"""This script must be run each time the database is updated. It runs queries against the SQL database, indexes the results and builds a xapian index. This xapian index is later used in providing search through the web interface. """ from functools import partial import json import xapian from utility.monads import sql_query_mdict from wqflask.database import database_connection, xapian_writable_database def index_text(termgenerator, text): """Index text and increase term position.""" termgenerator.index_text(text) termgenerator.increase_termpos() # pylint: disable=invalid-name def write_document(db, idterm, doctype, doc): """Write document into xapian database.""" # We use the XT prefix to indicate the type. doc.add_boolean_term(f"XT{doctype}") doc.add_boolean_term(idterm) db.replace_document(idterm, doc) # pylint: disable=missing-function-docstring def main(): termgenerator = xapian.TermGenerator() termgenerator.set_stemmer(xapian.Stem("en")) indexer = partial(index_text, termgenerator) authors_indexer = lambda text: termgenerator.index_text(text, 1, "A") species_indexer = lambda text: termgenerator.index_text(text, 1, "XS") group_indexer = lambda text: termgenerator.index_text(text, 1, "XG") tissue_indexer = lambda text: termgenerator.index_text(text, 1, "XI") description_indexer = lambda text: termgenerator.index_text(text, 1, "XD") dataset_indexer = lambda text: termgenerator.index_text(text, 1, "XDS") symbol_indexer = lambda text: termgenerator.index_text(text, 1, "XY") chr_indexer = lambda text: termgenerator.index_text(text, 0, "XC") peakchr_indexer = lambda text: termgenerator.index_text(text, 0, "XPC") mean_adder = lambda mean: doc.add_value(0, xapian.sortable_serialise(mean)) peak_adder = lambda peak: doc.add_value(1, xapian.sortable_serialise(peak)) mb_adder = lambda mb: doc.add_value(2, xapian.sortable_serialise(mb)) peakmb_adder = lambda peakmb: doc.add_value(3, xapian.sortable_serialise(peakmb)) additive_adder = lambda additive: doc.add_value(4, xapian.sortable_serialise(additive)) year_adder = lambda year: doc.add_value(5, xapian.sortable_serialise(float(year))) # FIXME: Some Max LRS values in the DB are wrongly listed as # 0.000, but shouldn't be displayed. Make them NULLs in the # database. # pylint: disable=invalid-name with xapian_writable_database() as db: with database_connection() as conn: for trait in sql_query_mdict(conn, """ SELECT ProbeSet.Name AS name, ProbeSet.Symbol AS symbol, ProbeSet.description AS description, ProbeSet.Chr AS chr, ProbeSet.Mb AS mb, ProbeSet.alias AS alias, ProbeSet.GenbankId AS genbankid, ProbeSet.UniGeneId AS unigeneid, ProbeSet.Probe_Target_Description AS probe_target_description, ProbeSetFreeze.Name AS dataset, ProbeSetFreeze.FullName AS dataset_fullname, ProbeSetFreeze.Id AS dataset_id, Species.Name AS species, InbredSet.Name AS `group`, Tissue.Name AS tissue, ProbeSetXRef.Mean AS mean, ProbeSetXRef.LRS AS lrs, ProbeSetXRef.additive AS additive, Geno.Chr as geno_chr, Geno.Mb as geno_mb FROM Species INNER JOIN InbredSet ON InbredSet.SpeciesId = Species.Id INNER JOIN ProbeFreeze ON ProbeFreeze.InbredSetId = InbredSet.Id INNER JOIN Tissue ON ProbeFreeze.TissueId = Tissue.Id INNER JOIN ProbeSetFreeze ON ProbeSetFreeze.ProbeFreezeId = ProbeFreeze.Id INNER JOIN ProbeSetXRef ON ProbeSetXRef.ProbeSetFreezeId = ProbeSetFreeze.Id INNER JOIN ProbeSet ON ProbeSet.Id = ProbeSetXRef.ProbeSetId LEFT JOIN Geno ON ProbeSetXRef.Locus = Geno.Name AND Geno.SpeciesId = Species.Id WHERE ProbeSetFreeze.confidentiality < 1 AND ProbeSetFreeze.public > 0 """): doc = xapian.Document() termgenerator.set_document(doc) # Add values. trait["mean"].bind(mean_adder) trait["lrs"].bind(peak_adder) trait["mb"].bind(mb_adder) trait["geno_mb"].bind(peakmb_adder) trait["additive"].bind(additive_adder) # Index text. trait["name"].bind(indexer) trait["description"].bind(indexer) trait["symbol"].bind(indexer) trait.pop("alias").bind(indexer) trait.pop("genbankid").bind(indexer) trait.pop("unigeneid").bind(indexer) trait.pop("probe_target_description").bind(indexer) trait["species"].bind(species_indexer) trait["group"].bind(group_indexer) trait["tissue"].bind(tissue_indexer) trait["description"].bind(description_indexer) trait["dataset"].bind(dataset_indexer) trait["symbol"].bind(symbol_indexer) trait["chr"].bind(chr_indexer) trait["geno_chr"].bind(peakchr_indexer) doc.set_data(json.dumps(trait.data)) write_document(db, trait["name"].bind(lambda name: f"Q{name}"), "gene", doc) with database_connection() as conn: for i, trait in enumerate(sql_query_mdict(conn, """ SELECT Species.Name AS species, InbredSet.Name AS `group`, PublishFreeze.Name AS dataset, PublishFreeze.FullName AS dataset_fullname, PublishXRef.Id AS name, COALESCE(Phenotype.Post_publication_abbreviation, Phenotype.Pre_publication_abbreviation) AS abbreviation, COALESCE(Phenotype.Post_publication_description, Phenotype.Pre_publication_description) AS description, Phenotype.Lab_code, Publication.Abstract, Publication.Title, Publication.Authors AS authors, IF(Publication.Year='', 0, Publication.Year) AS year, Publication.PubMed_ID AS pubmed_id, PublishXRef.LRS as lrs, PublishXRef.additive, InbredSet.InbredSetCode AS inbredsetcode, PublishXRef.mean, PublishFreeze.Id AS dataset_id, Geno.Chr as geno_chr, Geno.Mb as geno_mb FROM Species INNER JOIN InbredSet ON InbredSet.SpeciesId = Species.Id INNER JOIN PublishFreeze ON PublishFreeze.InbredSetId = InbredSet.Id INNER JOIN PublishXRef ON PublishXRef.InbredSetId = InbredSet.Id INNER JOIN Phenotype ON PublishXRef.PhenotypeId = Phenotype.Id INNER JOIN Publication ON PublishXRef.PublicationId = Publication.Id LEFT JOIN Geno ON PublishXRef.Locus = Geno.Name AND Geno.SpeciesId = Species.Id """)): doc = xapian.Document() termgenerator.set_document(doc) # Add values. trait["mean"].bind(mean_adder) trait["lrs"].bind(peak_adder) trait["geno_mb"].bind(peakmb_adder) trait["additive"].bind(additive_adder) trait["year"].bind(year_adder) # Index text. trait.pop("abbreviation").bind(indexer) trait["description"].bind(indexer) trait.pop("Lab_code").bind(indexer) trait.pop("Abstract").bind(indexer) trait.pop("Title").bind(indexer) trait["authors"].bind(indexer) trait["inbredsetcode"].bind(indexer) trait["species"].bind(species_indexer) trait["group"].bind(group_indexer) trait["description"].bind(description_indexer) trait["authors"].bind(authors_indexer) trait["geno_chr"].bind(peakchr_indexer) # Convert name from integer to string. trait["name"] = trait["name"].map(str) # Split comma-separated authors into a list. trait["authors"] = trait["authors"].map( lambda s: [author.strip() for author in s.split(",")]) doc.set_data(json.dumps(trait.data)) write_document(db, f"Q{i}", "phenotype", doc) if __name__ == "__main__": main()