): return send_from_directory(JS_GUIX_PATH, filename) @app.route("/css/") def css(filename): return send_from_directory(CSS_PATH, filename) @app.route("/twitter/") def twitter(filename): return send_from_directory(JS_TWITTER_POST_FETCHER_PATH, filename) @app.route("/search", methods=('GET',)) def search_page(): logger.info("in search_page") logger.info(request.url) result = None if USE_REDIS: with Bench("Trying Redis cache"): key = "search_results:v1:" + json.dumps(request.args, sort_keys=True) logger.debug("key is:", pf(key)) result = Redis.get(key) if result: logger.info("Redis cache hit on search results!") result = pickle.loads(result) else: logger.info("Skipping Redis cache (USE_REDIS=False)") logger.info("request.args is", request.args) the_search = search_results.SearchResultPage(request.args) result = the_search.__dict__ valid_search = result['search_term_exists'] logger.debugf("result", result) if USE_REDIS and valid_search: Redis.set(key, pickle.dumps(result, pickle.HIGHEST_PROTOCOL)) Redis.expire(key, 60*60) if valid_search: return render_template("search_result_page.html", **result) else: return render_template("search_error.html") @app.route("/gsearch", methods=('GET',)) def gsearchact(): logger.info(request.url) result = gsearch.GSearch(request.args).__dict__ type = request.args['type'] if type == "gene": return render_template("gsearch_gene.html", **result) elif type == "phenotype": return render_template("gsearch_pheno.html", **result) @app.route("/gsearch_updating", methods=('POST',)) def gsearch_updating(): logger.info("REQUEST ARGS:", request.values) logger.info(request.url) result = update_search_results.GSearch(request.args).__dict__ return result['results'] # type = request.args['type'] # if type == "gene": # return render_template("gsearch_gene_updating.html", **result) # elif type == "phenotype": # return render_template("gsearch_pheno.html", **result) @app.route("/docedit") def docedit(): logger.info(request.url) doc = docs.Docs(request.args['entry']) return render_template("docedit.html", **doc.__dict__) @app.route('/generated/') def generated_file(filename): logger.info(request.url) return send_from_directory(GENERATED_IMAGE_DIR,filename) @app.route("/help") def help(): logger.info(request.url) doc = docs.Docs("help") return render_template("docs.html", **doc.__dict__) @app.route("/wgcna_setup", methods=('POST',)) def wcgna_setup(): logger.info("In wgcna, request.form is:", request.form) # We are going to get additional user input for the analysis logger.info(request.url) return render_template("wgcna_setup.html", **request.form) # Display them using the template @app.route("/wgcna_results", methods=('POST',)) def wcgna_results(): logger.info("In wgcna, request.form is:", request.form) logger.info(request.url) wgcna = wgcna_analysis.WGCNA() # Start R, load the package and pointers and create the analysis wgcnaA = wgcna.run_analysis(request.form) # Start the analysis, a wgcnaA object should be a separate long running thread result = wgcna.process_results(wgcnaA) # After the analysis is finished store the result return render_template("wgcna_results.html", **result) # Display them using the template @app.route("/ctl_setup", methods=('POST',)) def ctl_setup(): logger.info("In ctl, request.form is:", request.form) # We are going to get additional user input for the analysis logger.info(request.url) return render_template("ctl_setup.html", **request.form) # Display them using the template @app.route("/ctl_results", methods=('POST',)) def ctl_results(): logger.info("In ctl, request.form is:", request.form) logger.info(request.url) ctl = ctl_analysis.CTL() # Start R, load the package and pointers and create the analysis ctlA = ctl.run_analysis(request.form) # Start the analysis, a ctlA object should be a separate long running thread result = ctl.process_results(ctlA) # After the analysis is finished store the result return render_template("ctl_results.html", **result) # Display them using the template @app.route("/news") def news_route(): newsobject = news.News() return render_template("news.html", **newsobject.