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‘‘Systems Genetics’’ detects variation in phenotypic traits and integrates this with underlying genetic
variation. A powerful application of systems genetics is analyzing effects of genome-wide genetic vari-
ants on transcriptome-wide variation in gene expression. We see systems genetics as a new powerful
technology which will empower research in genetics and in other disciplines. Here, we present pre-
liminary analyses of systems genetics approaches to defining genetic interactions within the thymus,
which is the key site for T lymphocyte development and imposition of immunological tolerance.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Most scientists still see genetics as Mendel envisioned it,
whereby an individual gene encodes a specific product/protein/
phenotype. However, many of the major public health problems
society faces – such as diabetes, cardiovascular diseases, cancers,
etc – although genetically based, do not follow this paradigm. This
is certainly true of autoimmune diseases, which arise from complex
interactions between multiple genes and environmental factor(s).
Understanding such non-Mendelian, complex genetic diseases is
the challenge for what may be considered as second generation
genetics. Beyond this, the field we have dubbed ‘‘Systems Genetics’’
offers the opportunity to define interacting clusters and networks
of genes within a tissue or cell population. This work has been
pioneered by Rob Williams and colleagues [1–3] and taken up other
groups (e.g. [4–6]). Previously termed ‘‘genetical genomics’’ we
consider ‘‘Systems Genetics’’ a better description [7].

Microarray technology is central to systems genetics, but its use
is two orders of magnitude beyond conventional microarray studies.
The first quantum difference is that, instead of examining tissues
from a single source, tissues from as many as 100 related strains are
examined. The second level is that the transcriptomic data is in-
tegrated with the underlying genotypic data of each of the strains.
Systems genetics makes it possible to define networks and clusters
of co-regulated transcripts; to correlate phenotype with genotype;
and to map genes which affect the expression levels of other genes.
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Two resources are required for this work to be possible. First,
one needs a collection of related, genetically defined individuals
that can be used as a source of tissues. The ‘‘systems’’ aspect of
systems genetics suggests testing and correlating a range of phe-
notypes from a group of related individuals; this is obviously much
more difficult if one does not have an immortal mapping pop-
ulation. Recombinant inbred (RI) mouse strains are ideal for this
purpose. Each strain is derived from two progenitor strains and has
a mosaic genome comprised of chromosome segments inherited
from one of the two parental strains. Perhaps the best studied RI set
is the BXD series, derived from C57BL/6 and DBA/2 strains [7]. An
original panel of 26 strains produced by Benjamin Taylor [7] is now
augmented by an additional 63 strains [8]. Each strain has inherited
a different pattern of genes, so differences between strains can be
mapped on the basis of allele sharing by similar strains. Crucially, all
mice within a strain are essentially genetically identical, so results
may be accumulated from different tissues at different time points
and under differing stimulation conditions; results may be con-
firmed subsequently and by other researchers. Both quantitative
and qualitative traits may be mapped using RI strains [7]. While it is
possible to use F2, backcross or even heterogeneous stock animals
for this purpose, these are obviously limited as each has a unique
genotype and can offer definition of only a limited number of
phenotypes.

Secondly, a new set of bioinformatic tools is required. A very
powerful resource for systems genetics analyses has been de-
veloped under the GeneNetwork umbrella, which incorporates the
WebQTL programs [1,9]. WebQTL, as the name suggests, is avail-
able online (www.genenetwork.org), allowing researchers
worldwide to access a range of accumulated data.

http://www.genenetwork.org
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Fig. 1. The amount of Cd1d transcript in thymus from each of the strains was de-
termined, and normalized by the rank-inverse method using Illumina BeadStudio
software. Trait score is shown as a log2 value, and variation in expression amongst
strains was plotted using WebQTL. Each strain is indicated by a ‘þ’; the number of the
BXD strain [7,8] is shown immediately below this symbol. This plot can be used for
assessing whether the strain data is normally distributed, as a normally distributed set
should form a straight line.
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Here, we will describe some applications of systems genetics to
develop new insights into genetic regulation of immunologically
significant genes, using as an example the first immune-related
organ for which data is currently available: our unpublished data
on thymus.
2. Methods

2.1. Mice

C57BL/6 mice and BXD strains [7,8] were obtained from colonies
maintained at the University of Tennessee. Thymus tissues were
dissected from at least 5 mice from each of 26 different strains.
2.2. Microarrays

RNA was purified from duplicate pools of 2–3 thymus samples
per strain. cRNA samples were prepared and hybridized to Illumina
Fig. 2. Genome-wide linkage analysis of variation in Il7r expression amongst BXD strains. Ev
each physical position (indicated by megabase number) on every chromosome (indicated b
wide significant and suggestive linkage thresholds, respectively. The location of the Il7r gen
thinner grey lines. A positive additive coefficient indicates that DBA/2 J alleles increase trait v
trait values. NB: All this information is presented in colour by WebQTL and is more easily
Ref 8 v1.1 arrays according to the manufacturer’s instructions. Data
were cleaned by background subtraction and rank invariant
normalization using the Illumina BeadStudio package.

