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individual profi les (i.e pairwise correlation of arrays across all 
expressed transcripts) and concluded that there is substantial cor-
relation between profi les from tissues. These profi le correlations 
are of interest as they refl ect a common biological baseline of all 
cells (as well as the technical profi le of the arrays). However, the 
work is not informative on the main question for surrogate tissues: 
does the study of blood (for example) offer the opportunity to infer 
expression differences that also occur in brain?

While such a comparison would be diffi cult to achieve using 
human tissue, rat and mouse genetic reference populations (Chesler 
et al., 2003) offer an opportunity to study genetically driven expres-
sion differences in a highly controlled way. Gene expression studies 
of these have been used chiefl y to explore gene regulation by geneti-
cally mapping expression Quantitative Trait Loci (eQTLs). Here we 
use the data simply to explore the correlation for each transcript 
between tissues across a panel of different genotypes. Transcripts 
that do correlate should also show similar eQTLs. Previous analysis 
of tissue specifi city have estimated that a third of tissue specifi c 
eQTLs are cis-acting while approximately half are trans acting 
(Huang et al., 2009). However, comparisons of tissues have varied 
in their estimates of similarity between expression values. The BXD 
recombinant inbred (RI) panel (which is derived from the strains 
C57BL/6 and DBA/2) is one of the most extensively studied RI 
panels and currently the largest available in a mammalian species 
(Taylor et al., 1999; Peirce et al., 2004). A study of the BXD RI panel 
using liver, adipose, muscle and brain tissue identifi ed an overlap 
of cis-eQTLS of 63–88% (Meng et al., 2007). Conversely, a study of 
the BXH/HXB panel of rat recombinant inbred strains found only 
15% of cis-eQTLs that were common to both fat and kidney tissue 

INTRODUCTION
Microarray technology captures the variation in expression levels 
within the transcriptome. Gene expression levels not only vary 
between different genotypes but also between each tissue within 
the same individual. Gene expression profi les of a particular tissue 
can be used in the prognosis and diagnosis of disease. Research 
on cervical cancer identifi ed approximately 40 genes that could 
be used to generate a profi le to distinguish normal and cancerous 
tissue (Wong et al., 2003) This approach has also been used in 
the prediction of breast (Brennan et al., 2005), rectal (de Bruin 
et al., 2007) and gastric cancers (Wang et al., 2006). Similar anal-
ysis could potentially allow insight into the genetic component 
of neurodegenerative disorders such as Alzheimer’s disease and 
Parkinson’s disease. Expression analysis of the brains of deceased 
Alzheimer’s and Parkinson’s sufferers has revealed major changes 
in gene regulation associated with each disease (Blalock et al., 2004; 
Papapetropoulos et al., 2007). However, the lack of human brain 
tissue samples available has limited the scale of such research and 
ultimately does not allow for the development of diagnostic tools 
for the disease in living patients. The same limitation can also affect 
basic research into gene function. One possible solution to this 
problem is the use of another tissue such as blood as a substitute 
for the actual tissue of interest (Liew et al., 2006; Mohr and Liew, 
2007). It is not clear whether this approach is viable due to the 
effects to tissue-specifi c expression.

In order to establish the validity of tissue substitution, it is neces-
sary to understand the tissue-specifi c sources of variation in expres-
sion. (Sullivan et al., 2006) address the question of comparability 
of expression profi les between tissues. Their analysis  compared 
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16,949 (76%) are also in the upper half of the distribution for 
spleen, demonstrating that a large number of genes expressed in 
the  hippocampus are also expressed in the spleen. The Pearson 
 correlation coeffi cients between tissues for each of the 16,949 
probesets across the 22 lines were calculated. The distribution 
of these R values is approximately normal and centred near zero. 
Superfi cially this seems to indicate that the spleen arrays do not 
refl ect what is happening in the brain, but in fact the major-
ity of the probesets used in the correlation analysis interrogate 
 transcripts whose true expression levels do not vary across the RI 
panel. Therefore, the variance that is being compared here is the 
(random) experimental error. The key question is whether there 
is correlation in those transcripts that do vary across lines. As an 
index of this (genetically driven) variation, the coeffi cient of vari-
ation (CV) was calculated for each probe set and tissue. The CV 
value is given by: 

CV = σ
μ

where σ is the standard deviation and µ is the mean. A scatter plot 
of CV vs R indicates that with increasing CV, there is an increasing 
incidence of high correlation for both datasets (Figures 1A,B). To 
dissect this further, a distribution of R for a range of minimum 
CV values was plotted (Figure 2). The data as a whole shows a 
distribution consistent with uncorrelated randomly varying data, 
as the fi lter for ‘variable’ probesets becomes more stringent, a sec-
ond peak of high correlating probesets becomes more prominent. 
It can be demonstrated that this is not simply an artefact of our 
analysis methods by performing a simple permutation experiment. 
If the identities of the RI lines in the brain sample are randomised, 
it can be seen that this characteristic pattern of higher correlation 
in the most variable probesets disappears (Figure 3). It should be 
noted that randomising the strains alters the calculated correlations 
coeffi cient but not the CV values.