__dict__) @app.route("/references") def references(): # doc = docs.Docs("references") # return render_template("docs.html", **doc.__dict__) return render_template("reference.html") @app.route("/intro") def intro(): doc = docs.Docs("intro") return render_template("docs.html", **doc.__dict__) @app.route("/policies") def policies(): doc = docs.Docs("policies") return render_template("docs.html", **doc.__dict__) @app.route("/links") def links(): doc = docs.Docs("links") return render_template("docs.html", **doc.__dict__) @app.route("/environments") def environments(): doc = docs.Docs("environments") return render_template("docs.html", **doc.__dict__) @app.route("/submit_trait") def submit_trait_form(): logger.info(request.url) species_and_groups = get_species_groups() return render_template("submit_trait.html", **{'species_and_groups' : species_and_groups, 'gn_server_url' : GN_SERVER_URL, 'version' : GN_VERSION}) @app.route("/create_temp_trait", methods=('POST',)) def create_temp_trait(): logger.info(request.url) print("REQUEST.FORM:", request.form) #template_vars = submit_trait.SubmitTrait(request.form) doc = docs.Docs("links") return render_template("links.html", **doc.__dict__) #return render_template("show_trait.html", **template_vars.__dict__) @app.route('/export_trait_excel', methods=('POST',)) def export_trait_excel(): """Excel file consisting of the sample data from the trait data and analysis page""" logger.info("In export_trait_excel") logger.info("request.form:", request.form) logger.info(request.url) sample_data = export_trait_data.export_sample_table(request.form) logger.info("sample_data - type: %s -- size: %s" % (type(sample_data), len(sample_data))) buff = StringIO.StringIO() workbook = xlsxwriter.Workbook(buff, {'in_memory': True}) worksheet = workbook.add_worksheet() for i, row in enumerate(sample_data): worksheet.write(i, 0, row[0]) worksheet.write(i, 1, row[1]) if len(row) > 2: worksheet.write(i, 2, row[2]) workbook.close() excel_data = buff.getvalue() buff.close() return Response(excel_data, mimetype='application/vnd.ms-excel', headers={"Content-Disposition":"attachment;filename=sample_data.xlsx"}) @app.route('/export_trait_csv', methods=('POST',)) def export_trait_csv(): """CSV file consisting of the sample data from the trait data and analysis page""" logger.info("In export_trait_csv") logger.info("request.form:", request.form) logger.info(request.url) sample_data = export_trait_data.export_sample_table(request.form) logger.info("sample_data - type: %s -- size: %s" % (type(sample_data), len(sample_data))) buff = StringIO.StringIO() writer = csv.writer(buff) for row in sample_data: writer.writerow(row) csv_data = buff.getvalue() buff.close() return Response(csv_data, mimetype='text/csv', headers={"Content-Disposition":"attachment;filename=sample_data.csv"}) @app.route('/export_traits_csv', methods=('POST',)) def export_traits_csv(): """CSV file consisting of the traits from the search result page""" logger.info("In export_traits_csv") logger.info("request.form:", request.form) logger.info(request.url) csv_data = export_traits.export_search_results_csv(request.form) return Response(csv_data, mimetype='text/csv', headers={"Content-Disposition":"attachment;filename=trait_list.csv"}) @app.route('/export_perm_data', methods=('POST',)) def export_perm_data(): """CSV file consisting of the permutation data for the mapping results""" logger.info(request.url) num_perm = float(request.form['num_perm']) perm_data = json.loads(request.form['perm_results']) buff = StringIO.StringIO() writer = csv.writer(buff) writer.writerow(["Suggestive LRS (p=0.63) = " + str(perm_data[int(num_perm*0.37-1)])]) writer.writerow(["Significant LRS (p=0.05) = " + str(perm_data[int(num_perm*0.95-1)])]) writer.writerow(["Highly Significant LRS (p=0.01) = " + str(perm_data[int(num_perm*0.99-1)])]) writer.writerow("") writer.writerow([str(num_perm) + " Permutations"]) writer.writerow("") for item in perm_data: writer.writerow([item]) csv_data = buff.getvalue() buff.close() return Response(csv_data, mimetype='text/csv', headers={"Content-Disposition":"attachment;filename=perm_data.csv"}) @app.route("/show_temp_trait", methods=('POST',)) def show_temp_trait_page(): logger.info(request.url) template_vars = show_trait.ShowTrait(request.form) #logger.info("js_data before dump:", template_vars.js_data) template_vars.js_data = json.dumps(template_vars.js_data, default=json_default_handler, indent=" ") # Sorting the keys messes up the ordered dictionary, so don't do that #sort_keys=True) #logger.info("js_data after dump:", template_vars.js_data) #logger.info("show_trait template_vars:", pf(template_vars.