2.3. Data analyses

The normalized data were exported in ‘CSV’ format and uploa-
ded into the WebQTL Database Schema by an interpreter tool de-
veloped in Python. The data and the WebQTL programs [1,9] were
installed on an Apple X-RAID server (Apple Computers, Cupertino,
CA). Access to WebQTL is available via the GeneNetwork web site,
www.genenetwork.org.

3. Results

In this paper, we will illustrate some of the features of systems
genetics as currently enabled by WebQTL. We will provide as an
example the expression in thymus of genes selected to complement
the work of other investigators presented in this volume. It should
be emphasized that this work has not yet been published and is
presented here as preliminary investigations. The thymus of course
is the key organ for T cell development. It is essential for preventing
autoimmunity by establishing tolerance as a result of imposing
negative selection on autoreactive T cells.

First, we demonstrate that the expression of immunologically
relevant genes varies across the panel of strains. This is illustrated
for Cd1d in Fig 1. This gene encodes a member of the CD1 family
that presents lipid antigens to NKT cells, a unique immunoregula-
tory T cell subset [10]. In this example, the levels of Cd1d transcripts
vary by a factor of at least two across the panel of strains.

Variation in expression levels of a particular gene is usually
thought to be controlled by regulatory elements, such as promoters
and enhancers, associated with that gene. It is becoming in-
creasingly apparent, especially in complex genetic diseases, that
gene–gene interactions are important in regulating expression
levels. For example, polymorphisms in the IL10 gene can affect the
levels of IL-12 produced by the dendritic cells [11]. Quantitative
trait loci (QTL; i.e. genes which have a quantitative effect on a par-
ticular trait) may be mapped using one of the WebQTL modules. In
order to demonstrate this aspect of WebQTL, we focused on Il7r,
the gene encoding the receptor for IL-7. This gene is of interest to
those studying autoimmunity for a number of reasons, such as: the
idence of linkage is presented as LOD scores (thick black lines) which are calculated at
y numbers in each panel). Upper and lower horizontal dashed lines indicate genome-
e itself on chromosome 1 is arrowed. Further information is displayed on the graph as
alues. In contrast, a negative additive coefficient indicates that C57BL/6 J alleles increase
viewed than in this greyscale image.

http://www.genenetwork.org
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intrathymic level of IL-7 has a critical effect on the production of T
cells; IL-7 signaling enhances the survival of developing thymo-
cytes and mature T cells; IL-7 is critically regulated in developing
thymocytes; thymocytes that undergo positive selection upregulate
IL-7R expression; and IL-7 is a survival factor for CD4þCD25þT cells
_(reviewed in Refs. [12–14]).

An example of such QTL linkage mapping is presented in Fig 2.
The Il7r gene itself is on chromosome 1, but there is no significant
affect of polymorphisms in this region on variation in IL-7R ex-
pression levels. In contrast, a locus on chromosome 14 has the most
significant affect on thymic Il7r expression. Thus, the most powerful
regulation of Il7r appears not to be by cis-elements associated with
the Il7r promoter, but by a locus on another chromosome instead.

What would happen when Il7r expression increases or de-
creases across the panel of strains? Do other transcripts also rise (or
fall)? What genes may decrease in expression as Il7r expression
increases? In other words, can we correlate any other genes’ ex-
pression with that of Il7r? Using WebQTL to interrogate the data
from 26 strains, it is possible to define a cluster of apparently co-
regulated genes. Table 1 shows the results for the 10 most highly
correlated genes from such an analysis. The P-values for the cor-
relation of these genes are all highly significant (P< 0.0000001).
The transcripts shown in Fig 3 are all positively correlated, but
genes that have an inverse correlation can also be revealed by this
method.

Perhaps the most powerful application of WebQTL comes from
its ability to integrate the expression of each gene of a cluster with
the underlying BXD strains’ genotypes. In this way, we can map loci
throughout the genome which may influence expression of each of
these genes. The output of one such analysis is shown in Fig. 3 in
which each individual transcript of a cluster of 20 genes whose
expression is correlated with that of Il7r was examined. First, these
transcripts are clustered in a tree according to their correlation
status. Then variation in gene expression is integrated with the
underlying genetic variation amongst the strains. This allows
mapping of loci which can influence the expression of each of these
genes, as depicted in the heat map: the more intense the colour, the
Table 1
Genes whose variation in expression is correlated with that of Il7r