SNP DATA
In order to identify how the presence or absence of a SNP can 
affect apparent QTL expression, the dataset was divided into eQTLs 
where at least one SNP was present (SNP positive data) and eQTLs 
where the presence of a SNP was absent or unknown (SNP negative 
data). A list of probe sets that contain polymorphisms between the 
C57BL/6J and DBA/2J strains has previously been created by Walter 
et al. (2007). According to this list 2,085 of the 16,494 probesets 
our analysis considers contained at least one SNP. From this, SNP 
positive and SNP negative subsets of both the spleen and hippoc-
ampus data were created. One possible source of the correlation 
we observe for some probesets between tissues would be polymor-
phism within the sequences interrogated by the probes. This could 
produce a genetically-driven signal intensity difference, observable 
in any tissue where expression is detectable. The calculated value 
refl ects the different hybridization performances of mismatched 
probe sequences due to the presence of a SNP in the transcript 
sequence that does not relate directly to mRNA abundance. A list 
of probesets containing one or more SNPs has been prepared from 
several genome-wide sources of data on the progenitor strains of 
the BXD RI panel, which is believed to be comprehensive or very 
nearly so (Walter et al., 2007). Excluding those probesets from the 

(Hubner et al., 2005). Here comparable data sets from 21 BXD lines 
for the hippocampus, (Overall et al., 2009) and spleen are used 
to investigate the usefulness of tissue substitution. Comparison 
of a tissue occurring in the brain and one occurring in the blood 
provides an indication as to what degree tissue specifi city affects 
overall gene expression levels and hence whether tissue surrogacy 
is a viable approach to the study of brain tissue.

Previous studies into microarray expression data have raised 
the issue of what effect Single Nucleotide Polymorphisms (SNPs) 
have upon the hybridisation and intensity levels for a probe set. 
(Walter et al., 2007; Tabakoff et al., 2008) Differences in hybridisa-
tion intensity resulting from polymorphisms would occur in any 
tissue where the gene was expressed, and thus mimic coordinate 
differences in mRNA abundance. The presence or absence of a SNP 
therefore will have a strong effect of gene expression and this is also 
taken into account within the study.

MATERIALS AND METHODS
The hippocampal transcriptome data has been generated by an 
international consortium for 67 BXD strains (Overall et al., 2009). 
The hippocampal formation, not including the subiculum, was 
dissected and pooled for hybridization to a single Affymetrix M430 
2.0 array. Each BXD strain had one male and one female array per 
line with each sample being generated from a pool of three litter-
mates. Arrays were run and processed at the W. Harry Feinstone 
Center for Genomic Research, University of Memphis, TN, USA. 
Raw microarray data were summarised using the RMA method 
(Irizarry et al., 2003). Further information about the animals used 
in this study and individual array-level information can be found at 
the GeneNetwork site1. For the spleen data, a colony of 24 BXD RI 
strains was maintained at the Institute of Psychiatry using original 
stocks purchased from The Jackson Laboratory (Bar Harbor, ME, 
USA). The spleen data is derived exclusively from females with 
four arrays per line (again, using the Affymetrix M430 2.0 array), 
all from separate individuals. These were also processed with RMA 
and the strain means calculated. The 21 strains of the BXD panel 
for which both hippocampus and spleen data was obtained are 
BXD1/TyJ, BXD5/TyJ, BXD6/TyJ, BXD8/TyJ, BXD9/TyJ, BXD11/
TyJ, BXD12/TyJ, BXD16/TyJ, BXD18/TyJ, BXD19/TyJ, BXD21/TyJ, 
BXD22/TyJ, BXD23/TyJ, BXD24b/TyJ, BXD27/TyJ, BXD28/TyJ, 
BXD31/TyJ, BXD32/TyJ, BXD34/TyJ, BXD39/TyJ and BXD40/TyJ. 
For each data set, only probe sets with mean intensities above the 
data set median were analysed (the median represents the approxi-
mate background level of expression on the array). These fi ltered 
subsets largely overlapped, giving 16,949 probesets expressed by 
this criterion in both data sets.