__dict__)) return render_template("show_trait.html", **template_vars.__dict__) @app.route("/show_trait") def show_trait_page(): logger.info(request.url) template_vars = show_trait.ShowTrait(request.args) #logger.info("js_data before dump:", template_vars.js_data) template_vars.js_data = json.dumps(template_vars.js_data, default=json_default_handler, indent=" ") # Sorting the keys messes up the ordered dictionary, so don't do that #sort_keys=True) #logger.info("js_data after dump:", template_vars.js_data) #logger.info("show_trait template_vars:", pf(template_vars.__dict__)) return render_template("show_trait.html", **template_vars.__dict__) @app.route("/heatmap", methods=('POST',)) def heatmap_page(): logger.info("In heatmap, request.form is:", pf(request.form)) logger.info(request.url) start_vars = request.form temp_uuid = uuid.uuid4() traits = [trait.strip() for trait in start_vars['trait_list'].split(',')] if traits[0] != "": version = "v5" key = "heatmap:{}:".format(version) + json.dumps(start_vars, sort_keys=True) logger.info("key is:", pf(key)) with Bench("Loading cache"): result = Redis.get(key) if result: logger.info("Cache hit!!!") with Bench("Loading results"): result = pickle.loads(result) else: logger.info("Cache miss!!!") template_vars = heatmap.Heatmap(request.form, temp_uuid) template_vars.js_data = json.dumps(template_vars.js_data, default=json_default_handler, indent=" ") result = template_vars.__dict__ for item in template_vars.__dict__.keys(): logger.info(" ---**--- {}: {}".format(type(template_vars.__dict__[item]), item)) pickled_result = pickle.dumps(result, pickle.HIGHEST_PROTOCOL) logger.info("pickled result length:", len(pickled_result)) Redis.set(key, pickled_result) Redis.expire(key, 60*60) with Bench("Rendering template"): rendered_template = render_template("heatmap.html", **result) else: rendered_template = render_template("empty_collection.html", **{'tool':'Heatmap'}) return rendered_template @app.route("/comparison_bar_chart", methods=('POST',)) def comp_bar_chart_page(): logger.info("In comp bar chart, request.form is:", pf(request.form)) logger.info(request.url) start_vars = request.form traits = [trait.strip() for trait in start_vars['trait_list'].split(',')] if traits[0] != "": template_vars = comparison_bar_chart.ComparisonBarChart(request.form) template_vars.js_data = json.dumps(template_vars.js_data, default=json_default_handler, indent=" ") result = template_vars.__dict__ rendered_template = render_template("comparison_bar_chart.html", **result) else: rendered_template = render_template("empty_collection.html", **{'tool':'Comparison Bar Chart'}) return rendered_template @app.route("/mapping_results_container") def mapping_results_container_page(): return render_template("mapping_results_container.html") @app.route("/loading", methods=('POST',)) def loading_page(): logger.info(request.url) initial_start_vars = request.form logger.debug("Marker regression called with initial_start_vars:", initial_start_vars.items()) #temp_uuid = initial_start_vars['temp_uuid'] wanted = ( 'temp_uuid', 'trait_id', 'dataset', 'method', 'trimmed_markers', 'selected_chr', 'chromosomes', 'mapping_scale', 'score_type', 'suggestive', 'significant', 'num_perm', 'permCheck', 'perm_output', 'num_bootstrap', 'bootCheck', 'bootstrap_results', 'LRSCheck', 'covariates', 'maf', 'use_loco', 'manhattan_plot', 'control_marker', 'control_marker_db', 'do_control', 'genofile', 'pair_scan', 'startMb', 'endMb', 'graphWidth', 'lrsMax', 'additiveCheck', 'showSNP', 'showGenes', 'viewLegend', 'haplotypeAnalystCheck', 'mapmethod_rqtl_geno', 'mapmodel_rqtl_geno', 'temp_trait', 'group', 'species' ) start_vars_container = {} start_vars = {} for key, value in initial_start_vars.iteritems(): if