Rank Symbol Chr Megabase Mean
expression

Correlation P-value

1 Il7r 15 9.45 9.29 1.00 0.00Eþ00
2 Il18r1 1 40.45 9.15 0.89 1.55E�11
3 1200002N14Rik 10 87.75 8.91 0.85 1.91E�09
4 Ppp3cc 14 68.95 7.92 0.85 2.11E�09
5 Ctsw 19 5.47 9.25 0.84 7.06E�09
6 Ebi2 14 121.09 8.75 0.83 9.6E�09
7 Timp3 10 85.78 9.40 0.83 1.22E�08
8 Gpr18 14 121.05 9.14 0.83 1.25E�08
9 B830021E24Rik 16 44.16 8.72 0.82 2.10E�08
10 Sh3bgrl2 9 83.40 7.73 0.82 2.75E�08
11 Icos 1 60.94 8.61 0.82 4.10E�08
12 Emp2 16 10.20 7.89 0.81 4.91E�08
13 2610318I01Rik 3 122.53 9.26 0.81 5.88E�08
14 AA960558 7 130.70 10.83 0.81 9.15E�08
15 AU041483 16 36.65 6.85 0.80 1.04E�07
16 Traf1 2 34.77 9.18 0.80 1.09E�07
17 Adam19 11 45.99 8.44 0.80 1.21E�07
18 F2r 13 96.70 10.52 0.80 1.26E�07
19 D130072O21Rik ? ? 10.05 0.80 1.39E�07
20 AA175286 6 3.32 11.59 0.80 1.43E�07

Variation in gene expression of all transcripts on the Illumina Ref 8 chip was as-
sessed. Values of expression of Il7r in the database were compared to all 24,607
records in Thymus Illumina RankInv (June 07) database. The top 100 correlations
ranked by the Pearson’s product-moment correlation were calculated and the
highest 20 correlated genes are displayed here. Also shown is the chromosomal
position of that gene (chromosome number and megabase position), its mean ex-
pression levels (normalized, rank-inverted and expressed as log2), the Pearson’s
product-moment correlation, and the P-value corresponding to that correlation.

Fig. 3. Systems genetics analysis of the genes most highly correlated with Il7r in
thymus. WebQTL integrated variation in expression across the 26 BXD strains of the 20
genes whose expression in the thymus was most highly correlated with that of Il7r
(Table 1) with the underlying genetic variation of those strains (see text). The figure
depicts a heat map, with the genome arrayed on the Y axis, from chromosome 1 at the
top through to the X chromosome; chromosomes are indicated by the numbers on the
left of each block. The X axis contains all 20 genes to be tested: each ‘‘lane’’ represents
a separate gene in the following order: Il7r, Il18r1, B830021E24Rik, 1200002N14Rik,
Traf1, AA175286, Ctsw, Timp3, AA960558, Adam19, Icos, Ppp3cc, F2r, Sh3bgrl2, Ebi2,
2610318I01Rik, D130072O21Rik, AU041483, Gpr18, Emp2. Within each lane the likeli-
hood that variation in expression of that gene is due to a polymorphism at each po-
sition is assessed and indicated by a colour. Here, the results are presented as a heat
map, with individual effects of the parental C57BL/6 (B; blue) and DBA/2 (D; red) al-
leles on transcript levels indicated with different colours. The more intense the colour,
the higher the likelihood that the allele contributes to the regulation. Information
regarding the location of the gene encoding each of the transcripts is also provided,
depicted by a triangle at the appropriate position within each lane.
stronger the effect of that locus. Even with this ‘‘helicopter view’’
one can see (from the black/grey areas) that most of the genome has
no effect on expression of any of these genes; this is of course to be
expected. What is also immediately noticeable is that there are
several brightly coloured areas, which indicate the position of loci at
which strains with similar expression levels share more of the pa-
rental B or D alleles that could be expected by chance. That is, these
are loci showing linkage to these phenotypes; these loci contain
genes which influence the levels of the transcripts in the Il7r cluster.
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Focusing on specific regions allows us to formulate hypotheses
that may be tested subsequently. For example, Fig 3 shows the
influence of a locus on chromosome 3 on the levels of all of these
transcripts. Thus, the expression not just of Il7r but also of each of
the highly correlated genes is regulated by a master locus on
chromosome 3. There is also another locus on chromosome 7 that
influences expression of many of the genes; in particular it has its
strongest effect on Sh3bgrl2 (SH3 binding glutamic acid-rich -2).
Thus, a simple WebQTL session generates hypotheses that can
initiate investigations into genes previously unsuspected of having
any functional involvement with the original reference gene, let
alone with thymocyte development.

These examples give an indication of only some of the functions
available within GeneNetwork. Currently, systems genetics is
a powerful technology for defining clusters of co-regulated genes.
Its use is centred upon user-specified genes and can identify novel
potential master regulatory genes for further investigation. We are
working to increase the functionality and power of the GeneNet-
work and systems genetics further in a number of areas. In partic-
ular, increasing the number of strains studied can increase the
mapping resolution. By increasing the genetic diversity of the
founders of an RI set, the potential for observing regulatory poly-
morphisms increases dramatically. In this context, the availability of
1000 RI strains from ‘‘The Gene Mine’’ (a.k.a. the Collaborative
Cross) [15] will drive the development of systems genetics in further
exciting areas.
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