RESULTS
COEFFICIENT OF VARIANCE VS CORRELATION
In order to compare data matrices from the two data sets, strain 
means were prepared for all probesets for each line and tissue, 
yielding a 45,510 by 21 matrix for each tissue. We then excluded 
low intensity probesets as the variance is such that the probesets 
are dominated by background noise. Of the 22,550 probesets in 
the upper half of the intensity distribution in the hippocampus, 

1http://www.genenetwork.org/dbdoc/HC_M2_0606_P.html

http://www.genenetwork.org/dbdoc/HC_M2_0606_P.html
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FIGURE 1 | Scatterplot of CV vs showing a positive correlation between CV in the (A) spleen and (B) hippocampus datasets and the correlation between 

the two tissues.

analysis does not materially change the observation. When the 
 datasets are divided into SNP positive and SNP negative probesets, 
the same correlation is observed (Figures 4A,B). This suggests that 
there are strong contributing factors to expression variation that 
are not confounded by SNPs in the transcript sequence.

CIS AND TRANS REGULATORY EFFECTS ON GENETIC VARIANCE
QTLs for expression of selected probesets were mapped using the 
R/qtl (Broman et al., 2003) function scanone (default method) and 
genotype data was taken from www.webqtl.org. The genotypes 
were reduced to 795 markers by retaining only strain distribu-
tion patterns unique in the present 21 strains and eliminating 
X chromosome markers. The 200 probesets which showed the 
highest CV values for both the hippocampus and spleen  dataset 

were selected for QTL analysis. Using a signifi cance cut-off of 
LOD (Base −10 log odds ratio) of 4, autosomal cis and trans act-
ing loci were identifi ed for 118 and 125 of the probes for the 
hippocampus and spleen data sets respectively. A cis-effect is a 
polymorphism in the gene or its immediate context (a cis regula-
tory locus can be operationally defi ned as any within 10 Mb of 
a gene’s physical location) while a trans-effect eQTL occurs at a 
different physical location, either distant from the affected gene 
on the same chromosome or on a different chromosome entirely. 
There was a large difference in the number of eQTLs, 197 for the 
hippocampus dataset and 307 for the spleen. The ratio of cis/
trans effects is markedly different for the two tissues, trans effects 
account for 23.6% of hippocampus signifi cant loci but only 8% 
in spleen. Only two autosomal eQTLs that showed a trans effect 
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Distributions of R for Hippocampus 
Dataset with randomised BXD strains

correlation
proportion of probesets

CV > 1%   N =16063
CV > 2%   N = 9317

CV > 3%   N = 4096
CV > 4%   N = 2034
CV > 5%   N = 1144
CV > 6%   N =  722
CV > 7%   N =  460
CV > 8%   N =  308
CV > 9%   N =  211
CV > 10%   N =  159

FIGURE 3 | Pearson’s product-moment correlation plotted against the 

density of CV values for randomised BXD strains for the range of 

CV > 0.01, CV > 0.02…CV > 0.10 for the hippocampus dataset.

Distributions of R for Hippocampus Dataset

correlation

proportion of probesets

CV > 1%   N =16063

CV > 2%   N = 9317

CV > 3%   N = 4096

CV > 4%   N = 2034
CV > 5%   N = 1144

CV > 6%   N =  722
CV > 7%   N =  460

CV > 8%   N =  308
CV > 9%   N =  211
CV > 10%   N =  159

FIGURE 2 | Distribution of correlation coeffi cients for the entire dataset 

(17203 probesets) and for subsets with CV > 0.01, CV > 0.02…CV > 0.10 in 

the hippocampus dataset.

for both tissues were identifi ed, rs6253968 at Chr1.qA4 (which 
occurs within the transcribed region of a voltage-gated potassium 
channel) and rs13480733 at Chr10.qD1. The analysis therefore 
fails to establish strong trans effects across the two tissues.

DISCUSSION
The estimated correlation between the expression values of the 
spleen and hippocampus tissues depends upon the coeffi cient of 
variance across the BXD strains. In the case of genes with highly 
heritable expression levels, it may be possible that spleen tissue 

correlation

proportion of probesets

Distributions of R for SNP 
Positive Hippocampus Dataset

CV > 1%   N = 2915

CV > 2%   N = 1181

CV > 3%   N =  553
CV > 4%   N =  280

CV > 5%   N =  162
CV > 6%   N =   86

CV > 7%   N =   56
CV > 8%   N =   34

CV > 9%   N =   24
CV > 10%   N =   17

Distributions of R for SNP Negative
 Hippocampus Dataset

co rrela tion
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CV  > 2%    N = 8561

CV  > 3%    N = 3825
CV  > 4%    N = 1624

CV  > 5%    N =  699
CV  > 6%    N =  300
CV  > 7%    N =  140
CV  > 8%    N =   78
CV  > 9%    N =   54
CV  > 10%    N =   40

FIGURE 4 | (A,B) Pearson’s product-moment correlation plotted against 

the density of CV values for the range of CV > 0.1, CV > 0.2…CV > 0.10 in 

the hippocampus SNP positive (A) and SNP negative (B) datasets.

would be able to act as a surrogate for hippocampus tissue. Spleen 
is used here as an example of a heterogeneous, easily obtained 
tissue although admittedly it differs in details of its composition 
from mouse or human blood. An RI panel also does not represent 
the structure of a human outbred population, but it does offer a 
highly controlled way to examine to what extent strong effects of 
potential interest in brain, for example, might be detectable from 
the analysis of blood.