key in wanted or key.startswith(('value:')): start_vars[key] = value start_vars_container['start_vars'] = start_vars rendered_template = render_template("loading.html", **start_vars_container) return rendered_template @app.route("/marker_regression", methods=('POST',)) def marker_regression_page(): initial_start_vars = request.form logger.debug("Marker regression called with initial_start_vars:", initial_start_vars.items()) logger.info(request.url) temp_uuid = initial_start_vars['temp_uuid'] wanted = ( 'trait_id', 'dataset', 'geno_db_exists', 'method', 'mapping_results_path', 'trimmed_markers', 'selected_chr', 'chromosomes', 'mapping_scale', 'plotScale', 'score_type', 'suggestive', 'significant', 'num_perm', 'permCheck', 'perm_output', 'num_bootstrap', 'bootCheck', 'bootstrap_results', 'LRSCheck', 'covariates', 'maf', 'use_loco', 'manhattan_plot', 'control_marker', 'control_marker_db', 'do_control', 'genofile_string', 'pair_scan', 'startMb', 'endMb', 'graphWidth', 'lrsMax', 'additiveCheck', 'showSNP', 'showGenes', 'viewLegend', 'haplotypeAnalystCheck', 'mapmethod_rqtl_geno', 'mapmodel_rqtl_geno', 'temp_trait', 'group', 'species' ) start_vars = {} for key, value in initial_start_vars.iteritems(): if key in wanted or key.startswith(('value:')): start_vars[key] = value logger.debug("Marker regression called with start_vars:", start_vars) version = "v3" key = "marker_regression:{}:".format(version) + json.dumps(start_vars, sort_keys=True) logger.info("key is:", pf(key)) with Bench("Loading cache"): result = None # Just for testing #result = Redis.get(key) #logger.info("************************ Starting result *****************") #logger.info("result is [{}]: {}".format(type(result), result)) #logger.info("************************ Ending result ********************") if result: logger.info("Cache hit!!!") with Bench("Loading results"): result = pickle.loads(result) else: logger.info("Cache miss!!!") with Bench("Total time in MarkerRegression"): template_vars = marker_regression.MarkerRegression(start_vars, temp_uuid) if template_vars.mapping_method != "gemma" and template_vars.mapping_method != "plink": template_vars.js_data = json.dumps(template_vars.js_data, default=json_default_handler, indent=" ") result = template_vars.__dict__ if result['pair_scan']: with Bench("Rendering template"): img_path = result['pair_scan_filename'] logger.info("img_path:", img_path) initial_start_vars = request.form logger.info("initial_start_vars:", initial_start_vars) imgfile = open(TEMPDIR + img_path, 'rb') imgdata = imgfile.read() imgB64 = imgdata.encode("base64") bytesarray = array.array('B', imgB64) result['pair_scan_array'] = bytesarray rendered_template = render_template("pair_scan_results.html", **result) else: #for item in template_vars.__dict__.keys(): # logger.info(" ---**--- {}: {}".format(type(template_vars.__dict__[item]), item)) gn1_template_vars = marker_regression_gn1.MarkerRegression(result).__dict__ #pickled_result = pickle.dumps(result, pickle.HIGHEST_PROTOCOL) #logger.info("pickled result length:", len(pickled_result)) #Redis.set(key, pickled_result) #Redis.expire(key, 1*60) with Bench("Rendering template"): if (gn1_template_vars['mapping_method'] == "gemma") or (gn1_template_vars['mapping_method'] == "plink"): gn1_template_vars.pop('qtlresults', None) print("TEMPLATE KEYS:", list(gn1_template_vars.keys())) rendered_template = render_template("marker_regression_gn1.html", **gn1_template_vars) # with Bench("Rendering template"): # if result['pair_scan'] == True: # img_path = result['pair_scan_filename'] # logger.info("img_path:", img_path) # initial_start_vars = request.form # logger.info("initial_start_vars:", initial_start_vars) # imgfile = open(TEMPDIR + '/' + img_path, 'rb') # imgdata = imgfile.read() # imgB64 = imgdata.encode("base64") # bytesarray = array.array('B', imgB64) # result['pair_scan_array'] = bytesarray # rendered_template = render_template("pair_scan_results.html", **result) # else: # rendered_template = render_template("marker_regression.html", **result) # rendered_template = render_template("marker_regression_gn1.html", **gn1_template_vars) return rendered_template @app.route("/export_mapping_results", methods = ('POST',)) def export_mapping_results(): logger.info("request.form:", request.form) logger.info(request.url) file_path = request.form.get("results_path") results_csv = open(file_path, "r").read() response = Response(results_csv, mimetype='text/csv', headers={"Content-Disposition":"attachment;filename=mapping_results.csv"}) return response @app.route("/export", methods = ('POST',)) def export(): logger.info("request.form:", request.form) logger.info(request.url) svg_xml = request.form.get("data", "Invalid data") filename = request.form.get("filename", "manhattan_plot_snp") response = Response(svg_xml, mimetype="image/svg+xml") response.headers["Content-Disposition"] = "attachment; filename=%s"%filename return response @app.route("/export_pdf", methods = ('POST',)) def export_pdf(): import cairosvg logger.info("request.form:", request.form) logger.info(request.url) svg_xml = request.form.get("data", "Invalid data") logger.info("svg_xml:", svg_xml) filename = request.form.get("filename", "interval_map_pdf") filepath = GENERATED_IMAGE_DIR+filename pdf_file = cairosvg.svg2pdf(bytestring=svg_xml) response = Response(pdf_file, mimetype="application/pdf") response.headers["Content-Disposition"] = "attachment; filename=%s"%filename return response @app.route("/network_graph", methods=('POST',)) def network_graph_page(): logger.info("In network_graph, request.form is:", pf(request.form)) logger.info(request.url) start_vars = request.form traits = [trait.strip() for trait in start_vars['trait_list'].split(',')] if traits[0] != "": template_vars = network_graph.NetworkGraph(start_vars) template_vars.js_data = json.dumps(template_vars.js_data, default=json_default_handler, indent=" ") return render_template("network_graph.html", **template_vars.__dict__) else: return render_template("empty_collection.html", **{'tool':'Network Graph'}) @app.route("/corr_compute", methods=('POST',)) def corr_compute_page(): logger.info("In corr_compute, request.form is:", pf(request.form)) logger.info(request.url) template_vars = show_corr_results.CorrelationResults(request.form) return render_template("correlation_page.html", **template_vars.__dict__) @app.route("/corr_matrix", methods=('POST',)) def corr_matrix_page(): logger.info("In corr_matrix, request.form is:", pf(request.form)) logger.info(request.url) start_vars = request.form traits = [trait.strip() for trait in start_vars['trait_list'].split(',')] if len(traits) > 1: template_vars = show_corr_matrix.CorrelationMatrix(start_vars) template_vars.js_data = json.dumps(template_vars.js_data, default=json_default_handler, indent=" ") return render_template("correlation_matrix.html", **template_vars.__dict__) else: return render_template("empty_collection.html", **{'tool':'Correlation Matrix'}) @app.route("/corr_scatter_plot") def corr_scatter_plot_page(): logger.info(request.url) template_vars = corr_scatter_plot.CorrScatterPlot(request.args) template_vars.js_data = json.dumps(template_vars.js_data, default=json_default_handler, indent=" ") return render_template("corr_scatterplot.html", **template_vars.__dict__) @app.route("/submit_bnw", methods=('POST',)) def submit_bnw(): logger.info(request.url) template_vars = get_bnw_input(request.form) return render_template("empty_collection.html", **{'tool':'Correlation Matrix'}) # Take this out or secure it before putting into production @app.route("/get_temp_data") def get_temp_data(): logger.info(request.url) temp_uuid = request.args['key'] return flask.jsonify(temp_data.TempData(temp_uuid).get_all()) ########################################################################## def json_default_handler(obj): '''Based on http://stackoverflow.com/a/2680060/1175849''' # Handle datestamps if hasattr(obj, 'isoformat'): return obj.isoformat() # Handle integer keys for dictionaries elif isinstance(obj, int): return str(int) # Handle custom objects if hasattr(obj, '__dict__'): return obj.__dict__ #elif type(obj) == "Dataset": # logger.info("Not going to serialize Dataset") # return None else: raise TypeError, 'Object of type %s with value of %s is not JSON serializable' % ( type(obj), repr(obj))