In order to estimate the validity of this hypothesis, it is nec-
essary to fully understand the contributing factors which deter-
mine variation in gene expression. A major source of variation 
in gene expression is caused by the presence of SNPs within the 
coding region as well as by the presence of insertions and deletions 
within the genome. An estimated 17–25% of expression variation 
can be explained by SNPs or sequence variation (Ciobanu et al., 
2008). Taking isoform variants into account, this proportion rises to 
40–50%. The presence of SNPs within the binding region of a probe 
can alter the hybridization affi nity of the probe (this is particularly 



Frontiers in Neurogenomics www.frontiersin.org October 2009 | Volume 1 | Article 2 | 5

Davies et al. Blood–brain gene expression studies

the case if the polymorphism occurs within the centre of the bind-
ing site). A diffi culty of analyzing RI strains using a microarray is 
that the probe set may favour one haplotype over the other. As it is 
diffi cult to establish the degree of variation caused by the presence 
or absence of a SNP, the safest strategy might be to remove all probes 
from the platform where an SNP occurs. However, Figures 4A,B 
indicates that when the probes are separated into SNP-positive 
and SNP-negative datasets, the same overall pattern of expression 
correlation is maintained. Thus the analysis would suggest that 
there must be other sources of variations determining the expres-
sion level.

Beyond the presence of SNPs, there are numerous other fac-
tors that can affect the microarray signal including Copy Number 
Variants, indels, alternative splicing and 5′ and 3′ UTR processing 
(Bemmo et al., 2008; Kwan et al., 2008), all of which can affect 
the calculated expression by the microarray. Also, the extreme 
3′ position of many of the Affymetrix probesets in this type of 
array may give rise to apparent expression differences which do 
not refl ect biologically functional differences in the quantity of 
coding sequence mRNA (Ciobanu et al., 2008). It has previously 
been suggested that the majority of signifi cant regulatory genes 
are cis-modulated rather than trans (Chesler et al., 2005). However, 
there is an imbalance in statistical power in detecting the pres-
ence of trans-eQTLs in comparison to cis. While the majority of 
eQTLs identifi ed in yeast have been trans acting, comparatively few 
have been identifi ed in rodents and humans (Huang et al., 2009). 
There are, however, exceptions such as Qrr1, a QTL-rich region 
of Chromosome 1 that is known to infl uence several neural and 
behavioural phenotypes through trans-modulation (Mozhui et al., 
2008). The presence of different cis and trans acting loci between 
the two tissues suggests that there might be inherent limitations to 
the use of one tissue substituting for another. Although this may 
well be the case, it would be necessary to further understand all 
the sources of variations within microarray analysis in order to 
determine the precise causes of tissue-specifi c expression. Wide 

scale analysis of multiple brain and body tissues across a large 
range of recombinant inbred strains, as proposed by Huang et al. 
(2009), may provide a clearer understanding of the effects of  tissue-
specifi c expression.

The strain specifi c correlation of a large variation in expres-
sion profi les for the spleen and hippocampus datasets is extremely 
interesting but does not provide clear evidence that one tissue 
could be used as a substitute for the other. Partly this is because 
it is diffi cult to identify the source of that variation, even when 
studying inbred mouse populations where the genetic and environ-
mental factors may be more easily controlled. To estimate to what 
extent spleen works as a surrogate for hippocampus, consider that 
expression above background on microarrays for the two tissues 
show an overlap for approximately three-quarters of all probesets. 
Furthermore, of those probesets which are highly variable in hip-
pocampus (CV > 10), one-third are also highly variable in spleen. 
Of the potentially interesting differences in hippocampus, there-
fore, approximately two out of nine should be recoverable from 
spleen. Although this is only a small fraction, its detection may be 
worthwhile in an experiment where the aim is to discover entry 
points into unknown biochemical pathways or to identify poten-
tial biomarkers. The calculation is likely to be considerably more 
favourable if RNA sequencing is used because the threshold for 
detection of expression is lower and the precision is higher (Sultan 
et al., 2008).
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